
Dissertation presented to the Instituto Tecnológico de Aeronáutica, in

partial fulfillment of the requirements for the degree of Master of Science

in the Graduate Program of Electronics and Computer Engineering, Field

of Informatics.

Leonardo Silveira

SOURCE CODE VULNERABILITY DETECTION AND

INTERPRETABILITY WITH LANGUAGE MODELS

Dissertation approved in its final version by signatories below:

Prof. Dr. Filipe Alves Neto Verri

Advisor

Prof. Dr. Cesar Augusto Cavalheiro Marcondes

Co-advisor

Profa. Dra. Emı́lia Villani

Pro-Rector of Graduate Courses

Campo Montenegro
São José dos Campos, SP - Brazil

2023

Cataloging-in Publication Data
Documentation and Information Division

Silveira, Leonardo
Source Code Vulnerability Detection and Interpretability with Language Models / Leonardo
Silveira.
São José dos Campos, 2023.
60f.

Dissertation of Master of Science – Course of Electronics and Computer Engineering. Area of
Informatics – Instituto Tecnológico de Aeronáutica, 2023. Advisor: Prof. Dr. Filipe Alves Neto
Verri. Co-advisor: Prof. Dr. Cesar Augusto Cavalheiro Marcondes.

1. Deep Learning. 2. Transformers. 3. Vulnerability Detection. 4. Interpretability. I. Instituto
Tecnológico de Aeronáutica. II. Title.

BIBLIOGRAPHIC REFERENCE

SILVEIRA, Leonardo. Source Code Vulnerability Detection and Interpretability with
Language Models. 2023. 60f. Dissertation of Master of Science – Instituto Tecnológico
de Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTHOR’S NAME: Leonardo Silveira
PUBLICATION TITLE: Source Code Vulnerability Detection and Interpretability with
Language Models.
PUBLICATION KIND/YEAR: Dissertation / 2023

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of
this dissertation and to only loan or to sell copies for academic and scientific purposes.
The author reserves other publication rights and no part of this dissertation can be
reproduced without the authorization of the author.

Leonardo Silveira
Rua Jacob Vontobel 350
90690-080 – Porto Alegre–RS

SOURCE CODE VULNERABILITY DETECTION AND

INTERPRETABILITY WITH LANGUAGE MODELS

Leonardo Silveira

Thesis Committee Composition:

Prof. Dr. Lourenço Alves Pereira Júnior President - ITA
Prof. Dr. Filipe Alves Neto Verri Advisor - ITA
Prof. Dr. Cesar Augusto Cavalheiro Marcondes Co-advisor - ITA
Prof. Dr. Carlos Henrique Quartucci Forster Member - ITA
Prof. Dr. Zhao Liang Member - USP

ITA

Acknowledgments

This journey had the participation of many smart, capable, and kind people, to whom

I send my most sincere gratitude and appreciation.

In particular, I dedicate this accomplishment

To my advisor Filipe, who guided me to this point, always showing the highest degree

of professionalism and care.

To my co-advisor Cesar, who accompanied and mentored me at every step of this

work.

To my parents and sister, for being such great role models and providing me with all

the support and love someone needs.

To my girlfriend Tamires, who was always by my side, even when distant.

And to Enola, who was my joyful partner in the last six months of this work.

“Never trust anything that can think for itself

if you can’t see where it keeps its brain.”

— Arthur Weasley

Resumo

A execução de testes de segurança em software para detecção de vulnerabilidades é fun-

damental de modo a evitar a ocorrência de ataques mal intencionados, que podem, entre

outras coisas, comprometer o funcionamento da aplicação ou expor dados senśıveis de seus

usuários. Tradicionalmente, esses testes são realizados utilizando ferramentas de análise

estática, dinâmica ou simbólica. Essas ferramentas apresentam diversas limitações, como

a detecção de muitos falsos positivos e custo computacional muito elevado. Uma alterna-

tiva aos métodos tradicionais é o uso de aprendizado de máquina, particularmente modelos

de aprendizado profundo. Diversas abordagens explorando esses modelos foram propostas

na literatura recente, sendo sua maior parte inspirada nos avanços alcançados em apren-

dizado de máquina profundo na área de Processamento de Linguagem Natural. Apesar do

uso de modelos cada vez mais sofisticados, pouco foi feito no campo de interpretabilidade

desses métodos, com o objetivo de alcançar não somente a classificação do código fonte

como vulnerável ou não, mas também apontar no código os trechos em que o modelo de

aprendizado acredita que a vulnerabilidade está presente. Nesse trabalho, realizamos o

treinamento (fine-tuning) de dois modelos de linguagem, CodeBERT e CoTexT, para a

tarefa de detecção de vulnerabilidades em códigos fontes, e avaliamos a capacidade desses

modelos de gerarem interpretação de suas predições. Para isso, realizamos a curadoria de

um banco de dados composto por uma coleção de códigos vulneráveis e suas respectivas

máscaras de rotulagem, localizando a posição exata das vulnerabilidades no código. Uti-

lizando os dois métodos de interpretabilidade mais indicados para tarefas de classificação

de texto em Processamento de Linguagem Natural, Saliência e InputXGradient, geramos

mapas de calor representando a importância de cada token do código para predição do

modelo. Com isso, encontramos que ambas as técnicas apresentam resultados de precisão

semelhantes, porém os mapas de calor gerados pelo método InputXGradient são consid-

eravelmente mais fáceis de serem interpretados. Comparando os modelos de linguagem,

o CodeBERT apresenta acurácia levemente inferior quando comparado ao CoTexT na

tarefa de classificação de códigos fontes, porém em contraste, gera resultados considerav-

elmente melhores de interpretabilidade de sua predição. Adicionalmente, destacamos o

efeito dos tokenizadores utilizados pelos modelos de linguagem em sua capacidade de gerar

interpretação de suas predições, mostrando que suas caracteŕısticas podem influenciar de

vii

maneira importante a habilidade do modelo de aprender a estrutura sintática e semântica

da linguagem.

Abstract

The probing of software by security testers to detect possible vulnerabilities is of primary

importance to prevent attackers from exploiting these flaws, which can, besides other

things, compromise the application and permit access to sensitive data. Traditionally,

these security testers are static, dynamic and symbolic analyzers. These tools, in general,

present a compromise between precision and complexity. A recent alternative to these

methods is the use of machine learning models, which can avoid this tradeoff altogether,

rendering precise predictions with acceptable complexity. Recently, many models have

been proposed in the literature, drawing much inspiration by the recent advances in the

field of Natural Language Processing. Despite this recent exploration of machine learning

methods, there is little study in the realm of interpreting these models’ output, with the

goal of achieving not only the classification of whether a snippet of code is vulnerable or

not, but to be capable of pointing in the code where the model believes the vulnerability

is located. In this work, we fine-tuned two state-of-the-art large pre-trained language

models, CodeBERT and CoTexT, for the task of vulnerability detection in programming

language code, and evaluated the ability of these models to render interpretation of their

output. For this, we curated a benchmark dataset composed of a collection of vulnerable

code and their respective ground-truth masks, locating exactly where the vulnerability

is present in the code. Using the two best performing interpretability methods for text

classification in the Natural Language Processing literature, Saliency and InputXGradient,

we generated heatmaps with the importance of each input token to the final prediction.

We found that both methods give similar precision results, but InputXGradient heatmaps

are considerably easier to interpret. Comparing the language models, CodeBERT presents

a slightly inferior classification accuracy compared with CoTexT, but contrastively, the

former can give considerably better interpretation results for its decision. Additionally, we

highlight the effect the tokenizers have on the models’ ability to generate interpretation of

their predictions, showing that the tokenizer characteristics can strongly affect the model’s

abilities to learn the syntactic and semantic structure of the language.

List of Figures

FIGURE 2.1 – Illustration of the architecture introduced by Russell et al. (2018)

for vulnerability detection. Image from Russell et al. (2018). 25

FIGURE 2.2 – Illustration of a heterogeneous graph used by the model introduced

from Zhou et al. (2019). In the left is presented the code snipped

from which the graph originated, and in the right the resulting graph

representation. Image from Zhou et al. (2019). 26

FIGURE 2.3 – Methods presented by Nguyen et al. (2021) for graph inference. Top:

Unique token-focused graph construction. Bottom: Index-focused

graph construction. Image from Nguyen et al. (2021). 26

FIGURE 2.4 – Architecture of the model proposed by Nguyen et al. (2021). Image

from Nguyen et al. (2021). 27

FIGURE 2.5 – The Transformer model architecture. Image from Vaswani et al.

(2017). 29

FIGURE 3.1 – Left: Architecture for the CodeBERT fine-tuning. We place a pre-

diction head on top of the CodeBERT model, which is a Transformer

encoder. The prediction head is composed of a single perceptron

layer and a sigmoid activation function, which outputs the probabil-

ity of the input function being vulnerable or not. Right: Architec-

ture for the CoTexT model fine-tuning. The model is based on the

T5 architecture, which is constituted by the complete transformer

architecture, with both encoder and decoder. The decoder is a lan-

guage model, and we fine-tune it to generate as its first output token

the strings 0 or 1, which are the labels of our classification problem. 38

LIST OF FIGURES x

FIGURE 3.2 – Vulnerable sample from the dataset with the position of the vulner-

ability labeled. The function is tokenized, and each of its tokens is

masked with values of 0 or 1. The collection of tokens masked as

1 represents the position of the vulnerabilities in the code, and is

highlighted in red for illustration. 41

FIGURE 4.1 – Distribution of the InputXGradient importance scores for the Co-

TexT and CodeBERT models. 45

FIGURE 4.2 – Distribution of the Saliency importance scores for the CoTexT and

CodeBERT models. 45

FIGURE 4.3 – Overview of the heatmaps of three vulnerable functions, represented

each in one row. The left column illustrates the ground-truth heatmaps,

showing where the vulnerability is present in the code, the center

column brings the InputXGradient interpretability heatmaps, and

the right column presents the Saliency interpretability heatmaps. . . 47

FIGURE 4.4 – Overview of the heatmaps for three vulnerable functions, being the

left column the ground-truth, the center column the heatmap from

the InputXGradient interpretability method, and the right column

form the Saliency interpretability method. The importances given

by the interpretability methods to each token are filtered using a

threshold. 48

FIGURE 4.5 – CodeBERT results. Top: Tokenized function using the CodeBERT

tokenizer, with ground-truth mask highlighting the exact position

of the vulnerability. Bottom: Heatmap of the importance/saliency

given by the model to each token, in order for it to predict the code

as vulnerable. 50

FIGURE 4.6 – CoTexT results. Top: Tokenized function using the CoTexT tok-

enizer, with ground-truth mask highlighting the exact position of the

vulnerability. Bottom: Heatmap of the importance/saliency given

by the model to each token, in order for it to predict the code as

vulnerable. 51

FIGURE 4.7 – CodeBERT results. Top: Tokenized function using the CodeBERT

tokenizer, with ground-truth mask highlighting the exact position

of the vulnerability. Bottom: Heatmap of the importance/saliency

given by the model to each token, in order for it to predict the code

as vulnerable. 52

LIST OF FIGURES xi

FIGURE 4.8 – CoTexT results. Top: Tokenized function using the CoTexT tok-

enizer, with ground-truth mask highlighting the exact position of the

vulnerability. Bottom: Heatmap of the importance/saliency given

by the model to each token, in order for it to predict the code as

vulnerable. 53

List of Tables

TABLE 4.1 – Fine-tuning results for the models CodeBERT and CoTexT. 43

TABLE 4.2 – Mean precision achieved applying the InputXGradient method to

the CodeBERT and CoTexT models. 44

TABLE 4.3 – Mean precision achieved applying the Saliency method to the Code-

BERT and CoTexT models. 44

List of Abbreviations and Acronyms

MLP multi-layer perceptron

NLP natural language processing

DL deep learning

NL natural language

PL programming language

CNN convolutional neural network

RNN recurrent neural network

GNN graph neural network

AI artificial intelligence

List of Symbols

w Weight

b Bias

V Value Matrix

Q Query Matrix

K Key Matrix

X Matrix of Input Vectors

d Dimensionality

Softmax Softmax non-linearity

Contents

1 Introduction . 17

1.1 Objective . 19

1.2 Motivation . 19

1.3 Outline . 20

2 Fundamental Background . 22

2.1 Traditional Approaches for Vulnerability Detection 22

2.2 Machine Learning for Classification . 23

2.3 Deep Learning . 23

2.4 Deep Learning for Vulnerability Detection 24

2.4.1 The Naturalness of Programming Languages 24

2.4.2 Graph Neural Networks . 25

2.4.3 Pre-Trained Language Models . 27

2.5 Interpretability Methods . 33

2.5.1 Interpretability Methods for Deep Learning Models 33

2.5.2 Interpretability in Vulnerability Detection 35

3 Methods . 37

3.1 Pre-trained Models and Fine-Tuning . 37

3.2 Interpretability Methods . 38

3.3 Interpretability Benchmark Dataset . 40

3.3.1 Evaluation Metric . 41

3.4 Interpretability Methods Comparison and Application for Different Lan-

guage Models . 42

CONTENTS xvi

4 Results . 43

4.1 Fine-Tuning Results . 43

4.2 Interpretability Results . 43

4.3 Qualitative Analysis of the Interpretability Results 45

4.3.1 Comparison - InputXGradient and Saliency 46

4.3.2 Comparison - CoTexT and CodeBERT 49

5 Conclusion . 54

5.1 Contributions . 55

5.2 Future works . 55

Bibliography . 57

Annex A – Publications . 61

1 Introduction

Probing software for security flaws is paramount to prevent attackers from exploiting

possible vulnerabilities, which could lead to compromising software applications, accessing

sensible data, and jeopardizing its users. Testing for security vulnerabilities becomes even

more critical due to the widespread use of open-source libraries, which can propagate the

impact of hidden vulnerabilities to seemingly secure software.

Traditionally, one way to discover code vulnerabilities is through the use of software

static testing, which executes a set of pre-defined rules against the source code without

actually needing to execute the program (RUSSELL et al., 2018). More comprehensive

approaches to software probing are dynamic and symbolic testing, where the program

is executed repeatedly and all the feasible execution paths are evaluated. The major

drawback of this latter class of methods is that the run-time and complexity of execution

are often prohibitive (YAMAGUCHI et al., 2014). Additionally, graph-based approaches

leveraging the code structure, such as Abstract Syntax Tree (AST), were proposed (YAM-

AGUCHI et al., 2014). However, the downside of graph-based methods is that they require

the complete project to be compiled, which may be expensive or even not possible when

only part of the code is available, as in a pull request, for instance (BURATTI et al., 2020).

Recently, effort has been made to apply data-driven techniques, especially deep learn-

ing methods, to programming language understanding tasks, such as vulnerability detec-

tion. The main advantage of these methods is that they alleviate the need of extracting

hand-crafted features from code or applying a set of rules designed by experts. In contrast,

these methods learn code features that enable them to detect vulnerabilities directly from

a labeled dataset of source code samples, in an end-to-end fashion (RUSSELL et al., 2018).

Work applying deep learning to vulnerability detection has primarily employed tech-

niques commonly used in Natural Language Processing (NLP) tasks, such as 1-dimensional

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) (RUSSELL et

al., 2018), and more recently large pre-trained Transformer language models (BURATTI et

al., 2020; FENG et al., 2020). Additionally, some authors have leveraged the code topology

and structure, such as its AST, data and control flows graphs, to apply Graph Neural

Networks (GNN) for code classification (ZHOU et al., 2019; NGUYEN et al., 2021).

CHAPTER 1. INTRODUCTION 18

The Devign dataset (ZHOU et al., 2019) is the main benchmark for the task of vulnera-

bility detection. It consists of roughly 20,000 C/C++ functions hand-labeled as vulnerable

or not vulnerable, with a balanced distribution between both classes. Models trained on

this dataset are able to predict the function classification, but they are not able to give

further information on the nature of the vulnerability or where in the code it is located.

Additionally, the state-of-the-art model in this benchmark presents an accuracy of 66.7%

(LU et al., 2021). This performance may be short of what is expected from a vulnerability

detection model, and software developers may remain skeptical about using a tool that

only tells that a vulnerability is present, without giving more details of where to look for

it, adding to the fact that about one-third of the times it may be wrong.

In this scenario, interpretability methods can be of great help, enhancing the machine

learning model’s capacity to communicate what factors were the most important for its

prediction. The purpose of the interpretability result is to convince the user that the

model took its decision in the right way. Concretely, we will use interpretability methods

to identify what parts of the input to the model were most relevant to its prediction,

facilitating the developer’s job of finding the precise location of the vulnerability in the

code in order to fix it.

Several works have been done in the field of interpretability and explainability of the

decision-making of Artificial Intelligence (AI) models and their inner workings (BURKART;

HUBER, 2021). The surge in the number of studies in this area is much driven by the

need and willingness to apply these models in ethically or socially sensitive tasks (e.g.,

health, justice), which has spurred even the creation of new legislation about the necessary

transparency of machine learning models.

In the field of Natural Language Processing (NLP), several methods of interpretability

were evaluated for the task of text classification (ATANASOVA et al., 2020). It was found

that gradient-based methods, known as saliency methods, (SUNDARARAJAN et al., 2017)

perform best across model architectures, and for the Transformer architecture in partic-

ular, InputXGradient gave the best results (KINDERMANS et al., 2016). The evaluation

of interpretability methods used several criteria, such as Agreement with Human Ratio-

nale and Rationale Consistency (ATANASOVA et al., 2020), which were only possible to

be calculated due to the availability of a suitable benchmark dataset, containing human

annotation of the salient tokens, or the tokens a human would consider most important

to make a decision.

For the task of software vulnerability detection, however, the use of interpretability

methods to evaluate the models’ prediction and decision-making has been more limited,

and the assessment of these methods less objective.

We find that there is room for a more thorough evaluation of interpretability methods

CHAPTER 1. INTRODUCTION 19

for this task, similar to what has been done in Natural Language Processing. In particular,

analysis of which ones of the proposed deep learning models have the ability to give a

more clear explanation of their decision-making process would be useful for their adoption

by developers. The main roadblock in this direction is, from our point of view, the lack

of an accepted benchmark for the assessment of the interpretability methods results.

1.1 Objective

Our main objective is to provide a benchmark dataset and an objective process for the

assessment of interpretability methods of machine learning models in the task of vulner-

ability detection. Secondly, we evaluate state-of-the-art language models using the two

most accepted interpretability methods for the text classification task and evaluate their

results, comparing their outputs and discussing the reason for the different performances.

1.2 Motivation

Questions about deep learning models’ transparency and interpretability, such as which

biases the models can present when making a decision, or what decision-making processes

these models undergo, have been the center of discussion for years. These topics have

been much debated in the fields of Natural Language Processing and Computer Vision,

but they are a valid discussion for any machine learning model trained to make a decision

in place of a human being or in its assistance.

A younger field being explored by machine learning is Programming Language (PL) un-

derstanding. Many of its subtasks, like code auto-completion, code generation, program-

ming language translation and semantic search, have lately been subject to the scrutiny

of machine learning models (LU et al., 2021).

Also recently, several disruptions of critical systems were caused due to the malicious

activities of attackers aiming at breaking down applications or accessing sensible data.

These attacks are possible by exploiting security vulnerabilities in these systems, which

usually originate in subtle errors made by their programmers. This becomes even more

critical due to the widespread use of open-source libraries, where a vulnerability can be

unknowingly propagated to many seemingly unrelated systems (RUSSELL et al., 2018).

The field of vulnerability detection is traditionally based on static code analyzers,

dynamic and symbolic testers. These traditional approaches present several drawbacks,

including many false positive alarms, limited coverage of vulnerabilities or are too com-

putationally expensive to run on large programs, preventing scaling the tests (BURATTI

CHAPTER 1. INTRODUCTION 20

et al., 2020; RUSSELL et al., 2018).

Therefore, attention has been given to the application of machine learning models

to this task. The approaches used have mainly taken two paths: the first tries to take

advantage of the topology and structure of the code explicitly (ZHOU et al., 2019; NGUYEN

et al., 2021), and the second exploits the hypothesis of code naturalness (HINDLE et al., 2012;

BURATTI et al., 2020), which argues that Programming Languages can be understood using

the same methods applied in Natural Languages, letting the models implicitly capture

the language syntax and structure during training (RUSSELL et al., 2018; FENG et al., 2020;

PHAN et al., 2021).

Even though relative success is being achieved, especially by large pre-trained language

models (FENG et al., 2020; PHAN et al., 2021), there is still a long road ahead, once the

current state of the art still falls short of 70% accuracy in the most accepted benchmark

(LU et al., 2021).

Furthermore, the state-of-the-art models are trained to classify a function as vulnerable

or not, which can be viewed as a rather coarse result and a limitation of the current

methods, once this information is of limited use for the software developers. A more

helpful outcome would be to highlight what are the most salient or important parts of

the code for predicting it as vulnerable, and if possible, where exactly the vulnerability is

present.

This more fine-grained result could be achieved by the use of interpretability methods,

such as the ones being discussed for years in the fields of Computer Vision and Natural

Language Processing (SUNDARARAJAN et al., 2017; KINDERMANS et al., 2017). The use

of these methods has already made shy inroads in the field of vulnerability detection

(SOTGIU et al., 2022; RENIERES; REISS, 2003), but the lack of accepted benchmarks to

evaluate and compare these methods makes the research less objective than expected and

prevents further advances.

Therefore, there is a need for the introduction of an accepted benchmark for inter-

pretability methods for the task of vulnerability detection, as well as a clear way to

compare and measure the preciseness of the interpretability results of different machine

learning models and the quality of the output of different interpretability techniques.

1.3 Outline

In the remaining chapters, we present the literature background, the methods used

in this work, and our results and contributions to the field of vulnerability detection in

programming languages.

CHAPTER 1. INTRODUCTION 21

In Chapter 2, we review the literature on the subject, encompassing traditional ap-

proaches for vulnerability detection, machine learning for classification, the concept of

deep learning and its application for vulnerability detection, the use of large pre-trained

models, and finally, interpretability methods used to try and understand the inner work-

ings of deep learning models.

In Chapter 3, we present the Methods used in this work, namely the choice of the pre-

trained language models CoTexT and CodeBERT, the fine-tuning process for the task

of vulnerability detection, the implementation of the interpretability methods Saliency

and InputXGradient, the interpretability benchmark dataset curation, and the choice of

evaluation metric.

In Chapter 4, we present the fine-tuning and interpretability results obtained and

provide a brief discussion, including a qualitative comparison of the interpretability results

achieved by both interpretability methods as well as by both language models.

Finally, in Chapter 5, we conclude our work by observing that, as in Natural Language

Processing, InputXGradient is the interpretability method capable of generating the best

outputs, and that the CodeBERTmodel, despite presenting a slightly inferior vulnerability

detection accuracy compared with CoTexT, is superior to the latter by a considerable

margin when comparing the capacity of the models to render an interpretation of their

predictions. We also highlight the effects the model tokenizer can have on its ability to

learn the semantic and syntactic structure of the programming language, as well as on its

capacity to generate an interpretable output.

2 Fundamental Background

In this chapter, we present a literature review covering traditional approaches for

vulnerability detection, machine learning for classification, the concept of deep learning

and deep learning methods applied for the task of vulnerability detection, pre-trained

language models, and interpretability methods for deep learning models.

2.1 Traditional Approaches for Vulnerability Detection

The simplest approach for vulnerability detection is the application of static analyz-

ers. The analysis is done without the need to compile or execute the code, but by the

identification of code structures representing flaws. The identification process is generally

based on handcrafted rules or pattern matching the code being analyzed with a database

of common vulnerabilities (WHEELER, 2018; INC., 2013).

The main weakness of static analyzers is that they usually generate a high number

of false positive alarms, making it counter-productive for developers to check all of them

and hindering the use of these tools in practice (CHEIRDARI; KARABATIS, 2018).

A second approach is dynamic analysis, which repeatedly executes the program in real

or virtual processors with different test inputs, ideally covering all possible outputs. For

example, one such method compares the faulty runs with their closest neighbors which

ran successfully, and based on this comparison highlights the suspicious parts of the code.

Techniques similar to this provide filtering of possible code vulnerabilities, but do not

provide support for explaining the cause of the error (RENIERES; REISS, 2003).

Finally, symbolic analysis probes all possible program paths by replacing the input

data with symbolic values, and analyzing their use over the control flow graph of the

program. The main drawback of this branch of techniques is that they are expensive to

run, and may be impractical for large programs, once the number of feasible paths that

need to be tested grows exponentially with the size of the program (KING, 1976; RUSSELL

et al., 2018).

CHAPTER 2. FUNDAMENTAL BACKGROUND 23

2.2 Machine Learning for Classification

Machine learning models can be described as programs that have the ability to improve

their performance in a given task as they gain experience on it. These models employ the

induction principle, which is the process of inferring general rules from specific data: given

a set of examples of a task, the models are capable of inferring a function or hypothesis

to solve that task (FACELI et al., 2011).

The kind of learning employed by these models can be divided into two macro-

categories: supervised learning and unsupervised learning. Furthermore, supervised learn-

ing is also described as predictive, while the latter as descriptive. In descriptive learning,

the data being presented to the model does not have an output to be predicted, so the

goal of the model is to explore and learn how to describe this data. For instance, the

model may learn what are the groups of objects in the data which are most similar, or

what are the rules of association present in the data (FACELI et al., 2011).

In contrast, in supervised learning it can be said that the model has a supervisor

that knows the true output for any given input, and the job of the model is to learn the

mapping between input and output. Supervised learning models are called predictors, as

they should learn how to predict an output given an input (FACELI et al., 2011).

Depending on the nature of the output, the prediction problem receives different

names: if the output of the model is a real number, it is a regression problem, and if

the output of the model is a discrete value representing a finite number of categories, it

is a classification problem (FACELI et al., 2011).

For the task of vulnerability detection, the model must predict if a snippet of pro-

gramming language code is vulnerable or not. Therefore, it is a classification problem

with two possible categories as outputs.

2.3 Deep Learning

Deep learning is a subset of machine learning, which uses a nested hierarchical structure

to build complex representations based on simpler ones. For instance, a deep learning

model can learn to identify complex features such as faces, by first identifying corners,

lines, textures, and colors. Each of these features is identified by different functions which

compose the model and are placed in a layered fashion, with the representation learned

from one function being fed into the next (GOODFELLOW et al., 2016).

In other terms, deep learning models are constructed by the stacking of simple func-

tions. This stacking gives the model its depth, and it is the combination of these functions

CHAPTER 2. FUNDAMENTAL BACKGROUND 24

that enables the model to learn abstract concepts. The canonical example is the multilayer

perceptron (MLP), which is the sequential combination of simple mathematical functions,

with the output of one function serving as the input to the next one. Accordingly, one

possible interpretation of deep learning models is that each mathematical function gives

as output a new representation of the input data, and as the network gets deeper, the

richer and more abstract this representation becomes (GOODFELLOW et al., 2016).

Deep learning methods were able to achieve great success in tasks that are subjective

and intuitive, such as understanding speech and images. It is difficult to hard code rules

and formal statements to solve these tasks, and deep learning handles these problems by

extracting patterns from the raw data in an end-to-end fashion, learning rough represen-

tations from the data in the initial layers of the networks, and building on it to learn more

sophisticated representations in the final layers. This ability makes deep learning models

very useful in tasks involving complex input data (GOODFELLOW et al., 2016).

2.4 Deep Learning for Vulnerability Detection

In this section, we explore the main deep learning approaches in the literature for

the task of vulnerability detection, which can be divided into early works exploring the

naturalness hypothesis, graph-based approaches, and large pre-trained language models.

2.4.1 The Naturalness of Programming Languages

The first studies applying deep learning for vulnerability detection leveraged the natu-

ralness hypothesis (BURATTI et al., 2020; HINDLE et al., 2012), which argues that program-

ming languages can be understood and dealt with using the same tools which are applied

to natural language.

Russell et al. (2018) started this trend, building on Natural Language Processing

(NLP) techniques. Additionally, the authors released the first full-fledged large dataset

for vulnerability detection in source code, composed of functions labeled as vulnerable or

not, with more than 1 million examples.

The method proposed by Russell et al. (2018) is much similar to the approach first

presented for sentence classification tasks, such as sentiment analysis and question classi-

fication (KIM, 2014). Firstly, the large corpora of functions is divided into tokens, which

collectively form the vocabulary. Each token has its meaning represented by a dense

embedding vector, which is learned during the network training.

The input to the network are functions to be classified as vulnerable or not. Each

function is divided into its tokens, with each token represented by its embedding vector.

CHAPTER 2. FUNDAMENTAL BACKGROUND 25

The concatenation of the input embedding vectors form an embedding matrix, which is

the first layer of the neural network.

The embedding matrix is fed into a 1-dimensional Convolutional Neural Network

(CNN) layer, which is followed by a pooling layer, a multilayer perceptron (MLP), and

finally ending in a sigmoid non-linearity, which gives the probability of the function being

vulnerable or not. The overall architecture can be seen in Figure 2.1.

FIGURE 2.1 – Illustration of the architecture introduced by Russell et al. (2018) for vulnerability detec-
tion. Image from Russell et al. (2018).

Later, other works using the naturalness hypothesis followed, including Dam et al.

(2021), which proposed applying Recurrent Neural Network LSTM-based model to detect

vulnerabilities in Android applications.

2.4.2 Graph Neural Networks

With the advancements in the field of Graph Neural Networks (GNN), subsequent

works on vulnerability detection tried to use this architecture style to take advantage of

the structure and logic of programming languages, seeing the naturalness hypothesis as a

weakness of the previous methods (ZHOU et al., 2019).

The first work in this front (ZHOU et al., 2019) mapped each code function into a

heterogeneous graph, formed by the combination of the Abstract Syntax Tree (AST),

Control Flow Graph (CFG), Data Flow Graph (DFG) and the natural code sequence

(NCS). An example of one such graph can be seen in Figure 2.2. The graph is formed

by four types of edges, derived from the four individual graphs, and share the same set

of nodes. Each node, in turn, contains two attributes, its source code and type, which

are represented by an embedding vector. The graph is fed into a graph neural network

to learn its nodes’ latent embeddings. These embeddings are then combined to form the

graph latent representation by the use of a multilayer perceptron (MLP), which is followed

by a sigmoid non-linearity, giving the probability of the function being vulnerable or not.

CHAPTER 2. FUNDAMENTAL BACKGROUND 26

FIGURE 2.2 – Illustration of a heterogeneous graph used by the model introduced from Zhou et al.

(2019). In the left is presented the code snipped from which the graph originated, and in the right the
resulting graph representation. Image from Zhou et al. (2019).

Nguyen et al. (2021) also explored the idea of using graph neural networks to classify

code functions, but introduced a simpler and more practical approach for inferring the

graph from the source code. The method proposed processes the source code as a flat

sequence of tokens, and presents two alternatives for graph inference:

• Unique token-focused construction: Unique tokens are represented by nodes in the

graph, and two nodes are connected by an edge if they co-occur in the code within

a fixed-size sliding window (Figure 2.3 Top);

• Index-focused construction: All the tokens are represented as nodes, and again two

nodes are connected by an edge if they co-occur in a fixed sliding window (Figure

2.3 Bottom).

FIGURE 2.3 – Methods presented by Nguyen et al. (2021) for graph inference. Top: Unique token-focused
graph construction. Bottom: Index-focused graph construction. Image from Nguyen et al. (2021).

The node embeddings initialization is done using the representation learned by a large

pre-trained language model (FENG et al., 2020).

CHAPTER 2. FUNDAMENTAL BACKGROUND 27

The deep learning model proposed by Nguyen et al. (2021) is illustrated at Figure

2.4. In the first part, it employs a two-layer Graph Neural Network (GNN) with residual

connections. The latent graph resulting from the first part is passed through a ReadOut

Layer, which applies a mixture of sum pooling and max pooling layers to the node em-

beddings to calculate an aggregated graph representation. The graph representation is

then passed to a sigmoid layer, giving the final prediction.

FIGURE 2.4 – Architecture of the model proposed by Nguyen et al. (2021). Image from Nguyen et al.

(2021).

2.4.3 Pre-Trained Language Models

The pendulum shifted again to Natural Language Processing techniques with the in-

troduction of the Transformer architecture (VASWANI et al., 2017), especially with the use

of large pre-trained language models fine-tuned for specific tasks (DEVLIN et al., 2018; LIU

et al., 2019b; RAFFEL et al., 2019). In this section, the concepts and motivation of the

Transformer architecture and pre-trained language models are reviewed, and its applica-

tions for vulnerability detection are explored.

2.4.3.1 Transformer Architecture

Encoder-decoder architectures employing Recurrent Neural Networks (RNN) have

been the state-of-the-art approach for language modeling in Natural Language Process-

ing tasks, such as machine translation and text summarization. However, a fundamental

constraint of this architecture is its sequential nature, which has two main disadvantages

(VASWANI et al., 2017):

• Bottleneck effect: When two words are far apart in a sequence, it is hard for the

model to learn dependencies between them, due to the vanishing gradients problem

and limited memory, even for RNNs using more sophisticated units such as LSTM

and GRU.

• Precludes parallelization in the time dimension: It prevents parallelization within

training examples, once the calculation of the hidden state of a later token is de-

CHAPTER 2. FUNDAMENTAL BACKGROUND 28

pendent on the hidden states of all the previous tokens, which have to be calculated

first.

These weaknesses represent an upper limit for both the quality of the results obtained

and for the practical use of this architecture in large models.

A solution for the first problem, which became an integral part of the RNN encoder-

decoder architecture, is the use of attention mechanisms. Attention allows each step

of the decoder to use a direct connection to the encoder, enabling it to focus on any

particular part of the input sequence. This is accomplished by means of calculating

attention coefficients for each one of the input tokens, and averaging their hidden states

using these coefficients. This average of the input tokens hidden states is processed by the

units of the decoder together with their own inputs, via concatenation or summation. In

short, attention enables decoder units to attend to any word of the input when predicting

a new word, regardless of their distance.

A more general definition of attention is that, given a set of vector values and a vector

query, attention is a method to compute a weighted sum of the values, dependent on

the query. The weighted sum is a selective summary of the information contained in the

values, where the query determines on which values to focus on.

The limitations of the RNN architecture and the idea of attention led to the proposal

of the Transformer architecture (VASWANI et al., 2017), which entirely avoids the use

of recurrence, replacing it with attention mechanisms. The substitution of recurrence

by attention means that the operations in the time dimension can be parallelized, and

consequently constant time complexity is achieved with respect to the sequence length.

The Transformer model architecture is illustrated in Figure 2.5.

The proposed model architecture is composed of an encoder and a decoder. The

attention mechanism of the encoder is called self-attention: each token on the input

sequence pays attention to other tokens of the same sequence. In other terms, the query

and value sentences are the same.

Additionally, the attention mechanism used in the Transformer model, besides us-

ing queries and values, utilizes keys as well, which are used to calculate the attention

coefficients between the query and value sentences.

Let xi, ..., xt be the embedding vectors of each token of the input sequence to the

model, where t is the maximum length of the sequence, and xi ∈ R
d. Then, keys, queries,

CHAPTER 2. FUNDAMENTAL BACKGROUND 29

FIGURE 2.5 – The Transformer model architecture. Image from Vaswani et al. (2017).

and values vectors are:

k̃i = Kxi

q̃i = Qxi, (2.1)

ṽi = V xi,

where K ∈ R
dxd, Q ∈ R

dxd and V ∈ R
dxd are the key, query and value matrices, respec-

tively. These matrices are learned during the model training, and should allow different

aspects of the xi vector to be emphasized in each of the three roles.

Attention, however, cannot be used as a drop-in replacement for recurrence, once it

is an operation in sets: it has no inherent notion of order, and in Natural Language

Processing the ordering of words matter. To encode the notion of relative or absolute

position of the tokens in the sequence, positional embeddings are added to the input token

embeddings. Positional embeddings are vectors of the same size as the input embeddings,

and they can be generated in two ways: they can be learned during the network training, or

they can be fixed. In the original paper (VASWANI et al., 2017), fixed positional encodings

were used, being a concatenation of sinusoidal functions of varying periods.

Consider representing each sentence index as a vector pi ∈ R
d, for i ∈ 1, 2, ..., t. To

CHAPTER 2. FUNDAMENTAL BACKGROUND 30

incorporate the sequence indexing to the queries, keys and values vectors, a simple vector

summation suffices:

ki = k̃i + pi,

qi = q̃i + pi, (2.2)

vi = ṽi + pi.

After this, the attention weights are then computed in a matrix calculation which can

be easily parallelized.

Let X = [x1; . . . ; xt] ∈ R
txd be the matrix containing the input vectors for all tokens

in the input sequence, and K, Q and V ∈ R
dxd be the key, query and value matrices,

respectively. The weighted output of the attention layer, which is called dot-product

attention, is

output = softmax
(

XQ(XK)T
)

XV , (2.3)

where output ∈ R
txd.

A drawback of the dot-product attention is that, when the dimensionality d becomes

large, the dot products between vectors tend to become large too. This results in the

softmax function outputting a probability distribution giving high scores to very few of

its components, and making the gradient to everything else small. To overcome this,

the attention mechanism is scaled by the square root of the dimensionality of its vectors,

receiving the name scaled dot-product attention:

output = softmax

(

XQ(XK)T√
d

)

XV , (2.4)

where output ∈ R
txd.

Another limitation of pure attention mechanisms is that they calculate only weighted

average of vectors, having no non-linearities. To add non-linearities to the model, feed-

forward networks with ReLU non-linearities are added for every individual token embed-

ding after the attention layer:

m = W2ReLU(W1output + b1) + b2, (2.5)

where W1, W2, b1 and b2 are learnable matrices and biases, and m ∈ R
txd.

Two more changes to the basic attention mechanisms are the addition of residual

connection and layer normalization. Firstly, residual connections are added for each com-

ponent of the encoder and decoder because these connections are thought to make the

loss landscape considerably smoother, thus making the network easier to train (LIU et al.,

CHAPTER 2. FUNDAMENTAL BACKGROUND 31

2019a).

Secondly, after the sum of the residual connection, the result is normalized to unit mean

and standard deviation. The reason for this operation is to cut down on uninformative

variation on hidden values, which is argued to improve training due to its normalizing of

gradients (XU et al., 2019).

Finally, the decoder of the transformer architecture, besides having a self-attention

layer, counts also with a cross-attention layer, in which its input sequence attends to the

tokens of the output sequence from the encoder. In this case, the query vector is from the

decoder sequence, while the keys and values are from the output of the encoder.

Another distinction is that the decoder of the model has the role of predicting a

sequence, token-by-token. Therefore, it cannot have the ability to look at the future; that

is to say, each token must have the ability to calculate attention coefficients only to the

tokens already generated. To accomplish this without losing the benefit of parallelization,

the future words are masked with attention scores of minus infinity.

2.4.3.2 Pre-Trained Language Models

The use of pre-training language models started with the pre-training of word em-

beddings, with methods like Word2Vec and GloVe (MIKOLOV et al., 2013; PENNINGTON

et al., 2014). In Word2Vec, for instance, the dense vector representing each word in the

vocabulary is learned by predicting the probability of the context words given a center

word. Therefore, the trained word embeddings incorporate information about the words

that occur in the same context, placings words of similar meaning close to each other in

the high-dimensional space in which they are embedded.

After pre-training, the resulting word embeddings can be deployed in the training

of a generic machine learning model for any natural language processing task, like text

classification or language modeling. This alleviates the need for the model to learn from

scratch the meaning of all the words in the vocabulary during training: it is able to focus

solely on learning how to perform its downstream task, instead of learning the language

while at the same time having to learn how to perform its task.

Further advances in pre-training occurred after the introduction of the Transformer

architecture: First, Radford e Narasimhan (2018) noted in their paper, which introduces

the GPT model, that unlabeled natural language data could be gathered in large amounts,

while the availability of labeled data for specific tasks was more restricted. As a result of

this limitation in the quantity of labeled data, it was challenging to train discriminative

machine learning models using only the training data available for the downstream task,

once it had to be sufficient to teach all contextual aspects of the language to the model.

CHAPTER 2. FUNDAMENTAL BACKGROUND 32

Radford e Narasimhan (2018) argued that models which are able to learn good lan-

guage representations from unlabeled data should be able to achieve an important boost

in performance. In their paper, they provided a first approach to pre-training the entire

model with a large amount of unlabeled data, and fine-tuning all pre-training parameters

for the downstream task using labeled data, with minimal change to the model architec-

ture. The GPT model introduced by them was a Transformer decoder-only, and it used

language modeling as the pre-training task.

Later, the introduction of the BERT model (DEVLIN et al., 2018) gave further mo-

mentum to the pre-training paradigm by making the following change: pre-training a

Transformer encoder-only model, instead of a decoder-only as in the GPT case. The rea-

soning behind the architecture choice was that an encoder can use bidirectional context

via self-attention, which is not possible in the decoder, once it would allow the language

model to attend to future words. The restriction of having only unidirectional context can

be harmful in tasks where it was beneficial to incorporate the context in both directions,

such as question answering.

Also, because it uses bidirectional attention, the BERT model cannot be pre-trained

with standard language modeling tasks. Therefore, the authors proposed the masked

language modeling (MLM) task, in which a fraction of the input words are hidden from

the model, substituted by a MASK token, and the model task is to learn to predict these

hidden words.

A third influential pre-trained language model is T5, which uses the complete Trans-

former architecture, comprising encoder and decoder (RAFFEL et al., 2019). The T5 au-

thors also proposed the Span Corruption pre-training task as the pre-training objective

for the model. In Span Corruption, different-length spans from the input are replaced

by unique placeholders, and the model should learn to decode out the spans that were

removed from the input.

The pre-training paradigm has shown impressive results, and has become the go-to

approach for Natural Language Processing tasks. The reason pre-trained models work so

well appears to be that the local minimum found during stochastic gradient descent at

the fine-tuning stage remains relatively close to the local minima found in the pre-training

stage. Additionally, this local minimum usually is found to generalize well, along with the

fact that the gradients of the fine-tuning loss near this region propagate nicely (ERHAN et

al., 2010).

2.4.3.3 Pre-Trained Language Models for Programming Languages

Feng et al. (2020) were the first to build a large natural language (NL) and program-

ming language (PL) multi-modal pre-trained language model, called CodeBERT. To train

CHAPTER 2. FUNDAMENTAL BACKGROUND 33

the model, they used both unimodal data (only NL or PL data), and multi-modal data

(PL data paired with their documentation in NL). In particular, the model was trained

in code of 6 different programming languages. In the pre-training stage, the model went

through two tasks: masked-language modeling and replaced token detection, where the

model is trained to detect whether a word is the original or not. After pre-training, Code-

BERT can be fine-tuned for a variety of code-understanding tasks, like natural language

code search and vulnerability detection.

Several others multi-modal pre-trained models were released subsequently (HANIF;

MAFFEIS, 2022; CHEN et al., 2021; AHMAD et al., 2021; PHAN et al., 2021). In particular,

Phan et al. (2021) introduced the CoTexT model, a pre-trained language model using the

T5 architecture (RAFFEL et al., 2019). As in the case of CodeBERT, the model can be

fine-tuned for a range of code understanding tasks, and achieved state-of-the-art results

in the CodeXGlue (LU et al., 2021) competition for vulnerability detection, which is the

main benchmark for the task.

2.5 Interpretability Methods

In this section, we introduce the prolific field of interpretability for deep learning

models, focusing on their applications in Natural Language Processing, which is the main

test bed for these methods. We further explore the branch of interpretability most relevant

to our research.

2.5.1 Interpretability Methods for Deep Learning Models

The problem interpretability methods try to solve is how to attribute the prediction of

a machine learning model to its input features (SUNDARARAJAN et al., 2017), such that one

may have knowledge of what drove the model decision-making. This understandability

is critical for the practical use of these models in tasks that involve ethical issues or life-

critical decisions, such as judicial sentencing and medical diagnosis (SUNDARARAJAN et

al., 2017).

One challenge in the design and evaluation of interpretability methods is that it may

be hard to assess how well the method does empirically, and also, it may be hard to

disentangle errors stemming from the misbehavior of the machine learning model versus

the misbehavior of the interpretability method (SUNDARARAJAN et al., 2017).

While there is a growing quantity of interpretability methods available, it is found that

they may produce varying, and sometimes contradicting answers to the interpretability

question (ATANASOVA et al., 2020). This makes it important to be able to assess such

CHAPTER 2. FUNDAMENTAL BACKGROUND 34

methods, in order to choose the most appropriate one for the machine learning model

architecture in question and its application. This assessment may be further complicated

by the lack of interpretability ground truth, therefore benchmarks where the salient or

most important input features for the given output are known are needed for an objective

evaluation of the interpretability techniques (KINDERMANS et al., 2017).

Interpretability methods can be categorized by their approach to explain the machine

learning model prediction: employment of the model gradients, perturbation-based, or

providing explanation through model simplifications (ATANASOVA et al., 2020). Gradient

or saliency-based approaches compute the gradient with respect to the input of the model

to quantify the importance of the input features (SIMONYAN et al., 2013). Variations of

this basic method are InputXGradient, which multiplies the gradient with the input (KIN-

DERMANS et al., 2017), and Guided Backpropagation, which overwrites the gradients of the

ReLU functions so that only non-negative gradients are backpropagated (SPRINGENBERG

et al., 2014). Perturbation-based methods include Occlusion, where each token is replaced

by a baseline token, measuring the change in output (ZEILER; FERGUS, 2013), and Shapley

Value Sampling, in which the average marginal contribution of each input feature is ap-

proximated (CASTRO et al., 2009). Simplification-based methods include LIME, in which

the local decision boundary is approximated by a linear model (RIBEIRO et al., 2016).

Atanasova et al. (2020) performed a large assessment and comparison between inter-

pretability methods applied to Natural Language Processing tasks, evaluating the meth-

ods applied to different machine learning model architectures (Transformers, Convolu-

tional Neural Networks, and Recurrent Neural Networks) and in three different benchmark

datasets. The authors found that gradient-based interpretability methods gave the best

results across all architectures and in all benchmark datasets. In particular, Atanasova

et al. (2020) showed that for the Transformer architecture, InputXGradient was the best-

performing interpretability technique overall.

2.5.1.1 Gradient Based Approaches

Simonyan et al. (2013) first proposed the use of saliency maps to find the most impor-

tant pixels in an image for the task of image classification. Considering a linear classifier,

and given a vectorized (one-dimension) image I and a class score function Sc(I), we have

that

Sc(I) = wT

c
I + bc , (2.6)

where wc and bc are the weight matrix and bias vector, respectively.

CHAPTER 2. FUNDAMENTAL BACKGROUND 35

Taking the derivative of Sc with respect to the image, we have that

wc =
∂Sc

∂I
. (2.7)

One interpretation for this equation is that the magnitude of the derivative indicates

which pixels need to be changed the least to affect the score of the classification task the

most (SIMONYAN et al., 2013). Therefore, these pixels should be the most important or

most salient for classification, and this should generalize to deep neural networks.

This basic idea gave origin to the Saliency method of interpretability. A subsequent

improvement over this technique, named InputXGradient (KINDERMANS et al., 2017), mul-

tiplies the gradient backpropagated to the input layer with the weights of the input layer

itself. This change was proposed to mitigate the effect noise in the input had on the

resulting saliency map.

In the case of Natural Language Processing, the saliency map is calculated by back-

propagating from the output token to the embedding layer. This operation results in

a gradient vector of the same dimension as the embedding vector for each of the input

tokens. To arrive at a saliency score for each token, the vectors need to be aggregated,

and Atanasova et al. (2020) found that the Euclidean norm was the aggregation form

that gave the best results when comparing to alternatives, such as taking the mean of the

vector.

2.5.2 Interpretability in Vulnerability Detection

Studies applying interpretability methods in the field of code understanding, and in

particular vulnerability detection, are few and far between.

Sotgiu et al. (2022) analyzed the CodeBERT model fine-tuned for vulnerability detec-

tion, by means of calculating the Shapley values of the input features in order to draw

their importance, with the objective of discovering what were the most important tokens

responsible for positive and negative classifications. The authors found that special char-

acters of the programming language (e.g., {, }, ∗) were the most important tokens to

classify both classes (vulnerable and not vulnerable). Also, they found that the model

tended to classify a sample as vulnerable if it differed from the average distribution of the

samples seen in training (for instance, if the sample had out-of-vocabulary tokens). Even

though this study hints at the inner workings of the model assessed, the analysis of the

importance of 1-grams does not provide the framework necessary to identify what drove

the model to its decision, nor does it help narrowing down what are the parts of the code

which are vulnerable.

CHAPTER 2. FUNDAMENTAL BACKGROUND 36

Wattanakriengkrai et al. (2022) used the simplification-based LIME technique to find

defect-prone lines in the code. The authors used a simple logistic regression classifier

over a bag of tokens to classify functions as vulnerable or not. Despite the use of the

interpretability technique, the framework proposed by the authors took some problematic

shortcuts, like the removal of non-alpha-numeric characters during the data preprocessing

phase, which may result in losing fundamental code structure. Additionally, in their

study, they converted programming language code to bag-of-tokens, which considers only

the frequency of the tokens in the code, completely ignoring word order. This conversion

may render it impossible for any machine learning model to learn where in the code the

vulnerability is present.

Mosolygó et al. (2022) took an altogether different approach: instead of predicting if

a function is vulnerable or not, the authors proposed evaluating the code line-by-line to

predict if it presented a vulnerability. In their work, the authors used ground-truth code

lines with known vulnerabilities to build vector representations of these vulnerabilities

using the word2vec embedding technique (MIKOLOV et al., 2013). Subsequently, each

line of the code being evaluated was embedded in a vector using the same technique,

and compared with the representation of the known vulnerabilities using cosine distance.

This approach is simple enough, but using single-line detections may not be sufficiently

robust for vulnerability detection in real-world applications, once a vulnerability may be

the result of the construction of several lines of code, or the interaction between different

components. Additionally, the authors did not provide a comparison of their classification

results against state-of-the-art techniques, such as CodeBERT or CoTexT (FENG et al.,

2020; PHAN et al., 2021).

Finally, Wan et al. (2022) studied the pre-trained language models CodeBERT and

GraphCodeBERT to understand their inner workings, investigating why these models

worked and what features they had learned from code. Their analysis revealed that the

self-attention mechanism of the Transformer encoder can capture the motif structure of the

Abstract Syntax Tree, and that the hidden embedding vectors learned by the model also

capture the syntax structure of the code. The ability of pre-trained models to learn the

syntactic structure of the code helps to explain why these models are able to give superior

results compared with Graph Neural Networks, which are trained explicitly using graph

representations of the code, in order to leverage its structure.

3 Methods

In this section, we first present the pre-trained models used in this study and their fine-

tuning procedure, next we describe the implementation of the interpretability methods

chosen, and finally, we go through the curation procedure to generate a benchmark dataset

for the interpretability results, as well its evaluation metric.

3.1 Pre-trained Models and Fine-Tuning

We chose two bimodal pre-trained language models for our studies: CodeBERT (FENG

et al., 2020) and CoTexT (PHAN et al., 2021). Both are pre-trained in natural language and

programming languages. We chose these models because CodeBERT is currently the most

studied pre-trained model for programming languages in the literature, being present in

most comparisons, and CoTexT is the current state of the art for the task of vulnerability

detection in the benchmark competition CodeXGlue (LU et al., 2021).

Both models are available in their pre-trained format together with their tokenizers in

the Hugging Face library. Therefore, fine-tuning them for the vulnerability detection task

is necessary.

The models are fine-tuned using the training partition of the Devign dataset (ZHOU et

al., 2019), which comprises approximately 20 thousand C/C++ functions, hand-labeled

by specialists as vulnerable or not vulnerable, with balanced classes.

The fine-tuning process is slightly different for both models once CodeBERT is a Trans-

former encoder-only-based model, and CoTexT is a Transformer encoder-decoder-based

model. For the first, we train a prediction head from scratch on top of the encoder model.

This prediction head is simply a one-layer perceptron followed by a sigmoid activation

layer. For the latter, in contrast, the decoder is a language model which generates tokens

auto-regressively. Therefore, we fine-tune it to generate as the first token the strings 0 or

1, which are the labels of our classification problem, effectively converting it to a binary

classifier. The fine-tuning architectures for both models are illustrated in Figure 3.1. To

avoid overfitting, we used early stopping with patience during the optimization process.

CHAPTER 3. METHODS 38

FIGURE 3.1 – Left: Architecture for the CodeBERT fine-tuning. We place a prediction head on top
of the CodeBERT model, which is a Transformer encoder. The prediction head is composed of a single
perceptron layer and a sigmoid activation function, which outputs the probability of the input function
being vulnerable or not. Right: Architecture for the CoTexT model fine-tuning. The model is based on
the T5 architecture, which is constituted by the complete transformer architecture, with both encoder
and decoder. The decoder is a language model, and we fine-tune it to generate as its first output token
the strings 0 or 1, which are the labels of our classification problem.

3.2 Interpretability Methods

For the interpretability method, we chose two techniques: the InputXGradient method,

shown by Atanasova et al. (2020) to be the best-performing interpretability technique for

Natural Language Processing tasks using the Transformer architecture, and the original

Saliency method, to be our baseline for comparison.

The process of implementation of both models is straightforward: After predicting a

label for a given code function, we backpropagate the gradients of the network to the

embedding layer. For the original Saliency method, the resulting gradient matrix is the

saliency matrix, holding the importance vector for all tokens in the vocabulary. For the

InputXGradient, the matrix of gradients is subsequently multiplied element-wise with the

embedding matrix. The result of this operation is the saliency matrix used by the method.

We filter the saliency matrices to keep only the saliency vectors for the tokens present

in the input sequence, and we aggregate each one of these vectors to arrive at a saliency

or importance score for each input token. The saliency score represents the importance

of that input token for the network prediction.

The two most common methods for aggregating the saliency vectors are calculating

CHAPTER 3. METHODS 39

the mean of each vector and its Euclidean norm. Atanasova et al. (2020) has shown that

for the InputXGradient method, the Euclidean norm resulted in the best interpretability

results. A possible limitation of the Euclidean norm aggregation is that it completely loses

the information on the direction of the vector, remaining only with the information of its

magnitude. Therefore, tokens that have the same magnitude saliency vectors, but point to

completely different directions, will be indistinguishable. Consequently, the method may

not be able to identify or separate tokens that are pushing the prediction of the model to

different classification labels.

To test this hypothesis, we compare the InpuXGradient with Euclidean norm aggre-

gation with the original Saliency method employing mean aggregation. The mean aggre-

gation should do better at preserving information regarding the direction of the vector,

although losing the magnitude information.

For both methods, the saliency score is an unbound number. In order to make it

suitable to represent the importance score of the input tokens, as well as to be presented

in a heatmap of saliencies, we make the following transformations:

• InputXGradient: The saliency scores aggregated by the Euclidean norm are un-

bounded positive numbers. We scale them to the range from 0 to 1, where 0 means

the respective token does not have any importance for the model prediction, and 1

means the respective token has the most importance for it.

• Saliency: The saliency score of each token is divided by the standard deviation of

the saliency scores of the input sequence, resulting in values between -3 and +3.

This choice of scaling was preferred to preserve the mean of the distribution.

The pseudo-code for the InputXGradient method is:

gradientAtEmbeddings = model.embeddings.weight.grad

embeddingsTimesGradients = model.embeddings.weight *

gradientAtEmbeddings

saliencyList = []

for tokenId in input_tokens:

saliencyVector = embeddingsTimesGradients[token_id, :]

saliencyScore = saliencyVector.norm(p=2)

saliencyList.append(saliencyScore)

scaler = MinMaxScaler(feature_range(0, 1))

saliencyScores = scaler.fit_transform(saliencyList)

The pseudo-code for the Saliency method is:

CHAPTER 3. METHODS 40

gradientAtEmbeddings = model.embeddings.weight.grad

saliencyList = []

for tokenId in input_tokens:

saliencyVector = gradientAtEmbeddings[token_id, :]

saliencyScore = mean(saliencyVector)

saliencyList.append(saliencyScore)

saliencyScores = saliencyList / std(saliencyList)

3.3 Interpretability Benchmark Dataset

The availability of an accepted benchmark is necessary if any field of research is to

advance consistently, being the best example the ImageNet competition in the computer

vision field (RUSSAKOVSKY et al., 2014). In the area of Programming Language under-

standing, this role is being fulfilled by the CodeXGlue set of benchmarks datasets (LU et al.,

2021), comprehending tasks like vulnerability detection, code repair, code summarization

and others.

Using interpretability methods to understand why the model made its decision, the

objective is to assess what was the importance of each of the model inputs to arrive

at its final prediction. To conduct an evaluation of the interpretability methods, it is

necessary datasets annotated with the salient tokens, that is to say, with annotations of

what the most important tokens are for the ground-truth output for any given example

(ATANASOVA et al., 2020). Annotated datasets for the evaluation of interpretability meth-

ods are relatively easy to obtain for Natural Language Processing tasks (ATANASOVA et al.,

2020), but in contrast, are lacking for Programming Language tasks such as vulnerability

detection.

To fulfill this gap, we curated a benchmark dataset for interpretability methods in the

vulnerability detection task. The dataset proposed presents the following characteristics:

• Each example in the dataset is a function written in the C/C++ programming

language;

• Every function in the dataset contains at least one vulnerability;

• Each example in the dataset is accompanied by a binary mask the same length as

the number of strings in the example: the mask has value 0 if that string is not part

of a snippet of code which introduces a vulnerability, and has value 1 otherwise.

To develop this dataset, we leveraged the C/C++ code vulnerability dataset named

Big-Vul (FAN et al., 2020). Big-Vul contains 6,093 vulnerable functions collected from

CHAPTER 3. METHODS 41

Github, and all examples have the vulnerable snippet of code together with the patch

used to fix the issue, accordingly annotated.

From that starting point, we removed the code patches, and from the resulting function

we generated a mask with ones in place of the vulnerable snippet of code and zeros in

the remaining code. An example from the dataset with its vulnerability highlighted is

illustrated in Figure 3.2, and the complete dataset is publicly available (SILVEIRA et al.,

2023).

FIGURE 3.2 – Vulnerable sample from the dataset with the position of the vulnerability labeled. The
function is tokenized, and each of its tokens is masked with values of 0 or 1. The collection of tokens
masked as 1 represents the position of the vulnerabilities in the code, and is highlighted in red for
illustration.

3.3.1 Evaluation Metric

To assess how well the heatmap resultant from the interpretability method matches

the ground-truth mask, the following steps are taken:

1. Transform the heatmap of saliencies from the interpretability method into a binary

heatmap. This is done using a threshold, where saliency/importance values above

or equal to the threshold are rounded up to 1, and saliency/importance values below

the threshold are rounded down to 0.

2. After the first step, the problem becomes a binary classification. For each example

in the dataset, we calculate a precision score of how well the binary interpretability

heatmap matches the ground truth mask.

3. With the precision score of each example in the dataset, we average the results,

arriving at a Mean Precision Score for the whole dataset.

The Mean Precision Score is the final metric we use to evaluate how well the in-

terpretability heatmap matches the true binary mask. We chose to measure precision

CHAPTER 3. METHODS 42

because it penalizes false positive detections, therefore benefiting predictive models with

more sensitive results, and giving low marks to models that signal too many tokens as

important. For this same reason we refrain from measuring recall, which penalizes false

negative detections, and could benefit models that give high importance to too many

tokens.

3.4 Interpretability Methods Comparison and Application

for Different Language Models

We use the InputXGradient and the original Saliency method to interpret the outputs

of our two fine-tuned models, CodeBERT and CoTexT. For each model, we predict the

label for every function in the interpretability dataset. If the model predicts the function

as vulnerable, we calculate and save the importance heatmap of its input.

Subsequently, we calculate the Mean Precision Score for each model, for thresholds

varying from 0.1 to 0.9, with steps of 0.05, for the InputXGradient method, and for

thresholds varying from 0.1 to 2.9, with the same step-size, for the Saliency method.

With the saliency heatmaps calculated, we qualitatively compare the heatmaps of both

interpretability methods, InputXGradient and Saliency, and note the differences that set

them apart, and which is the most appropriate for our setting, selecting the best one.

For the interpretability method chosen, we use the best threshold for each model,

CodeBERT and CoTexT, and evaluate the results, observing how well the models lend

themselves to interpretation, that is to say, how truthful their resultant saliency heatmaps

are.

Finally, we discuss qualitatively the characteristics of each model and how they affect

the capacity of the models in generating interpretability of their predictions.

4 Results

In this chapter we present the results of our experiments, along with brief discussions.

4.1 Fine-Tuning Results

After fine-tuning the CodeBERT and CoTexT models for the vulnerability prediction

task using the Devign dataset training partition (ZHOU et al., 2019), we evaluate them in

the test partition, which is available at the CodeXGlue benchmark (LU et al., 2021). The

results are shown in Table 4.1.

TABLE 4.1 – Fine-tuning results for the models CodeBERT and CoTexT.

Model Accuracy Precision Recall
CodeBERT 63.1% 63.1% 47.2%
CoTexT 64.4% 64.7% 49.3%

Both models show similar results, with CoTexT having a slight advantage. The result

is in line with the CodeXGlue leaderboard, which presents CoTexT as the state-of-the-art

model for the task of vulnerability detection.

A point worth noting is that the dataset used is composed only of C/C++ functions.

Datasets for vulnerability detection in other programming languages, or even composed

of multiple programming languages are lacking. Consequently, this creates a roadblock

to the training and deployment of vulnerability detection models for other programming

languages besides C/C++.

4.2 Interpretability Results

We apply the fine-tuned models to classify the samples of the interpretability bench-

mark dataset, composed uniquely of vulnerable functions. For the samples predicted as

vulnerable by the models, we evaluate the resultant saliency heatmaps for the Saliency

and InputXGradient methods against the ground-truth heatmaps.

CHAPTER 4. RESULTS 44

Firstly, we report the results from the application of the InputXGradient method to

the predictions of the CodeBERT and CoTexT models, which are shown in Table 4.2.

TABLE 4.2 – Mean precision achieved applying the InputXGradient method to the CodeBERT and
CoTexT models.

Model Best Threshold Mean Precision
CodeBERT 0.10 31.3%
CoTexT 0.35 24.2%

The best results for the CodeBERT and CoTexT models were achieved with threshold

values of 0.10 and 0.35, respectively. Both models achieved weak results, with CodeBERT

presenting a mean precision score more than 7 percentage points above CoTexT.

Secondly, we evaluated the saliency heatmaps generated using the Saliency inter-

pretability method, and the results are shown in Table 4.3. It can be observed that

the results are very close to the ones from InputXGradient. It suggests that the Eu-

clidean norm aggregation used in the InputXGradient, which loses the information on

the direction of the saliency vector, is not hurting performance, or at least is as good as

the mean aggregator employed by the Saliency method. Additionally, from the results,

it seems that the Saliency and InputXGradient could be used interchangeably without

considerable loss.

TABLE 4.3 – Mean precision achieved applying the Saliency method to the CodeBERT and CoTexT
models.

Model Best Threshold Mean Precision
CodeBERT 0.10 31.1%
CoTexT 0.35 24.2%

To better understand the nature of the saliency scores generated by the InputXGradi-

ent and Saliency methods, observing if there is any preference to giving high or low scores

to the tokens, we draw their histograms for both CodeBERT and CoTexT models. Figure

4.1 illustrates the histograms for the importance scores for the InputXGradient method,

while Figure 4.2 illustrates the histograms for the importance scores for the Saliency

method.

For the former, we can see that the distributions for the CodeBERT and CoTexT are

similar, and represent a normal distribution truncated at zero. For the CoTexT model, it

can be observed that the mean of the distribution is not centered at zero, but offset to the

right. Additionally, both curves show a spike in the frequency of tokens with importance

close to one, which can be interpreted to be the most important tokens as seen by the

model.

For the Saliency scores histograms, the curves also represent normal distributions, and

again are very similar for both models. We highlight that most tokens have importance

CHAPTER 4. RESULTS 45

scores around the value of zero.

Additionally, when comparing the histograms for the two models, CoTexT and Code-

BERT, it is noticeable the difference in the magnitude of their frequency: the scores for

the CoTexT histograms have frequencies roughly twice the frequencies for the scores of the

CodeBERT histograms. Once each importance score corresponds to a token appearance

in the dataset, it can be concluded that the CoTexT tokenizer discretizes the dataset in

a more granular manner, resulting in approximately twice as many tokens.

FIGURE 4.1 – Distribution of the InputXGradient importance scores for the CoTexT and CodeBERT
models.

FIGURE 4.2 – Distribution of the Saliency importance scores for the CoTexT and CodeBERT models.

4.3 Qualitative Analysis of the Interpretability Results

In this section, we firstly compare the results of the InputXGradient and Saliency

methods, and secondly we compare the interpretability heatmaps generated using the In-

putXGradient method for the CodeBERT and CoTexT models, discussing their differences

and characteristics.

CHAPTER 4. RESULTS 46

4.3.1 Comparison - InputXGradient and Saliency

Regarding the mean precision metric, both InputXGradient and Saliency methods

achieved similar results. In this section, we compare qualitatively how interpretable are

their generated heatmaps, and how well they are able to match the information present

in the ground-truth. The heatmaps were generated using the interpretability methods

applied to the CodeBERT model, which achieved the best mean precision score for both

techniques.

Figure 4.3 shows a high-level overview of three vulnerable functions, one for each line of

the illustration, and its heatmaps for the ground-truth annotation (left), InputXGradient

(center), and Saliency (right) methods.

Firstly, we remember that for the ground-truth heatmaps (left), the exact location

of the vulnerability is highlighted in red. Secondly, we note that the InputXGradient

heatmaps (center) are also highlighted in red, with the most important tokens in a more

opaque tone. Contrastingly, the Saliency heatmaps (right) are highlighted in both red

and blue: the red color, as for InputXGradient, means a positive importance, and the

blue color a negative importance. The reason for this is that the importance scores for

the Saliency method range from -3 to +3, and we interpret that the more negative a

token importance is, the more it influences the algorithm to predict that sample as not

vulnerable, the opposite being true for positive importances.

Thirdly, when comparing the InputXGradient and Saliency heatmaps to the ground-

truth tokens, it can be observed that the InputXGradient heatmaps offer a considerably

cleaner picture, it being easier to identify the parts of the code considered as most impor-

tant and to compare it with the ground-truth. For the saliency heatmaps, it is harder to

grasp what are the parts of the code considered important and what are the ones that are

not, once many parts of it are highlighted with both strong opaque tones of red and blue.

To help further support this point, Figure 4.4 shows the same heatmaps, but using a

threshold to filter only the tokens with the highest importance. The heatmaps from the

InputXGradient method (center column) are left with very few tokens as important, and

we point out that the tokens highlighted are most often present in the positions where

the vulnerabilities are. For the Saliency heatmaps, only tokens with positive importance

are left, making it easier to observe where are the most important points. It is also

observable that the Saliency method tends to give high importance to more tokens, with

them sometimes being scattered over the code, making the task of finding the exact

position of the vulnerability more difficult.

Therefore, once both methods achieved similar scores in the mean precision metric,

and the InputXGradient heatmaps render an easier and more concise interpretation of its

output, for the remaining sections we consider only the InputXGradient method.

C
H
A
P
T
E
R

4.
R
E
S
U
L
T
S

47

FIGURE 4.3 – Overview of the heatmaps of three vulnerable functions, represented each in one row. The left column illustrates the ground-truth heatmaps,
showing where the vulnerability is present in the code, the center column brings the InputXGradient interpretability heatmaps, and the right column presents
the Saliency interpretability heatmaps.

C
H
A
P
T
E
R

4.
R
E
S
U
L
T
S

48

FIGURE 4.4 – Overview of the heatmaps for three vulnerable functions, being the left column the ground-truth, the center column the heatmap from the
InputXGradient interpretability method, and the right column form the Saliency interpretability method. The importances given by the interpretability methods
to each token are filtered using a threshold.

CHAPTER 4. RESULTS 49

4.3.2 Comparison - CoTexT and CodeBERT

In this section, we assess two examples of interpretability heatmaps generated by the

CodeBERT and CoTexT models, comparing them with the ground-truth, and discussing

their differences and characteristics.

4.3.2.1 Example 1

Firstly, we examine a heatmap interpreting the prediction of the CodeBERT model,

which is illustrated in Figure 4.5. The top figure shows the ground-truth mask, highlight-

ing only the part of the code where the vulnerability is present. The code was tokenized

utilizing the CodeBERT tokenizer, with the tokens separated by a space. The bottom

figure shows the saliency heatmap, representing the importance the model gave to each

token when making its final prediction. The importance values go from 0 to 1, with the

higher values being represented by more opaque tones of red.

The first thing to notice is that the model gives some importance to every token in the

code. Secondly, in many lines the token * is highlighted more strongly than the others.

In C/C++ language, this symbol is used for pointer declaration, and many operations

with pointers are present in vulnerabilities relating to the ill use of the computer memory.

This observation suggests that the model learned this characteristic of the programming

language by seeing pointers repeatedly present in vulnerabilities during its training.

Secondly, we observe that the token with the strongest importance in the heatmap,

alloc, is in fact part of the vulnerability present in the code. This shows that the model

paid attention to the right element to make its decision. Importantly, the highlighted

token is part of the malloc function, which is used to allocate memory, and returns a

pointer to the first byte of the allocated memory. This function, as in the case of pointer

declaration, is also present in many known vulnerabilities relating to unsafe use of the

computer memory, and shows another characteristic of the language the model has learned.

Figure 4.6 shows the same example for the CoTexT model. The top figure shows the

ground-truth mask tokenized using the CoTexT tokenizer, and the bottom figure shows

the importance the model gave to each token.

The first thing to observe is how different the code looks after passing through the

CoTexT tokenizer in comparison to the same code passing through the CodeBERT to-

kenizer. Especially, we highlight that the CoTexT tokenizer does not present a token

for curly braces, therefore the code does not contain any after tokenization. This detail

is important once curly braces are a structural element of the programming language,

and meaning may be lost in its absence. A second point that can be noted is that the

CoTexT tokenizer breaks each word into more granular tokens, in comparison with the

CHAPTER 4. RESULTS 50

FIGURE 4.5 – CodeBERT results. Top: Tokenized function using the CodeBERT tokenizer, with
ground-truth mask highlighting the exact position of the vulnerability. Bottom: Heatmap of the im-
portance/saliency given by the model to each token, in order for it to predict the code as vulnerable.

CodeBERT tokenizer. For instance, the word stride is broken into three tokens, s-tri-de,

and the words height and width are broken into two tokens, he-ight and wid-th. For the

CodeBERT tokenizer, in comparison, stride is broken into two tokens, while height and

width remained a single token. In particular and most worrisome, the CoTexT tokenizer

broke the function keyword malloc into two tokens: mal-loc. This finer granularity of sep-

aration can make it more difficult for the model to learn what is the meaning of particular

elements of the language, making it harder for it to make an informed decision, least of

all a decision that can be interpreted by a human. This conclusion meets our observation

that the magnitude of the frequencies in the CoTexT histogram of importance scores was

roughly twice that of CodeBERT, meaning more tokens for the same quantity of code.

These differences in the tokenizers of the deep learning models are hardly ever dis-

cussed, but in the case of interpreting the output of the models they seem to be of im-

portance. In particular, the characteristics of the CoTexT tokenizer make the tokenized

code harder to read by a human, do not make intuitive sense, and more importantly, may

CHAPTER 4. RESULTS 51

FIGURE 4.6 – CoTexT results. Top: Tokenized function using the CoTexT tokenizer, with ground-truth
mask highlighting the exact position of the vulnerability. Bottom: Heatmap of the importance/saliency
given by the model to each token, in order for it to predict the code as vulnerable.

cause the loss of crucial information.

Finally, it can be observed that the CoTexT model, as is the case for CodeBERT,

gave some importance to all tokens in the code. But differently than for the CodeBERT

model, the CoTexT model found one token to be very important: air, which forms the

variable name cairo. This token was given high importance wherever it appeared, being

spread over the code. We note that the variable name cairo appears in the line where the

vulnerability is present, but once it is spread over the entirety of the code it is unclear

if the model was looking at the right element when predicting the code as vulnerable.

Additionally, once the interpretability method says the important tokens are spread in

the code, it does not do much to help focusing the attention of the programmer on the

right place where the vulnerability is.

4.3.2.2 Example 2

In the second example, we highlight other important details. The CodeBERT model

result, illustrated in Figure 4.7 shows that, as in the previous example, the model gives

some importance to all tokens. But again, the token with the most importance, *), is in

the place where the vulnerability precisely is. It is also noticeable that the model does

CHAPTER 4. RESULTS 52

not just go about giving high importance to any token representing a pointer allocation,

once there are many such tokens in the code sample which are assigned small or moderate

importance. This shows that the model has learned indeed how to discriminate the context

of the tokens, and how the context is a better indicator of a possible vulnerability than

just the token itself.

FIGURE 4.7 – CodeBERT results. Top: Tokenized function using the CodeBERT tokenizer, with
ground-truth mask highlighting the exact position of the vulnerability. Bottom: Heatmap of the im-
portance/saliency given by the model to each token, in order for it to predict the code as vulnerable.

The CoTexT result for the second example is illustrated in Figure 4.8. As in the first

example, the CoTexT model has found some tokens to be important and highlighted them

throughout the code, not giving any special attention to the region where the vulnerability

really is. This shows that the model, in contrast with CodeBERT, lacks discriminative

power, and again, the interpretability result does little to help the programmer to find

where the vulnerability is located.

CHAPTER 4. RESULTS 53

FIGURE 4.8 – CoTexT results. Top: Tokenized function using the CoTexT tokenizer, with ground-truth
mask highlighting the exact position of the vulnerability. Bottom: Heatmap of the importance/saliency
given by the model to each token, in order for it to predict the code as vulnerable.

5 Conclusion

In this work, we introduced a benchmark dataset of vulnerable functions with their

corresponding ground-truth vulnerability masks, having the exact information of the po-

sition of the vulnerable code snippets. Additionally, we fine-tuned two state-of-the-art

models for the task of vulnerability detection, CodeBERT and CoTexT, and utilized

the InputXGradient and Saliency interpretability methods to extract the importance the

models gave to each of their input tokens in order to arrive at their final prediction.

Firstly, we compared both interpretability methods, and we observed that they achieved

similar mean precision results. This suggests that the Euclidean norm aggregation method

employed by the InpuXGradient, even though ignoring the direction of the saliency vec-

tors, does not seem to harm its performance. Additionally, we qualitatively compared

the heatmaps produced by both methods, and concluded that the InputXGradient gives a

considerably more interpretable heatmap, where it is easier to find the important pieces of

code as seen by the model, as well as its correspondence with the ground-truth heatmap.

Secondly, comparing the interpretability heatmaps generated by both language models,

we observed that even though the CoTexT model is the state-of-the-art for the vulnera-

bility detection task, presenting slightly better accuracy in comparison with CodeBERT,

its interpretability heatmap is farther from the truth than CodeBERT’s by a considerable

margin.

The CodeBERT interpretability heatmap brings more concise information, highlight-

ing fewer tokens as the most important, which may help programmers to focus their

vulnerability search, besides being more precise. CodeBERT also showed good signs of

having learned important language characteristics, like the roles of pointer declaration

and memory allocation. Finally, CodeBERT was able to show discriminative power, giv-

ing different importances scores for different appearances of the same token, based on its

context.

Contrastively, the CoTexT model presented a tendency of giving high importance to

the same token throughout the code, which showed lack of discrimination and is a feature

of little help for the programmer trying to fix a vulnerable code. Additionally, we observed

characteristics of the CoTexT tokenizer that can make it harder for the model to learn

CHAPTER 5. CONCLUSION 55

syntactic and semantic meaning of the language, or even impossible for it to make the

right prediction: the model vocabulary did not contained structural tokens of the language

(e.g., curly braces), and the tokenizer broke the code strings into very granular pieces,

separating important keywords in meaningless tokens (e.g., malloc into mal-loc).

This was the first work in the field of vulnerability detection, to the authors’ knowledge,

to take a more systematic look at the state-of-the-art models together with interpretability

techniques. It was noticeable during this study the importance the tokenizer has in order

to make it possible for the language model to pay attention to the right elements when

making a prediction, and also to make its prediction favorable to human interpretation.

Additionally, we note the stark variation in the output of the different interpretability

methods tested, these having a variable degree of quality and clearness.

The dataset introduced here can be further used in order to evaluate the interpretabil-

ity capacity of other deep learning models, as well as evaluate and improve the inter-

pretability methods available.

This is an important step for the deployment in practice of deep learning models

trained in the task of vulnerability detection, which could be a great improvement in

productivity if these models can show precisely where the vulnerabilities are present in

the code. Above all, the application of such models, due to their power, can represent a

great gain in code safety.

5.1 Contributions

This study has made the following contributions to the field:

• A novel benchmark dataset of vulnerable functions with their corresponding ground-

truth vulnerability masks;

• A systematic look at interpretability techniques for vulnerability detection, and their

behavior when coupled with state of the art language models.

5.2 Future works

The work presented here is but a first effort for the development of a more systematic

approach for the application of interpretability methods for vulnerability detection in

programming languages. The field is currently wide open, and we list topics that could

be explored in future works:

CHAPTER 5. CONCLUSION 56

1. A limitation of using precision as the evaluation metric is that it does not take into

account the length of the vulnerability in the input function (in terms of tokens).

The consequence is that the result may be biased toward functions with smaller

vulnerability length, in which it may be easier to attain a high precision score. This

drawback can be addressed by the use of a precision metric normalized by the length

of the vulnerability in the code.

2. One possible avenue of exploration in order to try and improve the current inter-

pretability results is to implement methods of pre-processing the function before

feeding it to the language models, and/or post-processing the importance heatmaps

obtained from the interpretability methods. One possible pre-processing approach

could be, for instance, to replace the variable names for placeholders. The post-

processing, on the other hand, could be implemented by removing the importance

of tokens which should not be of any real importance for security vulnerabilities,

such as the comma or hyphen symbols, and can be reducing the precision of the

method.

3. We limited the scope of our work to only two interpretability methods, which were

shown to present the best results in Natural Language Processing tasks (ATANASOVA

et al., 2020). However, there is a growing plethora of interpretability methods avail-

able, and an exploration and comparison of these different methods in programming

language tasks could give us a better understanding of what are the best-performing

and more adequate methods for application in this field.

4. It was discussed the limitation the interpretability method InputXGradient presents

when coupled with Euclidean norm aggregation, due to the fact that it gives the

same importance to two tokens that have the same saliency vector magnitude, even

if their vectors are pointing to different directions. The development of aggregation

techniques that take advantage of the direction of the saliency vector as well as its

magnitude may be an important step toward better interpretability methods.

5. Benchmark datasets for the task of vulnerability detection which are large enough

to train or finetune deep learning models are currently limited to C/C++ languages.

This represents a major bottleneck to the practical application of the models trained.

One important step, though tedious and time-consuming, is the curation of more

diverse datasets, encompassing more programming languages.

6. Adding to the previous item, one limitation of the current datasets used for vulner-

ability detection is that they have only information whether a function is vulnerable

or not, but not what is the nature or kind of the vulnerability. A dataset with

a diverse set of vulnerability categories would be a rich resource in order to train

models with useful outputs for real-life applications.

Bibliography

AHMAD, W. U.; CHAKRABORTY, S.; RAY, B.; CHANG, K.-W. Unified Pre-training
for Program Understanding and Generation. arXiv, 2021. Available at:
https://arxiv.org/abs/2103.06333.

ATANASOVA, P.; SIMONSEN, J. G.; LIOMA, C.; AUGENSTEIN, I. A Diagnostic
Study of Explainability Techniques for Text Classification. arXiv, 2020. Available at:
https://arxiv.org/abs/2009.13295.

BURATTI, L.; PUJAR, S.; BORNEA, M.; MCCARLEY, S.; ZHENG, Y.; ROSSIELLO,
G.; MORARI, A.; LAREDO, J.; THOST, V.; ZHUANG, Y.; DOMENICONI, G.
Exploring Software Naturalness through Neural Language Models. arXiv, 2020.
Available at: https://arxiv.org/abs/2006.12641.

BURKART, N.; HUBER, M. F. A Survey on the Explainability of Supervised Machine
Learning. AI Access Foundation, jan 2021. 245–317 p. Available at:
https://doi.org/10.16132Fjair.1.12228.

CASTRO, J.; GóMEZ, D.; TEJADA, J. Polynomial calculation of the Shapley value
based on sampling. 2009. 1726-1730 p. Selected papers presented at the Tenth
International Symposium on Locational Decisions (ISOLDE X). Available at:
https://www.sciencedirect.com/science/article/pii/S0305054808000804.

CHEIRDARI, F.; KARABATIS, G. Analyzing False Positive Source Code
Vulnerabilities Using Static Analysis Tools. 2018. 4782-4788 p.

CHEN, M.; TWOREK, J.; JUN, H.; YUAN, Q.; PINTO, H. P. d. O.; KAPLAN, J.;
EDWARDS, H.; BURDA, Y.; JOSEPH, N.; BROCKMAN, G.; RAY, A.; PURI, R.;
KRUEGER, G.; PETROV, M.; KHLAAF, H.; SASTRY, G.; MISHKIN, P.; CHAN, B.;
GRAY, S.; RYDER, N.; PAVLOV, M.; POWER, A.; KAISER, L.; BAVARIAN, M.;
WINTER, C.; TILLET, P.; SUCH, F. P.; CUMMINGS, D.; PLAPPERT, M.;
CHANTZIS, F.; BARNES, E.; HERBERT-VOSS, A.; GUSS, W. H.; NICHOL, A.;
PAINO, A.; TEZAK, N.; TANG, J.; BABUSCHKIN, I.; BALAJI, S.; JAIN, S.;
SAUNDERS, W.; HESSE, C.; CARR, A. N.; LEIKE, J.; ACHIAM, J.; MISRA, V.;
MORIKAWA, E.; RADFORD, A.; KNIGHT, M.; BRUNDAGE, M.; MURATI, M.;
MAYER, K.; WELINDER, P.; MCGREW, B.; AMODEI, D.; MCCANDLISH, S.;
SUTSKEVER, I.; ZAREMBA, W. Evaluating Large Language Models Trained on
Code. arXiv, 2021. Available at: https://arxiv.org/abs/2107.03374.

DAM, H. K.; TRAN, T.; PHAM, T.; NG, S. W.; GRUNDY, J.; GHOSE, A. Automatic
Feature Learning for Predicting Vulnerable Software Components. 2021. 67-85 p.

BIBLIOGRAPHY 58

DEVLIN, J.; CHANG, M.-W.; LEE, K.; TOUTANOVA, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. arXiv, 2018. Available
at: https://arxiv.org/abs/1810.04805.

ERHAN, D.; BENGIO, Y.; COURVILLE, A.; MANZAGOL, P.-A.; VINCENT, P.;
BENGIO, S. Why Does Unsupervised Pre-training Help Deep Learning? 2010.
625–660 p. Available at:
http://jmlr.org/papers/v11/erhan10a.htmlhttp://jmlr.org/papers/v11/erhan10a.html.

FACELI, K.; LORENA, A. C.; GAMA, J.; CARVALHO, A. C. P. de Leon Ferreira de.
Inteligência Artificial : Uma Abordagem de Aprendizagem de Máquina. [S.l.]: LTC,
2011.

FAN, J.; LI, Y.; WANG, S.; NGUYEN, T. N. A C/C++ Code Vulnerability Dataset
with Code Changes and CVE Summaries. New York, NY, USA: Association for
Computing Machinery, 2020. 508–512 p. (MSR ’20). Available at:
https://doi.org/10.1145/3379597.3387501.

FENG, Z.; GUO, D.; TANG, D.; DUAN, N.; FENG, X.; GONG, M.; SHOU, L.; QIN,
B.; LIU, T.; JIANG, D.; ZHOU, M. CodeBERT: A Pre-Trained Model for
Programming and Natural Languages. arXiv, 2020. Available at:
https://arxiv.org/abs/2002.08155.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. http://www.deeplearningbook.org.

HANIF, H.; MAFFEIS, S. VulBERTa: Simplified Source Code Pre-Training for
Vulnerability Detection. arXiv, 2022. Available at: https://arxiv.org/abs/2205.12424.

HINDLE, A.; BARR, E. T.; SU, Z.; GABEL, M.; DEVANBU, P. On the Naturalness of
Software. [S.l.]: IEEE Press, 2012. 837–847 p. (ICSE ’12).

INC., S. S. Rough Audit Tool for Security. https://github.com/stgnet/rats. 2013.

KIM, Y. Convolutional Neural Networks for Sentence Classification. arXiv, 2014.
Available at: https://arxiv.org/abs/1408.5882.

KINDERMANS, P.-J.; HOOKER, S.; ADEBAYO, J.; ALBER, M.; SCHüTT, K. T.;
DäHNE, S.; ERHAN, D.; KIM, B. The (Un)reliability of saliency methods. arXiv,
2017. Available at: https://arxiv.org/abs/1711.00867.

KINDERMANS, P.-J.; SCHüTT, K.; MüLLER, K.-R.; DäHNE, S. Investigating the
influence of noise and distractors on the interpretation of neural networks. arXiv,
2016. Available at: https://arxiv.org/abs/1611.07270.

KING, J. C. Symbolic Execution and Program Testing. New York, NY, USA:
Association for Computing Machinery, jul 1976. 385–394 p. Available at:
https://doi.org/10.1145/360248.360252.

LIU, T.; CHEN, M.; ZHOU, M.; DU, S. S.; ZHOU, E.; ZHAO, T. Towards
Understanding the Importance of Shortcut Connections in Residual Networks. arXiv,
2019. Available at: https://arxiv.org/abs/1909.04653.

http://www.deeplearningbook.org

BIBLIOGRAPHY 59

LIU, Y.; OTT, M.; GOYAL, N.; DU, J.; JOSHI, M.; CHEN, D.; LEVY, O.; LEWIS, M.;
ZETTLEMOYER, L.; STOYANOV, V. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. arXiv, 2019. Available at: https://arxiv.org/abs/1907.11692.

LU, S.; GUO, D.; REN, S.; HUANG, J.; SVYATKOVSKIY, A.; BLANCO, A.;
CLEMENT, C.; DRAIN, D.; JIANG, D.; TANG, D.; LI, G.; ZHOU, L.; SHOU, L.;
ZHOU, L.; TUFANO, M.; GONG, M.; ZHOU, M.; DUAN, N.; SUNDARESAN, N.;
DENG, S. K.; FU, S.; LIU, S. CodeXGLUE: A Machine Learning Benchmark Dataset
for Code Understanding and Generation. arXiv, 2021. Available at:
https://arxiv.org/abs/2102.04664.

MIKOLOV, T.; CHEN, K.; CORRADO, G.; DEAN, J. Efficient Estimation of Word
Representations in Vector Space. arXiv, 2013. Available at:
https://arxiv.org/abs/1301.3781.

MOSOLYGó, B.; VáNDOR, N.; HEGEDUNDEFINEDS, P.; FERENC, R. A Line-Level
Explainable Vulnerability Detection Approach for Java. Berlin, Heidelberg:
Springer-Verlag, 2022. 106–122 p. Available at:
https://doi.org/10.1007/978-3-031-10542-5 8.

NGUYEN, V.-A.; NGUYEN, D. Q.; NGUYEN, V.; LE, T.; TRAN, Q. H.; PHUNG, D.
ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection. arXiv, 2021.
Available at: https://arxiv.org/abs/2110.07317.

PENNINGTON, J.; SOCHER, R.; MANNING, C. GloVe: Global Vectors for Word
Representation. Doha, Qatar: Association for Computational Linguistics, out. 2014.
1532–1543 p. Available at: https://aclanthology.org/D14-1162.

PHAN, L.; TRAN, H.; LE, D.; NGUYEN, H.; ANIBAL, J.; PELTEKIAN, A.; YE, Y.
CoTexT: Multi-task Learning with Code-Text Transformer. arXiv, 2021. Available at:
https://arxiv.org/abs/2105.08645.

RADFORD, A.; NARASIMHAN, K. Improving Language Understanding by
Generative Pre-Training. 2018.

RAFFEL, C.; SHAZEER, N.; ROBERTS, A.; LEE, K.; NARANG, S.; MATENA, M.;
ZHOU, Y.; LI, W.; LIU, P. J. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. arXiv, 2019. Available at: https://arxiv.org/abs/1910.10683.

RENIERES, M.; REISS, S. Fault localization with nearest neighbor queries. 2003.
30-39 p.

RIBEIRO, M. T.; SINGH, S.; GUESTRIN, C. ”Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. arXiv, 2016. Available at:
https://arxiv.org/abs/1602.04938.

RUSSAKOVSKY, O.; DENG, J.; SU, H.; KRAUSE, J.; SATHEESH, S.; MA, S.;
HUANG, Z.; KARPATHY, A.; KHOSLA, A.; BERNSTEIN, M.; BERG, A. C.;
FEI-FEI, L. ImageNet Large Scale Visual Recognition Challenge. arXiv, 2014.
Available at: https://arxiv.org/abs/1409.0575.

BIBLIOGRAPHY 60

RUSSELL, R. L.; KIM, L.; HAMILTON, L. H.; LAZOVICH, T.; HARER, J. A.;
OZDEMIR, O.; ELLINGWOOD, P. M.; MCCONLEY, M. W. Automated Vulnerability
Detection in Source Code Using Deep Representation Learning. arXiv, 2018. Available
at: https://arxiv.org/abs/1807.04320.

SILVEIRA, L.; MARCONDES, C. A. C.; VERRI, F. A. N. Programming Language
Vulnerability Detection and Interpretability with Language Models. jun. 2023.
Available at: https://doi.org/10.5281/zenodo.7863261.

SIMONYAN, K.; VEDALDI, A.; ZISSERMAN, A. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps. arXiv, 2013.
Available at: https://arxiv.org/abs/1312.6034.

SOTGIU, A.; PINTOR, M.; BIGGIO, B. Explainability-Based Debugging of Machine
Learning for Vulnerability Discovery. New York, NY, USA: Association for Computing
Machinery, 2022. (ARES ’22). Available at: https://doi.org/10.1145/3538969.3543809.

SPRINGENBERG, J. T.; DOSOVITSKIY, A.; BROX, T.; RIEDMILLER, M. Striving
for Simplicity: The All Convolutional Net. arXiv, 2014. Available at:
https://arxiv.org/abs/1412.6806.

SUNDARARAJAN, M.; TALY, A.; YAN, Q. Axiomatic Attribution for Deep
Networks. arXiv, 2017. Available at: https://arxiv.org/abs/1703.01365.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ,
A. N.; KAISER, L.; POLOSUKHIN, I. Attention Is All You Need. arXiv, 2017.
Available at: https://arxiv.org/abs/1706.03762.

WAN, Y.; ZHAO, W.; ZHANG, H.; SUI, Y.; XU, G.; JIN, H. What Do They Capture?
A Structural Analysis of Pre-Trained Language Models for Source Code. New York,
NY, USA: Association for Computing Machinery, 2022. 2377–2388 p. (ICSE ’22).
Available at: https://doi.org/10.1145/3510003.3510050.

WATTANAKRIENGKRAI, S.; THONGTANUNAM, P.; TANTITHAMTHAVORN, C.;
HATA, H.; MATSUMOTO, K. Predicting Defective Lines Using a Model-Agnostic
Technique. 2022. 1480-1496 p.

WHEELER, D. A. Flawfinder. http://www.dwheeler.com/flawfinder. 2018.

XU, J.; SUN, X.; ZHANG, Z.; ZHAO, G.; LIN, J. Understanding and Improving Layer
Normalization. arXiv, 2019. Available at: https://arxiv.org/abs/1911.07013.

YAMAGUCHI, F.; GOLDE, N.; ARP, D.; RIECK, K. Modeling and Discovering
Vulnerabilities with Code Property Graphs. 2014. 590-604 p.

ZEILER, M. D.; FERGUS, R. Visualizing and Understanding Convolutional Networks.
arXiv, 2013. Available at: https://arxiv.org/abs/1311.2901.

ZHOU, Y.; LIU, S.; SIOW, J.; DU, X.; LIU, Y. Devign: Effective Vulnerability
Identification by Learning Comprehensive Program Semantics via Graph Neural
Networks. arXiv, 2019. Available at: https://arxiv.org/abs/1909.03496.

Annex A - Publications

During the master’s program, the following papers have been published or submitted

by the author:

•Published:

1.Leonardo Silveira, Matheus Rodrigues, Bruno Faiçal, Alexandre Silva, Cesar

Marcondes, Marcos R. O. A. Maximo, Filipe Verri, “Navigation Aids based on

Optical Flow and Convolutional Neural Network”, LARS-SBR 2022 Proceed-

ings, 18-21 October 2022. https://doi.org/10.1109/LARS/SBR/WRE56824.

2022.9995889

2.Ronaldo Júnior, Leonardo Silveira, Victor Castro Nacif de Faria, Ana Carolina

Lorena, “Justiça nas previsões de modelos de Aprendizado de Máquina: um

estudo de caso com dados de reincidência criminal”, ENIAC 2022 Proceedings,

28-1 November 2022. https://doi.org/10.5753/eniac.2022.227610

•Submitted:

1.Paulo Victor Lopes, Leonardo Silveira, Roberto Douglas Guimaraes Aquino,

Carlos Henrique Ribeiro, Anders Skoogh, Filipe Alves Neto Verri, “Synthetic

Discrete Event Data Generation For Digital Twins: Enabling Production Sys-

tems Analysis in the Absence of Data”, Submitted to International Journal of

Computer Integrated Manufacturing, 2023.

Additionally, the paper derived from this Master’s thesis is being prepared for submis-

sion to the Journal of Machine Learning Research.

https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9995889
https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9995889
https://doi.org/10.5753/eniac.2022.227610

FOLHA DE REGISTRO DO DOCUMENTO

1. CLASSIFICAÇÃO/TIPO

DM

2. DATA

26 de junho de 2023

3. REGISTRO N°

DCTA/ITA/DM-030/2023

4. N° DE PÁGINAS

61
5. TÍTULO E SUBTÍTULO:

Source code vulnerability detection and interpretability with language models.
6. AUTOR(ES):

Leonardo Silveira
7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – ITA
8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Vulnerability Detection; Interpretability; Pre-Trained Language Models; Deep Learning
9.PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Processamento de linguagem natural; Vulnerabilidade; Códigos-fonte; Análise de tendências; Aprendizagem
(inteligência artificial); Banco de dados; Computação.
10. APRESENTAÇÃO: (X) Nacional () Internacional

ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em Engenharia Eletrônica e Computação.
Área de Informática. Orientador: Filipe Alves Neto Verri; co-orientador: Cesar Augusto Cavalheiro Marcondes. Defesa
em 31/05/2023. Publicada em 2023.
11. RESUMO:

The execution of security tests in software to detect vulnerabilities is fundamental in order to avoid the occurrence of
malicious attacks, which can, among other things, compromise the operation of the application or expose sensitive data
of its users. Traditionally, these tests are performed using static, dynamic or symbolic analysis tools. These tools have
several limitations, such as the detection of many false positives and very high computational cost. An alternative to
traditional methods is the use of machine learning, particularly deep learning models. Several approaches exploring
these models have been proposed in recent literature, mostly inspired by the advances achieved in deep machine
learning in the field of Natural Language Processing. Despite the use of increasingly sophisticated models, little has
been done in the field of interpretability of these methods, with the aim of reaching not only the classification of the
source code as vulnerable or not, but also to point out in the code the passages in which the learning model believes that
the vulnerability is present. In this work, we perform the training (fine-tuning) of two language models, CodeBERT and
CoTexT, for the task of detecting vulnerabilities in source codes, and we evaluate the ability of these models to generate
interpretation of their predictions. For this, we curated a database composed of a collection of vulnerable codes and
their respective labeling masks, locating the exact position of the vulnerabilities in the code. Using the two best
interpretability methods for text classification tasks in Natural Language Processing, Salience and InputXGradient, we
generated heat maps representing the importance of each code token for model prediction. Thus, we found that both
techniques present similar precision results, however the heat maps generated by the InputXGradient method are
considerably easier to be interpreted. Comparing the language models, CodeBERT presents slightly lower accuracy
when compared to CoTexT in the source code classification task, however, in contrast, it generates considerably better
results of interpretability of its prediction. Additionally, we highlight the effect of tokenizers used by language models
on their ability to generate interpretation of their predictions, showing that their characteristics can significantly
influence the model's ability to learn the syntactic and semantic structure of language.

12. GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () SECRETO

	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Symbols
	Contents
	1 Introduction
	1.1 Objective
	1.2 Motivation
	1.3 Outline

	2 Fundamental Background
	2.1 Traditional Approaches for Vulnerability Detection
	2.2 Machine Learning for Classification
	2.3 Deep Learning
	2.4 Deep Learning for Vulnerability Detection
	2.4.1 The Naturalness of Programming Languages
	2.4.2 Graph Neural Networks
	2.4.3 Pre-Trained Language Models

	2.5 Interpretability Methods
	2.5.1 Interpretability Methods for Deep Learning Models
	2.5.2 Interpretability in Vulnerability Detection

	3 Methods
	3.1 Pre-trained Models and Fine-Tuning
	3.2 Interpretability Methods
	3.3 Interpretability Benchmark Dataset
	3.3.1 Evaluation Metric

	3.4 Interpretability Methods Comparison and Application for Different Language Models

	4 Results
	4.1 Fine-Tuning Results
	4.2 Interpretability Results
	4.3 Qualitative Analysis of the Interpretability Results
	4.3.1 Comparison - InputXGradient and Saliency
	4.3.2 Comparison - CoTexT and CodeBERT

	5 Conclusion
	5.1 Contributions
	5.2 Future works

	Bibliography
	A Publications

