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Abstract

This work presents two time series forecasting methods. The first is the Maximum Visibility

Approach (MVA), a new time series forecasting method based on the Complex Network theory.

The second is the Hybrid Means of Multiple Approaches (HMMA) which is a hybrid methodology

formed by the combination of two forecasting models. The MVA initially maps time series

data into a complex network using the visibility graph method. Then, based on the similarity

measures between the nodes in the network, MVA calculates the one-step-ahead forecasts. MVA

does not use all past terms in the forecasting process, but only the most significant observations,

which are indicated as a result of the autocorrelation function. The HMMA combines two

forecasting methods using four types of means: quadratic, arithmetic, geometric and harmonic.

Using the means inequalities, four new one-step-ahead estimators are created so, it is possible

that one of these new estimators be closer to the true next term, and in this case, the combination

will be more accurate than the two original estimators. These methods were applied to five

different groups of data, most of them showing trend characteristics, seasonal variations and/or

non-stationary behavior. We estimated error measures to evaluate the performances of MVA and

HMMA. The results of the statistical tests and error measures revealed that both techniques has

good performance compared to the accuracy obtained by the comparative methods considered

in this work. In all cases, MVA and HMMA surpassed or achieved accuracy similar to the other

forecasting methods in Literature, which confirms that this work will contribute to the field of

time series forecasting not only in the theoretical aspect, but also in practice.
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Resumo

Este trabalho apresenta dois métodos de previsão de séries temporais. O primeiro é o Maximum

Visibility Approach (MVA), um novo método de previsão de séries temporais baseado na teoria

de Redes Complexas. O segundo é o Hybrid Means of Multiple Approaches (HMMA), que

é uma metodologia hı́brida formada pela combinação de dois modelos de previsão. O MVA

inicialmente transforma os dados da série temporal em uma rede complexa usando o método

Natural Visibility Graph (NVG). Em seguida, com base nas medidas de similaridade entre os

nós da rede, o MVA calcula as previsões um passo à frente. Nem todos os termos anteriores

são utilizados no processo de previsão, mas apenas as observações mais significativas, que

são indicadas como resultado da função de autocorrelação. O HMMA combina dois métodos

de previsão usando quatro tipos de médias: quadrática, aritmética, geométrica e harmônica.

Usando as desigualdades das médias, quatro novas estimativas um passo à frente são criadas,

portanto, tendo em vista a aleatoriedade das séries temporais reais, é possı́vel que um desses

novos estimadores esteja mais próximo do termo verdadeiro seguinte e nesse caso, essa combinação

terá uma acurácia maior que as dos estimadores originais. Esses métodos foram aplicados a

cinco diferentes grupos de dados, a maioria deles apresentando caracterı́sticas de tendência,

variações sazonais e/ou não-estacionariedade. Foram estimadas medidas de erro e realizados

testes estatı́sticos para avaliar os desempenhos do MVA e HMMA. Os resultados obtidos revelaram

que ambas as técnicas apresentam bom desempenho em relação à precisão obtida pelos métodos

de comparação considerados neste trabalho. Em todos os casos, o MVA e o HMMA ou

superaram ou obtiveram acurácia similar às obtidas pelos outros métodos de previsão da Literatura,

o que confirma que este trabalho irá contribuir para o campo da previsão de séries temporais

não apenas no aspecto teórico, mas também na prática.
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oportunidade de chegar até esse ponto da minha carreira.

Agradeço a minha esposa Vanessa Brian que sempre me deu todo o suporte para completar

esse desafio do doutorado e, as minhas filhas Isabela e Elisa, que tiveram muita paciência e

compreensão, sobretudo nos momentos em que estive ausente para desenvolver esse trabalho.

Agradeço a toda a minha famı́lia, dando um destaque à minha mãe, pai, minhas irmãs,
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pastoras da Igreja da Cidade em São José dos Campos, meus lı́deres de Célula e meus amigos

mais chegados, que sempre estiveram comigo dando todo o suporte em oração e palavras de

ânimo para que eu completasse esse trabalho.



16

1 Introduction

Among the strands in the field of Time Series Analysis is the creation of methods

to study time-correlated data and make predictions (SHUMWAY; STOFFER, 2011). This is

a dynamic research area that has attracted the attention of the scientific community over the

past few decades (ADHIKARI; AGRAWAL, 2013). Applications of time series modeling

and analysis encompass several fields of science, including: medicine (IMHOFF et al., 1998),

robotics (RADHAKRISHNAN et al., 2015), cyber defense (ABDULLAH; PILLAI; CAI, 2015),

defense strategy (EMMANOUILIDIS; KARPETIS, 2020), army mission analysis (MARUSICH;

BUCHLER, 2016), finance (WEN, 2018), social sciences (REHMAN et al., 2019), economics

(KUNST; WAGNER, 2020), seismology (FILATOV; LYUBUSHIN, 2020) and criminology

(GREENBERG, 2001). One way to estimate future terms of a time series is assuming the

hypothesis that each observed data is somehow correlated with past data. Thus, it is natural to

establish mathematical models that try to explain such correlations and describe the observed

data as a function of time.

Autoregressive integrated moving average (ARIMA) is one of the most popular models

employed in forecasting methods (BOX; JENKINS; REINSEL, 2013), (BOX, 2015), (ADHIKARI;

AGRAWAL, 2013). This model is attributed to George Box and Gwilym Jenkins (BOX, 2015)

and is essentially a linear regression model that describes movements of a univariate time series

(BOX; JENKINS, 1970; HU, 2013; COCHRANE, 1997). ARIMA is a combination of the

autoregressive (AR) (BOX; JENKINS, 1970) and the moving average (MA) (BOX; JENKINS,

1970; HU, 2013; HIPEL; MCLEOD, 1994) models applied to a integrated time series. If the

time series is not integrated, together both produce the autoregressive moving average (ARMA)

(BENJAMIN; RIGBY; STASINOPOULOS, 2003; BOX; JENKINS, 1970). In the case of a

time series with seasonality, SARIMA can be applied (CARMONA-BENı́TEZ; NIETO, 2020).

There are also some extensions that are applicable to nonlinear (BAI et al., 2020) or non-

Gaussian (BENJAMIN; RIGBY; STASINOPOULOS, 2003) time series, however, in terms of

implementation, those other are not comparable to the simplicity of ARIMA models.

Data mining is a relatively new field that has grown since the 1990s but was, in fact,

recognized as a field of its own, in the first years of the twenty-first century (NISBET; MINER;

ELDER, 2009). According to Zaki (2014) data mining is defined as the “process of automatic

extraction of knowledge from large databases, using machine learning, pattern recognition,

database techniques, and statistics”. According to Makridakis, Spiliotis and Assimakopoulos

(2018) the six pure Machine Learning methods submitted in the M4-competition performed

poorly, none of them outperforming the combination approaches and only one achieved accuracy

better than Naive2. Under the influence of forecasting competitions, many variations of combined

methods have been created in the quest to achieve better forecasting accuracy (MAKRIDAKIS;

SPILIOTIS; ASSIMAKOPOULOS, 2018). See these examples: in Egrioglu and Fildes (2020),

a hybrid technique based on bagging approach is proposed to achieve more accurate forecasts;
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Chindanur and B (2015) shows a combination between ARIMA and artificial neural network

(ANN) to predict internet traffic data; Kaushik et al. (2020) calibrated an ensemble structure

based on ARIMA, multilayer perceptron (MLP) and long short-term memory (LSTM) with

the objective of predict healthcare expenditures; and Purohit et al. (2021) which presents some

hybrid approaches, including mixing the exponential smoothing model and ANN in order to

forecast the price of agricultural products.

A wealth of content can be found in the literature on time series data mining, some of

which are based on complex networks (KRAMER et al., 2009), (MAO; XIAO, 2019), (GAO

et al., 2016), (FERREIRA, 2017). In Mao and Xiao (2019), one can find an approach for

time series forecasting based on complex network analysis. Specifically, this method is based

on node similarities (LIU; Lü, 2010) extracted from a network constructed using the visibility

graph method (LACASA et al., 2008). In this work, it is referred to as the Mao-Xiao approach

(MXA). Its accuracy is better than other methods for a variety of applications including methods

using fuzzy logic (CHEN, 1996), (YU, 2005), bandwidth interval-based forecasting methods

(PATHAK; SINGH, 2011), and hybrid fuzzy logic and visibility graph approach (ZHANG;

ASHURI; DENG, 2017).

This study presents two new time series forecasting techniques. The MVA, Maximum

Visibility Approach, is a new time series forecasting technique based on the complex network

theory. The second is called HMMA, which is a hybrid methodology, that combines MVA

and other forecasting method. This presentation follows the subsequent steps. Initially, some

basic concepts needed to understand the proposed methods were revisited. Then, both methods,

MVA and HMMA, are described. The results of the tests carried out with five different datasets

are then presented, with the objective of comparing the performances obtained by the MVA,

HMMA and the comparative methods: the state-of-the-art Mao-Xiao approach (MXA) (MAO;

XIAO, 2019), dynamic auto-ARIMA, support vector regression (SVR) (SAMSUDIN; SHABRI;

SAAD, 2010), long short-term memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997),

the multilayer perceptron (MLP) (KAUSHIK et al., 2020), hybrid additive ARIMA-ANN (CHINDANUR;

B, 2015), hybrid additive ETS-ANN (PANIGRAHI; BEHERA, 2017) and naive estimation.

1.1 Motivations

In 2018, ITA hosted the first Workshop of Artificial Intelligence Applied to Finances

and the article ”Time series trend classification and forecasting using complex network analysis”

was presented. This article was our first reading related to time series forecasting based on

complex networks. According to Anghinoni et al. (2018), a real time series was mapped

into a complex network and through its topological characteristics and community research

an algorithm of trend detection could be proposed. Another important reading was Ferreira

(2017) which provided theoretical background to better understanding the field of time series
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Data Mining using Complex Network theory. Lastly, we found Mao and Xiao (2019) which

presented a state-of-the-art approach to provide one-step-ahead time series forecasting also

based on Complex Network Analysis, more specifically using link-prediction theory. According

to Mao and Xiao (2019) their proposed method was able to generate forecasts more accurate

than others in a variety of applications, including methods using fuzzy logic (CHEN, 1996),

(YU, 2005), bandwidth interval-based forecasting methods on (PATHAK; SINGH, 2011), and

hybrid fuzzy logic and visibility graph approach (ZHANG; ASHURI; DENG, 2017).

After studying the content of Mao and Xiao (2019), an opportunity arose to create other

time series forecasting methods based on what was presented in the reference literature. In order

to produce one-step-ahead forecast, Mao and Xiao (2019) uses the influence of the previous

observation with the highest node similarity with the current observation. However, for most

time series, it was observed that there are other nodes with the same level of similarity with the

node associated to the current observation e all those information was not taking into account

by Mao and Xiao (2019). Therefore, it was proposed a time series forecasting method named

maximum visibility approach (MVA) which consider the influence of all previous observations

that are statistically significant to the last observation. In addition, it was observed that MVA

could be yet improved if it were combined with another well-accurate method, for example, one

which is able to capture linear relations in order to obtain the one-step-ahead forecast. Therefore

this author proposed the Hybrid Means of Multiple Approaches (HMMA) which combines the

forecasting results obtained by two methods in order to find a new estimate.

1.2 Thesis Contributions

This work generated some contributions that deserve to be highlighted. Are they:

1. Maximum Visibility Approach

Maximum Visibility Approach (MVA) is new forecasting technique, proposed by this

author, based on the Complex Network theory and described in the section 4.1. This

forecasting method proved to be applicable in different types of time series, especially for

being able to capture non-linear time series patterns and use this information to produce

one-step-ahead forecast.

2. HMMA

Hybrid Means of Multiple Approaches (HMMA) is a new forecasting technique, proposed

by this author, based on a hybrid formulation of one or more forecasting models. In this

work HMMA is described in the section 4.2 and it was performed combining Maximum

Visibility Approach with the estimate obtained by the second more accurate method for

each time series analyzed in this work. HMMA proved to be suitable to produce forecasts

considering time series with trend characteristics, seasonal variations, and non-stationary

behaviors. It is important to point out that HMMA outperformed most of the comparative
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methods considering in this research, including MXA (MAO; XIAO, 2019), which is a

state-of-the-art method based on the Complex Network Theory and other hybrid methods.

1.3 Thesis Outlines

In this section we present how our text, composed by nine sections, is organized. In

the section 1 we contextualized this work bringing facts about the field of Time Series, the

ARIMA model, forecasting methods and data mining using complex networks theory. Then we

presented this thesis objectives and the motivations for this research. In the section 2 we discuss

some basic concepts regarding the theories of Time Series, Graphs, Complex Networks, means

inequalities and the Natural Visibility Graph, which is a method of mapping time series into

complex network. The section 3 contains brief presentations about methods of time series

forecasting. In the sequence, comes section 4 where we present our proposed time series

forecasting methods, followed by the section 5 where the results of this research are presented

and discussed. Next, we state the conclusions of this thesis in the section 6, followed by the

appendix section where most results directly presented in the body of the thesis are properly

proofed.
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2 Theoretical Background

This section provides a brief presentation of the basic concepts and techniques required

to describe the proposed methods MVA and HMMA.

2.1 Time Series Theory

In this section we present some key definitions and concepts regarding the Time Series

Theory, starting with its own definition. According to Hipel and McLeod (1994):

Definition 2.1 (Time Series). Time series is a set of observations, being each one,

organized along the time.

Let T be an index set and let (Ω,F , P ) be the space of probability , where each

fundamental part is defined as follows (FULLER, 1996):

1. Ω represents the sure event, that is, the set of all possible outcomes of a given experiment.

A real value of a time series is defined as Y (t, ω) ∈ T × Ω, where ω ∈ Ω is fixed and

known as any elementary event. Therefore, if ω is unknown, Y (t, ω) = Y (t) = Yt can be

understood as one realization from the random process {Yt : t ∈ Z}, but it is also called

as sample function, or a random variable.

2. F is called sigma-algebra and it is equal to P(Ω) which represents the set of all subsets

of Ω for those the probability can be evaluated.

3. P is the probability measure, or the expected long-run frequency, associated to each

element which composes F .

It is important to point out that Yt is a set of random variables, because for each t ∈ T ,

one random variable is defined. The equation 2.1 shows a realization of a infinite random

process.

{Yt : t ∈ Z}+∞
t→−∞ = {· · · , Y−1 = y−1, Y0 = y0, Y1 = y1, . . . } . (2.1)

Consider a n-element finite set of random variables Yt = {Y1, Y2, · · · , Yn, }. The joint

distribution function of probability associated to Yt is given by:

FY1,Y2,··· ,Yn
(y1, y2, · · · , yn) = P (Y1 ≤ y1, · · · , Yn ≤ yn, ) . (2.2)
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2.1.1 Expected Value and Variance

Let Y : Ω → R be the random variable defined on a space of probability (Ω,F , P ) .

Y is associated to a probability density function fY (y), through whom the expected value of Y ,

E [Y ] = µY , can be defined. In this work, µY will be called the mean of Y . Generally, in such

space of probability, using Lebesgue Integral notation, E [Y ] is defined, according to Löffler

and Kruschwitz (2019), as following:

E [Y ] =

∫

Ω

Y (ω)dP (ω). (2.3)

As a consequence of equation 2.3, one can observe that E [·] is a linear operator. In

fact, considering any two real numbers α and β, and any two random variables, Y and X , from

the same space of probability (Ω,F , P ), the next result yields:

E [αX + βY ] = αE [X] + βE [Y ] . (2.4)

The proof of the equation 2.4 is presented in appendix A.1. Similarly to what was done

for the definition of expected value of Y , the concept of variance, V ar(Y ), here denoted by σ2
Y ,

can be defined as follows (LöFFLER; KRUSCHWITZ, 2019):

V ar (Y ) =

∫

Ω

(Y (ω)− E [Y ])2 dP (ω). (2.5)

Considering definition given by equation 2.5 and taking into account the result obtained

from equation 2.4, the properties of the linear operator E [·] applies. Therefore:

V ar (Y ) = E
[
Y 2
]
− µ2

Y . (2.6)

The proof of the equation 2.6 is presented in appendix A.2

2.1.2 Autocovariance and Autocorrelation

Let {Yt}+∞
t→−∞ be a realization of a random process. Define now the vector Yt:

Yt =












yt

yt−1

yt−2

...

yt−k












(2.7)

The vector Yt, defined by equation 2.7, is composed by the t–th observation and its k

previous ones. Naturally Yt is a (k + 1)-variate random variable and its distribution is a joint
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distribution related to each single random variables {Yt, Yt−1, · · · , Yt−k}, given by

fYt,Yt−1,··· ,Yt−k
(yt, yt−1, · · · , yt−k). (2.8)

After defining the multivariate distribution, presented by equation 2.8, define γt,k as

the autocovariance of order k, or the autocovariance at lag k (COCHRANE, 1997).

γt,k =

∫ +∞

−∞

∫ +∞

−∞

· · ·
∫ +∞

−∞

(yt − µt) (yt−k − µt) fYt,··· ,Yt−k
(yt, · · · , yt−k)

× dytdyt−1 · · · dyt−k = E [(Yt − µt) (Yt−k − µt)] .

(2.9)

Definition 2.2. The autocovariance function (ACF) is the sequence of covariances of Yt

and its own lagged values (HAMILTON, 1994).

The autocovariance at lag k can be re-written as:

γt,k = COV (Yt, Yt−k) = E [(Yt − µt) · (Yt−k − µt)] (2.10)

With the purpose of make γt,k non-dimensional, it can be divided by σ2
t = γt,0, that

is, the time series variance related to the time t. This procedure results in the autocorrelation

coefficient, ρt,k (COCHRANE, 1997) , which is limited to the interval [−1, 1].

ρt,k =
γt,k
σ2
t

(2.11)

According to Box and Jenkins (1976), ρt,k and γt,k are defined as theoretical Autocorrelation

Function (ACF) and theoretical Autocovariance Function (ACVF), respectively. Considering

Hipel and McLeod (1994), the more appropriate estimator for γ̂t,k , related to a time series

{y1, y2, · · · , yn} is:

γ̂t,k =
1

n

n−k∑

i=1

(yi − ȳ) (yi+k − ȳ) . (2.12)

Considering γ̂t,k, defined by equation 2.12, after dividing it by γ̂t,0, thus comes the

estimator for ACF.

ρ̂t,k =
γ̂t,k
γ̂t,0

(2.13)

Given that ρ̂t,k is a measure for correlation betweeen two random variables, comes:

|ρ̂t,k| ≤ 1. (2.14)

See proof for equation 2.14 in appendix A.3. The other statistical measure which quantifies how

correlated yt,n is to each previous observation is the Partial Autocorrelation Function (PACF),



23

that is defined as the partial correlation of the random process {Yt : t ∈ Z} at lag k (BOX et al.,

2016). PACF can be understood as the correlation between variables Yn and Yn−k, excluding

the effect of the inner variables Yn−1, Yn−2, · · · , Yn−k+1.

Before the derivation of the PACF formula, it is necessary to discuss about Linear

Projection, Ordinary Least Square Regression and how they are related.

2.1.3 Time Series Characteristics

2.1.3.1 Stationarity As stated on sections 2.1.1 and 2.1.2, a stochastic process can be

written as a random variable at each point in time. According to discussed in Hipel and McLeod

(1994), when the joint distribution of any possible combinations of random variables of the time

series process is not impacted by shifting this particular set backwards or forwards in time, i.e.,

the joint distribution does not depends on time, then the stochastic process is called strictly

stationary.

FY1,Y2,··· ,Yn
(y1, y2, · · · , yn) = FYt+1,Yt+2,··· ,Yt+n

(yt+1, yt+2, · · · , yt+n), ∀t. (2.15)

In the case of strictly stationary time series the expressions for expected value and

covariance, defined on sections 2.1.1 and 2.1.2, can be considered time independent, hence

µt = µ and γt,k = γk, ∀t and any k. However, in practice, not always the hypothesis of strict

stationarity are needed, therefore, if the next pair of conditions apply, the time series is called

weak stationary.

1. The expected value of Yt is a constant for all t ∈ T .

2. (Yt1 , Yt2 , · · · , Ytn) and (Yt1+h, Yt2+h, · · · , Ytn+h) have the same covariance matrices, for

all h ∈ N and all t1, t2, · · · , tn, t1 + h, t2 + h, · · · , tn + h in the set T .

Hipel and McLeod (1994) also stated that a process is order-k-weak-stationary when

the statistical moments of a given time series till order k is only dependent on time differences

and not dependent on the time of occurrence of the data for which the moments were estimated.

Notice that in this case, the covariance between Yn and Yn−k depends only on the

lag between both random variables, hence, covariance is shaped as a even-function, because,

as Yn−k and Yn+k have the same distance to Yn, as consequence, γk = γ−k (HAMILTON,

1994). Considering the concept of weak stationarity, equation 2.9 can be re-visited and the

autocovariance at lag k for a stationary stochastic process can be given by:

γk = E [(Yn − µ) (Yn−k − µ)] . (2.16)
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The autocorrelation at lag k for a stationary stochastic process can be calculated as:

ρk =
E [(Yn − µ) (Yn−k − µ)]

σ2
. (2.17)

For both equations 2.16 and 2.17, given the stochastic process is stationary, E [Yk] = µ

and Var [Yk] = σ2 . Also, for this type of stochastic process, the equations 2.12 and 2.13 can be

re-written as:

γ̂k =
1

n

n−k∑

i=1

(yi − ȳ) (yi+k − ȳ) (2.18)

and

ρ̂k =
γ̂k
γ̂0

. (2.19)

2.1.3.2 Trend Behavior A trend exists when there is a long-term increase or decrease

in the data (HYNDMAN; ATHANASOPOULOS, 2018), that is, the general tendency of a time

series to increase, decrease or stagnate over a long period of time is termed as secular trend or

simply trend (ADHIKARI; AGRAWAL, 2013). There are various kinds of trends, for example,

linear (Figure2.1a), exponential (Figure2.1b) and damped (Figure2.1c). We see upward trend in

series informing Brazilian population from 1950 to 2021 (WORLDPOPULATIONREVIEW,

2021), number of cars manufactured per year in Brazil from 1998-Dec-01st to 2008-Aug-

01st (TRADINGECONOMICS, 2021), or the number of passengers in a London underground

station from 6am to 8am in a business day (IELTS, 2020). Examples of downward trend can be

found in series relating infant mortality rate in South Korea from 1950 to 2020 (MACROTRENDS,

2021), or the IBOVESPA closing prices from 2020-Feb-19th to 2020-Mar-23rd (INVESTING,

2021).
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(a) Time series with linear trend (b) Time series with exponential trend

(c) Time series with damped trend (d) Time series without trend

Figure 2.1: Time series with different types of trends. Source: Drawn by the author.

2.1.3.3 Seasonality A seasonal pattern can be observed when the time series presents

regular and predictable changes that recur periodically, for example, in a specific month of the

year or hour of the day. Any predictable movement or pattern that recurs or repeats in the same

frequency is said to be seasonal. Seasonality is characterized by a fixed and known frequency

which produces linear or, mostly often, nonlinear components (see Hylleberg (1992) and Box

et al. (2015) ) that changes with the time and does repeat. As an example, we show the time

series related to the monthly totals of accidental deaths in the USA from 1973 to 1978, got from

R-dataset package, but also presented by Brockwell and Davis (1991). This is a time series with

72 observations, and visually stationary, no-trend and seasonal.
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Figure 2.2: Monthly accidental deaths in the USA from 1973 to 1978. Data
Source: Brockwell and Davis (1991). Figure Source: Done by the author.

One can observe from Figure 2.2 that the number of accidental deaths in the USA

reaches the peak and valley in every July and February, respectively. This indicates a seasonal

time series. The seasonality can also be confirmed through the autocorrelation function related

to the time series. See in the Figure 2.3 that the peaks occurs at every lag multiple of 12. Given

this result, we can state that this time series is seasonal with period 12.
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Figure 2.3: Autocorrelation function for the time series of the monthly
accidental deaths in the USA from 1973 to 1978. Data Source: Brockwell
and Davis (1991). Figure Source: Done by the author.

2.1.4 Principles of Forecasting

Consider that one is interested in forecast the one-step-ahead term, Yn+1, of a given

time series, based on Yn and in its first (k − 1) lags. For that, define the k-vector Yn,k as:

Yn,k = (Yn, Yn−1, · · · , Yn−k+1)
T , (2.20)

where the subscript T means the transpose matrix operation. Let Ŷn+1|k be the estimator for

Yn+1 based on Yn,k. In order to evaluate the quality of the forecast it is necessary consider

a loss function. According to Hamilton (1994), a very convenient choice is the quadratic loss

function, known as Mean Squared Error (MSE). The idea is to find Ŷn+1|k which minimizes

MSE
(

Ŷn+1|k

)

= E

[(

Yn+1 − Ŷn+1|k

)2
]

. (2.21)

Given that the forecast is based on Yn,k, so Ŷn+1|k must be a function of Yn,k. Let

g (Yn,k) be the function which minimizes MSE
(

Ŷn+1|k

)

. According to Hamilton (1994) a

promising candidate for forecasting rule is

g (Yn,k) = E [Yn+1|Yn,k] . (2.22)

The proof for the result presented in equation 2.22 is shown in appendix A.5.
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2.1.5 Forecasts based on Linear Projection

Consider the linear model to estimate Yn+1 given by:

Ŷn+1|k =
n−k∑

i=1

βiYn+1−i = βTYn,k. (2.23)

Minimizing the mean squared error (MSE),

E

[(

Ŷn+1|k − βTYn,k

)2
]

(2.24)

the vector β can be calculated.

β̂ = E
[

Yn,kYT
n,k

]−1

E
[

Ŷn+1|k · Yn,k

]

. (2.25)

See appendix A.6 and follow the derivation of β̂. According to Rao (2021) the result

of β̂ can also be written as:

β̂ = V ar (Yn,k)
−1 COV

[

Ŷn+1|k · Yn,k

]

. (2.26)

Let β̂LP be the estimator shown in equation 2.25. As one can observe, β̂LP is obtained

considering the characteristics of the distribution of Yn,k. In practice, a sample of the past

values of a time series is all the known information about this time series, thus consider the

model:









yn

yn−1

...

yn−k+1









=









yn−1 yn−2 · · · yn−k

yn−2 yn−3 · · · yn−k−1

...
... · · · ...

yk yk−1 · · · y1

















β1

β2

...

βk









+









ǫ1

ǫ2
...

ǫn−k









or

Yn,k = Yβ + ǫ, (2.27)

where n > 2k. Let SSE
(

β̂
)

be the sum of squared error (SSE) obtained considering Yn,k and

the estimate Ŷn,k = Yβ̂.

SSE =
n−k∑

i=1

ǫ2i =
n−k∑

i=1

(

yi − YT
i β̂
)2

=
(

Yn,k − Yβ̂
)T

·
(

Yn,k − Yβ̂
)

. (2.28)
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According to Rencher (2002), applying the technique of the Ordinary Least Squared,

the estimate of β̂ which minimizes the sum of squared error is given by

β̂OLS =
(
YTY

)−1
YTYn,k. (2.29)

It can be found in the pages 325 and 326 from Rencher (2002) a demonstration that no

other estimator β̂ can achieve a smaller SSE than that one obtained from the result expressed

by equation 2.29.

It is important to compare the values of β̂ shown in equations 2.29 and 2.25. As

one can observe, β̂OLS is calculated based on sample measurements. According to Hamilton

(1994), there is a formal mathematical sense in which the two estimators are the same. More

specifically, if the stochastic process {Yn,k, Yn+1} is covariance-stationary and ergotic for the

second moments, therefore the sample moments will converge to the population moments when

n → ∞. Hence:

β̂OLS → β̂LP (2.30)

The derivation for the optimal sum of squared errors, is shown in appendix A.7. Applying

the calculated β̂ in the equation 2.28, comes:

SSE
(

β̂OLS

)

= YT
n,k

Yn,k − YT
n,k

Y
(
YTY

)−1
YTYn,k. (2.31)

According to Shumway and Stoffer (2011), the ordinary least squares estimators are

unbiased, that is, E
[

β̂OLS

]

= βOLS , and have the smallest variance within the class of linear

unbiased estimators. In the case of ǫi ∼ N(0, σ2
ǫ ) for all i ∈ {1, 2, · · · , n− k}, therefore β̂OLS

is also the maximum likelihood estimator for βOLS and is normally distributed with

COV
(

β̂OLS

)

= σ2
ǫ

(
YTY

)−1
. (2.32)

As calculated in Shumway and Stoffer (2011), an unbiased estimator, s2ǫ , for the variance σ2
ǫ , is:

s2ǫ = MSE
(

β̂OLS

)

=
SSE

(

β̂OLS

)

n− 2k
. (2.33)

2.1.6 Partial Autocorrelation Function in Time Series

Definition 2.3. Suppose that {Yn}t is a time series. The partial correlation between Yn

and Yn−k is defined as the correlation between Yn and Yn−k excluding the influence of the

in-between set Yex composed by Yex = (Yn−1, Yn−2, · · · , Yn−k+1) (RAO, 2021).

Be PYex
(Yn) and PYex

(Yn−k) the linear predictors of Yn and Yn−k, respectively, through

Yex. The PYex
(Yi) is the projection of the random variable Yi onto the space spanned by Yex

and it is the linear combination expressed by equation 2.23, which minimizes the MSE, shown
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in equation 2.24 (RAO, 2021), (BOX et al., 2016). Thus, PYex
(Yn) and PYex

(Yn) can be given

by:

PYex
(Yn) =

[
V ar (Yex)

−1 COV (Yn,Yex)
]T ·Yex, (2.34)

and

PYex
(Yn−k) =

[
V ar (Yex)

−1 COV (Yn−k,Yex)
]T ·Yex. (2.35)

Define the residual of Yi, the difference ǫi = Yi − PYex
(Yi). The partial correlation

between variables Yn and Yn−k is the covariance between its residuals, normalized by the

products of its standards deviations (HAMILTON, 1994), (RAO, 2021).

ρYnYn−k\Yex
=

COV ((Yn − PYex
(Yn)) , (Yn−k − PYex

(Yn−k)))
√

V ar(Yn − PYex
(Yn))

√

V ar(Yn−k − PYex
(Yn−k))

(2.36)

The appendices A.8 and A.9, respectively, show the derivations of the covariance in

the numerator of equation 2.36 and the variances in the denominator of this same equation. The

result for COV ((Yn − PYex
(Yn)) , (Yn−k − PYex

(Yn−k))) is:

γYnYn−k\Yex
= COV (Yn, Yn−k)− COV (Yn,Yex)

T V ar (Yex)
−1 COV (Yn−k,Yex) . (2.37)

The variances of (Yn − PYex
(Yn)) and (Yn−k − PYex

(Yn−k)) are given by:

V ar (ǫn) = V ar (Yn)− COV (Yn,Yex)
T V ar (Yex)

−1 COV (Yn,Yex) , (2.38)

and,

V ar (ǫn−k) =

= V ar (Yn−k)− [COV (Yn−k,Yex)]
T V ar (Yex)

−1 COV (Yn−k,Yex) .

(2.39)

The partial correlation between variables Yn and Yn−k, ρYnYn−k\Yex
is calculated by

replacing the last three results, expressed by equations 2.37, 2.38 and 2.39, in the equation 2.36.

2.1.7 Ergodic Process

Let ȳ be a sample mean of a n-element covariance-stationary random process {Yt}.

Definition 2.4. A random process is said to be ergodic for the mean, if ȳ → E [Yt] and

the autocovariances tends to zero, sufficient quickly as n → ∞ (HAMILTON, 1994).
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Naturally, a consequence of a covariance-stationary random process be ergodic is that

1

n− k

n∑

i=k+1

(Yi − µ) (Yi−k − µ) → γk, (2.40)

for all k.

2.1.8 White Noise

Definition 2.5. The white noise process is the sequence {ǫt}+∞
t=−∞ of uncorrelated random

variables with zero mean and constant variance σ2, therefore E [ǫt] = 0, E [ǫ2t ] = σ2 and

E [ǫt · ǫτ ] = 0 for t 6= τ . If the random variables comes from a normal distribution, so the

white noise is called Gaussian White Noise and ǫt ∼ N(0, σ2) (SHUMWAY; STOFFER,

2011),(HAMILTON, 1994).

The Figure 2.4 illustrates the example of one realization of a Gaussian white-noise

process which is normally distributed with zero mean and variance 1.

Figure 2.4: One realization of the Gaussian white-noise process N(0,1)

2.1.9 Random Walk Process

The random walk process is an stochastic sequence {Sn}, starting with S0 = 0 and

defined by the following law (RAO, 2021), (SHUMWAY; STOFFER, 2011):

yt = yt−1 + δ + ǫt, t ∈ {1, 2, 3, ...} (2.41)
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where δ is a real constant and ǫt is part of a white-noise process, with zero mean and constant

variance. In the case of δ = 0, this process is called a simple one-dimensional random walk

process (SHUMWAY; STOFFER, 2011), but in the other hand, whether δ 6= 0, the process is a

random walk with drift, or a trend-random-walk-process. By summing yt using its recurrence

equation, yt can be re-written in the form:

yt = δt+
t∑

k=1

ǫk. (2.42)

Figure 2.5: One realization of the random walk process with drift (δ = 1) and
ǫt ∼ N(0, 1), ∀t ∈ {1, 2, · · · , 50}, and of the simple random walk considering
the same ǫ distribution.

One can observe in Figure 2.5 that for both random walkers, the variances are increasing

as t increases, indeed, because given the equation 2.42, the following comes:

V ar (yt) = t

=1
︷︸︸︷

σ2
ǫ = t, (2.43)

which makes the random walk process is classified as a non-stationary process, since its variance

is not constant with t. Also, the expected value is not constant.

E [yt] = δt. (2.44)
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The autocovariance of the random walk process is given by:

γk = COV (yn, yn−k) = COV

(
n∑

k=1

ǫk,

n−k∑

k=1

ǫk

)

= (n− k)σ2
ǫ , (2.45)

To read the derivations of the results expressed in equations 2.43, 2.44 and 2.45, see

appendix A.10.

2.1.10 Hypothesis Tests in Time Series Analysis

Normally, forecasting models and methods to evaluate the quality of the forecasting

results can only be applied under specific time series conditions, for example, stationarity,

seasonal behavior and white noise characteristics. The confirmation about whether the time

series behaves as necessary is done based on the results of proper hypothesis tests. In the

next four sections four useful tests are described. The augmented Dickey-Fuller test, for time

series stationarity; the Kwiatkowski-Phillips-Schmidt-Shin test which confirms level or trend

stationarity; the Ljung-Box test which verify independence between data; and Diebold-Mariano

test which indicate if two forecasting methods produce the same level of accuracy.

2.1.10.1 Augmented Dickey–Fuller Test - ADF: The Augmented Dickey-Fuller

(ADF) test is related to stationarity, it is applied to verify whether a time series is stationary or

not. The ADF test assumes the presence of a unit root as the null hypothesis (FULLER, 1996).

As alternative hypothesis, data are level or trend stationary (FULLER, 1996). Equation (2.46)

represents the model assumed in the ADF test.

yt = δyt−1 + µ+ γt+ ǫt +

+ (φ1∆yt−1 + φ2∆yt−2 + · · ·+ φk∆yt−k) (2.46)

The Dickey-Fuller test only contains the first lag as the differentiating term, that is,

φ1∆yt−1. The Augmented Dickey-Fuller test model, in turn, considers the first k lags and

provides more thoroughness to the test. According to Fuller (1996), the statistic of the test is

given by:

ADF =
δ̂

σ̂δ̂

, (2.47)

where δ̂ is the estimator of the coefficient δ presented in (2.46) and σ̂δ̂ is the corresponding

estimation of the standard deviation of δ̂. The null and alternative hypotheses are (FULLER,

1996):

H0: δ = 1, for presence of unit root,

HA: δ < 1, for trend stationarity.
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The test points to a stationary time series. If the test statistic is smaller than the critical

value, the null hypothesis must be rejected and the time series is assumed to be stationary.

2.1.10.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: The Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test verifies the trend or level stationarity (KWIATKOWSKI et

al., 1992). Some time series do not present stationarity around zero, but can present stationarity

around a deterministic trend, and KPSS is able to point out if this behavior occurs. Given a time

series y1, y2, · · · , yn, Kwiatkowski et al. (1992) says that these data can be broken into three

terms: trend, random walk and stationary residual.

yt = (µ+ γt) + (δyt−1 + ut) + ǫt (2.48)

In (2.48), taking γ as a real number, γt is the trend term, ut is an independent and

identically distributed random variable with zero mean and variance σ2
u, and ǫt is the stationary

residual term, which is also a white noise distribution with zero mean and variance σ2
ǫ . The null

and alternative hypotheses are defined as follows (KWIATKOWSKI et al., 1992):

H0: σ2
u = 0, for trend stationary. Or:

H0: σ2
u = 0 and µ = 0, for level stationary. Against

HA: σ2
u > 0, presence or unit root, that is, non-stationarity.

Consider σ̂2
ǫ as a consistent estimator of the long-run variance σ2

ǫ of the residuals

(KOKOSZKA; YOUNG, 2016). For second-order stationary processes, the long-run variance is

defined as the sum of all autocovariances (MüLLER, 2007). Assuming Sn =
n∑

i=1

ǫi, the statistic

of the KPSS test can be given by Kwiatkowski et al. (1992)

KPSSn =
1

n2σ̂2
ǫ

n∑

k=1

S2
n. (2.49)

We can observe in Kokoszka and Young (2016) discussions around the asymptotic

distribution of KPSSn.

2.1.10.3 Ljung-Box Test: The Ljung-Box test is performed to assess if a given dataset

is independently distributed. The null hypothesis considers the independence of data, and the

alternative hypothesis is that there is some dependency among the given data. Equation (2.50),

given by Ljung and Box (1978), shows the statistic of the Ljung-Box test.

Q = n(n+ 2)
h∑

k=1

ρ̂2k
n− k

(2.50)
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where

ρ̂k =

n∑

i=k+1

yiyi−k

n∑

i=1

y2i

. (2.51)

In (2.50), n is the data length, ρ̂k is the sample autocorrelation at lag k, and h is

the maximum lag considered in the test. According to Ljung and Box (1978), the statistic Q

follows a χ2
h distribution: therefore, for a significance level α, the null hypothesis is rejected if

Q > χ2
1−α,h.

The Ljung-Box test can be applied to the residuals obtained by an ARIMA(p, d, q)

model, defined in section 3.9, to test the quality of the forecasting results. It is done because,

in order to confirm that an ARIMA model gave its best forecasting results, its residuals must

behave as a white noise process, therefore, the residuals must be independent. According to

Ljung and Box (1978), in this case, the chi-squared degrees of freedom, η, has to be updated

from η = h to η = h− p− q.

2.1.10.4 Diebold-Mariano Test: Consider two sets of estimates {ŷit}nt=1 and {ŷjt}nt=1

for a time series {yt}nt=1. Let {et}nt=1 be the associate forecast errors. Also, let the loss

associated with forecast i be a function of the forecast error, eit, and denoted by g (eit). This

loss function, g(·), is such as g(0) = 0, it is never negative and the higher is the magnitude of

the error, the greater is g(·). Normally g (eit) = e2it or g (eit) = |eit|.
Let dt = g (eit)− g (ejt) be the loss-differential between the two forecasts. According

to Diebold and Mariano (1995), the Diebold-Mariano test points out the null hypothesis E [dt] =

0, which is equivalent of “equal accuracy” between the two sets of estimators. If the null

hypothesis is not rejected, so it is said that both estimators produce the same level of accuracy

statistically speaking.

Consider the sample {dt}nt=1 of a loss-differential series. If {dt}nt=1 is covariance

stationary and presents short memory, hence (DIEBOLD; MARIANO, 1995):

√
n
(
d̄− µ

)
∼ N (0, 2πfd(0)) (2.52)

where

d̄ =
1

n

n∑

t=1

dt (2.53)

is the sample mean of the loss differential series, E [dt] = µ, and

fd(0) =
1

2π

∞∑

i=−∞

γd(k) (2.54)
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is the autocovariance at lag k of the loss differential series. Given equation 2.52, comes:

d̄− µ
√

2πfd(0)

n

∼ N (0, 1) (2.55)

but considering a sufficient large sample,

d̄− µ
√

2πf̂d(0)

n

∼ N (0, 1) , (2.56)

where f̂d(0) is a consistent estimator for fd(0). Therefore, the statistic to test H0 : µ = 0 is

given by

S =
d̄

√

2πf̂d(0)

n

∼ N (0, 1) . (2.57)

According to Diebold and Mariano (1995) a proper estimator for fd(0) is:

f̂d(0) =
1

2π

k−1∑

i=−k+1

Θ

(
k

h− 1

)

γ̂d(k) (2.58)

where Θ(k(h− 1)−1) = 1 if |k(h− 1)−1| ≤ 1 or Θ(k(h− 1)−1) = 0, otherwise. Also, h is

the forecasting-ahead horizon and

γ̂d(k) =
1

n

n∑

i=|k|+1

(
di − d̄

) (
di−|k| − d̄

)
. (2.59)

In this thesis, we are providing one-step-ahead forecasting only, therefore, for our purposes,

h = 1, hence, in our case all Diebold-Mariano test were calculated considering

f̂d(0) =
γ̂d(0)

2π
=

1

2πn

n∑

i=1

(
di − d̄

)2
. (2.60)

2.1.10.5 Webel-Ollech Test: With the objective of identifying the data seasonality Webel

and Ollech (2018) presented a technique, which is basically a combination of the methods

modified QS (LYTRAS, 2015) and Friedmann (POHLERT, 2014) tests. In Webel and Ollech

(2018), the authors suggested a generic scheme to construct an overall seasonality test from

a given set of candidate tests. A broad set of simulated ARIMA processes were used in

order to identify the most informative tests. The resulting classification rule presented low

type I and type II misclassification rates, with high accuracy and without showing excessive

complexity. The residual-based variants of the QS and Friedman tests were identified as being
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most informative. For this reason, both tests were considered to compose the Webel-Ollech test

(WEBEL; OLLECH, 2018). In this thesis, the Webel-Ollech test is denominated as WO test.
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2.2 Graph Theory

According registers in the literature, the first work regarding Graph Theory dates from

1736, when Leonard Euler (1707 - 1783) solved, the well known Königsberg bridge problem

(JUNGNICKEL, 2013). The city of Königsberg, which until 1945, integrated Prussia territory,

nowadays is called Kaliningrad and also is part of Russia. The Pregolya river, which got two

islands that were part of Königsberg territory, used to cross through all the city at that time,

XVIII century, additionally, seven bridges were used in order to make connected all the city,

according to Figure 2.6.

Figure 2.6: Illustrative map from the seven Königsberg bridges (EULER, 1741)

Observing the Figure 2.6, there were four connected territories: two lands, let say B

and C, separated by Pregolya river, and two islands A and B. The seven bridges connecting

all those four territories were: a and b connecting A to B; c and d connecting A to C; e

connecting both islands; f providing connection between B and D; and, lastly, g connecting

D to C. Consider associate A, B, C or D, to points, or vertices, and each of those respective

connection as bonds or lines connecting these points. The result of this arrangement can be

illustrated by the Figure 2.7. At that time, the question to be answered was: could be possible

walk around through all the city of Königsberg, crossing over all seven bridges just once?

According to the official website, Pacific (2020), which is a digital library dedicated to research

and preservation of works by several relevant authors in the past, Leonhard Euler presented, in

early 1735, his work to The Saint Petersburg Academy, with the formal proof, that there were

no solution to the Königsberg bridge problem (KBP) (EULER, 1741). Moreover, his work was

published only at 1741 (PACIFIC, 2020).
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Figure 2.7: Königsberg connections (JUNGNICKEL, 2005) (Adapted by the author)

According to Lopes and Táboas (2015), Euler realized that the exact shape of the

two islands and the other two parts of the land did not matter: the problem can be solved

just observing the connections properties. Let a city walk begin, starting on the vertex C, for

example: when the first return to vertex C occurs, two of the three bridges connected to C, will

have already been used. If one leaves C again, trying to walk through the others bridges, one

will not be able to return to C without cross over a unused bridge. The same idea can be used

if the city walk started from another vertex, besides, it is now shown that this problem is indeed

with no solution.

In this section we show some definitions and conceptions from graph theory, which are

important to give a better understanding of the contents in the section 2.3.

2.2.1 Concepts and definitions on Graph Theory

Based on West (2000), Steen (2010) and Biggs (1993) follow the definitions of graph

and directed graph.

Definition 2.6 (Graph). A graph G = (V,E) is a triple which contains a vertex set,

V(G), a edge set, E(G) and a relation that associates each edge with each two vertices

(not necessarily distinct) called endpoints. If v ∈ V(G) is connected to w ∈ V(G)

both vertices are said to be adjacent.

Definition 2.7 (Directed Graph). A directed graph G or a digraph D is given by a set

of vertices V(G), and a set of edges E(G) and can be written as D = ( V(G),E(G)), or

only, D = (V,E). Every single vertex v ∈ V(G) is jointed to another vertex w ∈ V(G),

and here there is not necessary having v 6= w, by a edge e = 〈−−→v, w〉, in this order, once,
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orientation matters. Vertices v and w are called tail, and head, respectively, from the

edge e = 〈−−→v, w〉 .

Definition 2.8 (Undirected Graph). A graph is called undirected graph if, for every

edge e = 〈v, w〉 ∈ V(G), orientation does not matter (STEEN, 2010), (JUNGNICKEL,

2005).

Definition 2.9 (Vertex Degree). Consider a graph G = (V,E). For each vertex v ∈ V ,

its degree, represented by ρ(v), is defined by the number of edges containing heads or tails

leaning on v.

Definition 2.10 (Regular Graph). Let G = (V,E) be a given graph. G is called a k-

regular, if and only if, ∀ v ∈ V(G), ρ(v) = k (JUNGNICKEL, 2013).

Definition 2.11 (Vertex indegree). Consider a digraph D = (V,E). For each vertex

v ∈ V(D), its indegree, ρin(v), is measured by the number of edges with heads coinciding

to v.

Definition 2.12 (Vertex outdegree). Consider a digraph D = (V,E). For each vertex v ∈
V(D), its outdegree, ρout(v), is measured by the number of edges with tails coinciding

to v.

Theorem 2.1. In a given digraph D = (V,E), the sum of all indegrees, as well as the

sum of all outdegrees, is equal to the number of edges of D:

∑

v∈ V(D)

ρin(v) =
∑

v∈ V(D)

ρout(v) = |A(D)| (2.61)

Proof. Taking into account that each edge is composed by one head and one tail hence the

number of heads is exactly the number of edges. Considering the definition of indegree,

it can be concluded that the sum of all indegrees is equal the number of edges. The same

argument can be applied to the case of summing all outdegrees.

In the theorem 2.1 notation |A(D)| refers to the digraph adjacency matrix and this

concept is presented in the definition 2.19. In accordance to the theorem 2.1, follows the

corollary 2.1.

Corollary 2.1 (from theorem 2.1). In a network G = (V,E), ∀ vi ∈ V(G), the following

propriety satisfies:
n∑

i=1

ρ(vi) = 2 · n ( E(G)) (2.62)
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where n ( E(G)) means the number of elements on set E(G).

Proof. The proof comes immediately by summing both: sum of indegrees to the sum of

outdegrees. Once both of them are equal the total number of edges of G, hence, this sum

results in 2 times the total number of edges.

Definition 2.13 (Connected Graph). An undirected graph G is considered connected if

there is a path which connects each pair of its vertices. If there is any single vertex,

v ∈ V(G),non reachable from any other vertex w ∈ V(G), the graph G is called

disconnected.

As reported by Bollobas (2002), by definition, multiple edges or loops are not allowed

in graphs. If any of those occur, G is not a graph, but a multigraph.

Definition 2.14 (Multiple Edges). For any graph G = (V,E), if there are two or more

edges ei ∈ E(G), with i ≥ 2, which connect the same two vertices v ∈ V(G) and

w ∈ V(G), thus all ei = 〈v, w〉 are called multiple edges, also multi-edge or parallel

edge.

Definition 2.15 (Loops). A graph G = (V,E), contains a loop if, there is a edge

e ∈ E(G), whose head and tail are incident to the same vertex v ∈ V(G), i.e.,

∃ e = 〈v, v〉.

The next definition presents the concept of simple graphs and it is based on Gibbons

(1985),West (2000) and Bronshtein et al. (2004).

Definition 2.16 (Simple Graph). A simple graph is an unweighted and undirected graph

which contains no loops or multiple edges. Simple graphs are also called a strict graph.

Definition 2.17 (Neighbor Set N(v)). For any graph G = (V,E) and vertex v ∈ V(G),

the neighbor set N(v) of v is the collection of vertices (distinct of v) adjacent to v, i.e.

N(v)
def
= {w ∈ V(G)/v 6= w, ∃e ∈ E(G) : e = 〈w, v〉} . (2.63)

Definition 2.18 (Complete Graph). For any graph G = (V,E) such | V(G)| = n and

| E(G)| = m , if all possible two-elements subsets of V(G) are found as edges of G,

this graph is called a complete graph and is represented by Kn.
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If G = (V,E) is not a multigraph, i.e., admit no multiple edges and no loops, so

0 ≤ | E(G)| ≤
(
n

2

)

. Regarding the contents of definition 2.18, trough combinatory arguments,

the number of edges existing in Kn is m =

(
n

2

)

.

There are different ways of representing a graph (STEEN, 2010). Both, Steen (2010)

and West (2000) present, according shown in definition 2.19, an alternative way to describe a

graph, which is known by adjacency matrix.

Definition 2.19 (Adjacency Matrix). Considering a graph G = (V,E), where n(V ) = n

and n(E) = m, its adjacency matrix is a n × n matrix such elements av,w represent

the number of edges 〈v, w〉 ∈ E(G) bonding v ∈ V(G) and w ∈ V(G).

As an example, the adjacency matrix associated to the graph expressed in the Figure

2.7 is given by:

A(G) =









0 2 2 1

2 0 0 1

2 0 0 1

1 1 1 0









(2.64)

About the adjacency matrix, consider the following considerations.

1. If G = (V,E) is a undirected graph, i.e.,〈v, w〉 = 〈w, v〉 , ∀〈v, w〉 ∈ E(G), hence A(G)

will be symmetric;

2. G = (V,E) will be a simple graph, if and only if, ai,j ≤ 1 and ai,i = 0, ∀i, j ; and,

3. ρ(vi) =
∑n

j=1 ai,j , i.e., the vertex vi degree is equal the sum of all elements on the i-th

row of A(G).

Some authors, such as Biggs (1993) and Feofiloff, Kohayakawa and Wakabayashi

(2009), define adjacency matrix differently from that was shown in definition 2.19. For those

authors, ai,j = 1 if, and only if, vertices i and j are connected, otherwise,ai,j = 0. In the case

of loops, ai,i = 1. In this definition, does not matter, how much connections there are between

two vertices v ∈ V(G) and w ∈ V(G), but only if both are connected or not.

In a different way, a graph can also be described through the Incidence Matrix. As

stated in Skiena (1990), the fist definition of incidence matrix came from the physicist Kirchhoff

(1847) and follows:

Definition 2.20 (Incidence Matrix). Considering a graph G = (V,E), with n(V ) = n

and n(E) = m, its incidence matrix is a n ×m matrix where each row determines a
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vertex and each column a edge and its elements mvi,ej represent the number of incidences

occurred by the edge ej ∈ E(G), with j ∈ 1, 2, · · · ,m upon the vertex vi ∈ 1, 2, · · · , n.
The possible values to mvi,ej are 0, 1 or 2: the first case when ej is not connected to vi;

the second happens if one, and only one ej endpoint is attached to vi; and, lastly if the

value is 2, hence there is a loop, i.e., both ej endpoints are connected to vi.

Just for illustrating, the incidence matrix related to the Königsberg bridges

problem, shown in the Figure 2.7, is specified by:

AB AC AD BD CD

A 1 1 1 0 0

B 1 0 0 1 0

C 0 1 0 0 1

D 0 0 1 1 1

M(G) =









1 1 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 1 1 1









. (2.65)
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2.3 Complex Networks

Complex network analysis (CNA) is a discipline of exploring quantitative relationships

in the graphs with non-trivial and irregular structure (ZINOVIEV, 2017). Despite the researches

in complex networks have started with graph theory, only recently it became a focus of attention,

given that real networks have characteristics which are not explained by uniformly random

connectivity (COSTA et al., 2007). Therefore, for that and others reasons the study of complex

networks has been the important branch of many scientific fields (DONG et al., 2013). It

can be considered a multidisciplinary area because, in terms of concept, Complex Networks

can be understood as an intersection of Graph Theory and Statistical Mechanics (COSTA

et al., 2007). Over the years, Graph Theory has providing solid theoretical background in

the study of the networks. However, due to the constant computers development, massive

databases were collected, stored and processed (FERREIRA, 2017). The use of traditional

graph theory approaches is unsuitable for the task of processing large-scale networks given the

high computational cost required for seeking optimal solutions (FERREIRA, 2017).

A complex network has a non-trivial topography. It is not a grid, not a tree, not a ring,

but it is not entirely random, either (ZINOVIEV, 2017). Each complex network presents specific

topological features which characterize its connectivity and highly influence the dynamics of the

processes executed on the network (COSTA et al., 2007). One of the most common mechanisms

is the preferential connection process, whereby nodes highly connected get even more edges,

forming huge hubs in the core, surrounded by the poorly connected periphery (ZINOVIEV,

2017). This mechanism helps the inference process since studying the relationship between

pairs of nodes, hidden information can be useful to indicate which node, or groups of nodes,

are more likely to form new connections. Characterizing complicated dynamics from time

series is a fundamental problem of interest in many fields (GAO; JIN, 2009). In order to

analyze these dynamics some different measures has been proposed, for example, Lyapunov

exponent (SáNDOR et al., 2021), entropy (ZENIL; KIANI; TEGNÉR, 2018), and fractal scale

(WEI; WANG, 2016). Complex networks have established themselves in recent years as being

particularly suitable and flexible for representing and modeling many complex natural and

artificial systems. Investigation of nonlinear time series in terms of complex networks has

begun only recently (GAO; JIN, 2009).

In order to provide a better understanding about the results presented in this work,

some basic concepts on Complex Network theory is presented. All contents presented in this

subsection are mostly based on Steen (2010).

2.3.1 Network Vertex Degree

A network vertex degree follows the same statement of meaning as that one expressed

by definition 2.9 in section 2.2.1. Complementing the explanation given in that section, some

authors, such as Skiena (1990), also calls vertex degree as local degree or valency. When the



45

point of interest is network analysis an important concern, how explained in Steen (2010), is

how vertices degrees behave. Just for an example, in a social network when each node is

associated with a person, it is possible to find out the main players of this social network by

analyzing the vertex with the higher degrees (TOIVONEN et al., 2006).

By looking to the vertex degree, it is also possible to get information regarding the

network structure: if a network is composed by vertices which contains approximately the same

degree, so there is a high chance that it presents a regular shape, given the definition 2.10, thus in

this case, its vertices play holes with similar importance; in contrary, if the network is featured

by a high skewed vertex sequence, i.e., few high connected vertices, which work such as hubs,

and many other unpopular vertices, so, if one of these densely-connected vertices is removed,

the entire network can be broken into disconnected smaller structures (STEEN, 2010).

One of complex networks characteristics is the dynamism of their topology by introduction

of new nodes and vertices randomly. Fatally it impacts the measurement of its structural

characteristics. Social networks, for instance, is a kind of random graph which are constantly

changing (DONG et al., 2013), hence, it is expected find out no deterministic results for

topological quantifying, but probabilistic. Any measurements for, e.g., vertex degree, are done

in terms of the picture of the network in the actual moment, so, in order to get results that

describe the network in global perspective, it is necessary propose a modeling able to provide

information regarding the network evolution along its existence.

In the case of understanding how vertices degrees are changing, one should gather

information about the sequence of these vertices degrees. A degree sequence is nothing less

than listing the vertex degrees of a network in a monotonic order, including repetition as needed

(DIESTEL, 2005). Usually these degree sequence are in a descending order (STEEN, 2010).

Definition 2.21 (Degree Distribution). The fraction of vertices with degree k, is calculated

by

pk = P (ρ(v) = k) =
g(k)

n
. (2.66)

When pk is taken as an approximation to the probability of the vertex v ∈ V(G) register

degree k. If this measure is plotted as function of k, the resultant plot is called degree

distribution.

According to Latora, Nicosia and Russo (2017), vertex degree change in a random

networks can be performed by utilizing a histogram to register the degrees sequence. A simple

and connected graph G = (V,E) with n( V(G)) = n and n( E(G)) = m was used to produce

g(k) = |{v ∈ V(G) /ρ(v) = k}| and plot it. The values of g(k) mean the number of vertices

which present degree k (STEEN, 2010).

Indeed, pk can be defined as a probability mass function, since, pk ≥ 0, and

n−1∑

k=0

pk =
n−1∑

k=0

g(k)

n
=

1

n

n−1∑

k=0

g(k) =
n

n
= 1. (2.67)
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Definition 2.22 (Average Vertex Degree). The average vertex degree of a undirected

network G = (V,E) with n( V(G)) = n and n( E(G)) = m can be calculated through

the expected value of degree distribution. In this case, when the distribution is discrete,

the expected value is calculated by:

k = E(K) =
n∑

i=1

ki · pk. (2.68)

Naturally, considering the first simplification for pk = 1
n

, and corollary 2.1, the result

expressed by equation 2.68 is resumed to

k =
n∑

i=1

ki ·
(
1

n

)

=
1

n

n∑

i=1

ki =
2m

n
. (2.69)

The way of describing the dynamic of the vertex degree can change according to the

type of the random network. Other works dedicated to study such models consider the following

types of random networks: social networks (MUCHNIK et al., 2013), social networks after

disasters (KIM; HASTAK, 2018) and complex networks using Information Theory (FREITAS

et al., 2019).

2.3.2 Degree Correlation

There are some real complex networks whose nodes are more likely to get linked

to other similar nodes in terms of degree (MUCHNIK et al., 2013), in the other hand, is it

possible find the opposite behavior between nodes of other real complex network (XENARIOS

et al., 2000). The basic structural metric able to indicate how likely nodes bond to nodes

of similar or dissimilar vertex degree is called degree correlation. See definition 2.23 about

degree correlation (TAKEMOTO; AKUTSU, 2016).

Definition 2.23. Degree-degree correlation indicates the relationship between the node

degrees, and it is often defined as the Pearson correlation coefficient of degrees between a

connected node pair. This measurement is also known as assortative coefficient.

2.3.3 Network Link Prediction

The link prediction is an important research field in data mining. At present, most

link prediction algorithms are based on the similarity between two entities (DONG et al.,

2013). Two nodes of a network are more likely to be connected if they are more similar and

for sustaining this hypothesis a strong assumption is that the link itself indicates a similarity

between the two nodes and this similarity can be transferred through the links (LU; ZHOU,
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2010). The objective of this field is to estimate how likely is the existence of a connection

between two nodes. For example, according to Martinez et al. (1999), discovering connections

in food webs structures is highly cost in the field, thus it is difficult, expensive and it can

take years to gather relevant information hence, the knowledge of those networks normally

is incomplete. Therefore, in order to diminish the research cost, instead of keep the search for

all the possible interactions, forecasting the new bonds based on the observed links seams a

better idea if the results are enough accurate (CLAUSET; MOORE; NEWMAN, 2008). The

structural equivalence contained in networks can be quantified through similarity indices (LU;

ZHOU, 2010).

Two nodes in a graph are said to be similar if they share the same predefined characteristics.

Given a complex network at a moment G = (V,E) with vi ∈ V(G) and vj ∈ V(G), link

prediction is to predict the probability of the link between the nodes vi and vj (DONG et al.,

2013). Some techniques provide similarity measures between the vertices in a graph.

Since the forecasting method proposed by Mao and Xiao (2019), one of the benchmark

of this research, applied a specific link prediction technique to provide time series forecasting,

a brief presentation of this similarity index is being done in this next section.

2.3.3.1 Similarity Based on Random Walk Process: The contents of the present

section is based on the methodology proposed by Lu and Zhou (2010). Consider an undirected

sample network G = (V,E), as described in definition 2.8 excluding the possibilities of multiple

links and self connections. Given a pair of nodes vi, vj ∈ V(G), Lu and Zhou (2010) defines sij

as a score of similarity between the nodes.

Consider the transition probability matrix, P = (pi,j)N2 , where N = |G|, defined as:

P (pi,j) :=







ai,j/ki, if (vi, vj) ∈ E

0, otherwise
(2.70)

where ai,j is an element of the incidence matrix as described in definition 2.20 and ki is the

degree of the node vi. The probability that a random walker, starting from the node vi, reaches

vj in exactly t steps is given by ~πij(t). Note that a random walker moves according to described

in section 2.1.9.

According to Lu and Zhou (2010) the probability of a random walker starts from node

vi is ~πi. Additionally, considering leaving vi after exactly t steps, is defined by the following

recurrent equation:

~πi(t) = P T~πi(t− 1), (2.71)

where the initial state, ~πi(t), is a N × 1 vector where the i-th element is 1 and the others are 0.

Lu and Zhou (2010) defines the node similarity as:

sLRW
ij (t) =

ki
2|E| · πi,j(t) +

kj
2|E| · πj,i(t), (2.72)
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where |E| is the number of links in the network. According to is argued by Lu and Zhou

(2010), in a random walk from vi to vj , the walker has a significant probability to hold off from

both nodes even they being close to each other. The consequence for this is a poor forecasting

accuracy since in most real networks nodes tend to bond with the nodes which are closer instead

of those ones located far away.

Lu and Zhou (2010) proposes the superposed random walk, which is a kind of cumulative

function with the purpose of releasing, at each step, a random walker in the starting point,

superposing the contribution of each walker. This procedure increases the similarity between

the initial node and the neighbor nodes. Follows the similarity index:

sSRW
ij (t) =

t∑

k=1

sLRW
ij (k) (2.73)

All the possibilities for the next node are ranked by the SRW . The greater the new-

nodes values of SRW , the greater the probability of they come to existence.

2.3.3.2 Dice Approach: The researcher Lee R. Dice, in 1945, discussed about the need

of a quantitative manner of measuring how two different species are related in nature (DICE,

1945). With this motivation he introduced the Dice Coefficient which is able to measure

similarity between two vectors. The Dice score index, or simply Dice coefficient, can be applied

to many tasks, and for example, it is commonly used metrics for the evaluation of segmentation

tasks in medical imaging (BERTELS et al., 2019). Consider the example where the sets A and

B represents the features present in two molecules, respectively. Now and define n(Θ) as the

cardinal of the set Θ. The Dice index is the number of features which are in common to both

molecules divided by the average size of the total number of features present in each molecule,

that is

sDICE
ij =

2 · n (A ∩B)

n(A) + n(B)
. (2.74)

In the context of a network graph, given any two vertices of a network, the Dice

similarity (ANDREWS; HAMARNEH, 2015) is calculated taking twice the number of common

neighbors over the sum of the degrees of both vertices.

sDICE
ij =

2 · n (N (vi) ∩N (vj))

ρ (vi) + ρ (vj)
. (2.75)

It is not difficult to conclude that the Dice index range is from zero to 1. The result is

zero if both vertices does not share any neighbor and it is 1 if both neighbors sets are equal.

2.3.3.3 Jaccard Approach: Given the contents of Arnaboldi et al. (2015) the Jaccard

coefficient measures similarity between finite sample sets. Consider a network G = (V,E) with

vi ∈ V(G) and vj ∈ V(G). The Jaccard coefficient is calculated by the number of common
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neighbors between vi and vj over the cardinal of the union of its neighbors at all.

sJAC
ij =

n (N (vi) ∩N (vj))

n (N (vi)) + n (N (vj))− n (N (vi) ∩N (vj))
. (2.76)

Note that, considering the Jaccard index definition, 0 ≤ sJAC
ij ≤ 1. Indeed, whether

N (vi) = N (vj), thus sJAC
ij = 1, but in the case of N (vi)∩N (vj) = ∅, consequently sJAC

ij = 0.

2.3.3.4 Inverse Log-Weighted Approach: The inverse log-weighted similarity between

any two vertices is defined by the number of their common neighbors, weighted by the inverse

logarithm of their degrees (ADAMIC; ADAR, 2003).

sILWij =
∑

∀v∈(N(vi)∩N(vj))

1

ln (ρ (v))
. (2.77)

According to Adamic and Adar (2003) the inverse log-weighted similarity is based on

the assumption that two vertices should be considered more similar if they share a low-degree

common neighbor, since high-degree common neighbors are more likely to appear even by pure

chance.

2.4 Means Inequality

Let {x1, x2, · · · , xn} be a set of positive real numbers. Taking w = w1 + · · · + wn,

with wk ≥ 0 and w > 0 hence:

n∑

k=1

wkxk

w
≥ w

√
√
√
√

n∏

k=1

xwk

k . (2.78)

The result given by equation (2.78) is known as the arithmetic and geometric means inequality

(GAO; SITHARAM; ROITBERG, 2019),(SCHAUMBERGER, 1988). We also recall the power

mean inequality (SCHAUMBERGER, 1988), which states that the quadratic mean of a set of

positive numbers is greater than the respective arithmetic mean. In the particular case where

n = 2, that is, when only two positive numbers are involved, consider the following: let a and

b, positive numbers. Hence,

(√
b−√

a
)2

≥ 0 ⇔ a+ b

2
≥

√
ab. (2.79)
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Given that a and b are not equal to zero, and applying
1

a
and

1

b
in equation (2.79), we obtain

1

a
+

1

b
2

≥
√

1

ab
⇔

√
ab ≥ 2ab

a+ b
=

2
1

a
+

1

b

. (2.80)

Applying the positive numbers a2 and b2 in the result presented by equation (2.79), we find

a2 + b2 ≥ 2ab. Adding a2 + b2 to both sides of this inequality and then dividing both results by

four, we obtain:

a2 + b2

2
≥ (a+ b)2

4
⇔
√

a2 + b2

2
≥ a+ b

2
. (2.81)

Taking into account the results from equations (2.79), (2.80) and (2.81), considering two positive

numbers, the relation between the quadratic mean (QM), arithmetic mean (AM), geometric

mean (GM), and harmonic mean (HM) is given by: QM ≥ AM ≥ GM ≥ HM .

2.5 Mapping Time Series into Complex Networks

There is a recent group of time series forecasting approaches: those based on Graph

Theory analysis. The time series are initially mapped into a complex network and analyzing

the interactions between the nodes of the network it is possible to describe the dynamics which

govern such interactions (STROGATZ, 2001). Therefore, information which is not captured by

traditional methods, specially nonlinear characteristics, can be extracted and forecasts can be

more accurate (FERREIRA, 2017).

It is possible to find in the literature some works regarding time series analysis based

on complex network theory. For example, in Baggio and Sainaghi (2015) where the authors

mapped time series into networks in order to assess the complex dynamics of tourism systems in

Livigno, Italy; in Scarsoglio, Ridolfi and Lacobello (2016) the authors identified spatial patterns

in turbulence using node degree centrality; and Jiang et al. (2017) and Telesca and Lovallo

(2012) show successful studies about the seismic activity in Italy.

In order to produce analysis on complex networks, created from time series data, firstly

it is necessary map the time series into a complex network. According to Zou et al. (2019) there

are multiple types of methods which solve this task: the natural visibility graph (LACASA

et al., 2008), the horizontal visibility graph (LUQUE et al., 2010), the Multi-scale Limited

Penetrable Horizontal Visibility Graph (GAO et al., 2016), the cyclical networks approach

(ZHANG; SMALL, 2006), the correlation networks approach (YANG; YANG, 2008), and the

recurrence networks (MARWAN et al., 2009). In the next section we show the natural visibility

graph approach, which was used in this research to transform the analyzed time series into

complex networks. In order to provide reference, we describe the horizontal visibility graph in

the appendix B.
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2.6 Natural Visibility Graph Networks

According to Lacasa et al. (2008), the natural visibility graph, or only visibility graph,

transforms a time series into a complex network. Each time series observation is associated to

a vertex in a complex network. Let (ti, yi) and (tk, yk), be two distinct points in a time series,

and take any other point (tu, yu) between them. The points (ti, yi) and (tk, yk) are considered

visually related if the following rule is satisfied:

yu < yk +

(
tu − tk
tk − ti

)

(yk − yi) . (2.82)

In Figure2.8, the i-th bar relates to the i-th network node. The rule represented by

equation (2.82) is illustrated in the Figure2.8. One can observe that each connection between

two bars corresponds to a link between equivalent nodes in the complex network.

Figure 2.8: Scheme for visibility graph methodology: A 10-elements
time series is mapped into a graph where each node represents a bar,
and each edge represents the connection between two bars. Source:
Drawn by the author

The visibility graph theory has established itself as an efficient approach for probing

the dynamics underlying real complex systems from time series (GAO et al., 2016). According

to Lacasa et al. (2008), the network obtained from this particular mapping inherits several

properties of the time series, and its study reveals nontrivial information about the series itself.

This mapping makes the structure of the time series be conserved in the graph topology: periodic

series convert into regular graphs, random series into random graphs, and fractal series into

scale-free graphs. Other particularities achieved from this mapping can be found in Lacasa et

al. (2008).
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3 Time Series Data Mining and Forecasting Process

Data mining is a relatively new field, which has grown since the 1990s, but in the

first years of the twenty-first century, it was, in fact, recognized as a field of its own (NISBET;

MINER; ELDER, 2009). Yet, according to Nisbet, Miner and Elder (2009), data mining can

be defined in several ways, which differ primarily in their focus on different aspects. One of

the first definitions of this subject comes from Piatetsky-Shapiro and Frawley (1991): ”The

non-trivial extraction of implicit, previously unknown, and potentially useful information from

data”. Also, Kotu and Deshpande (2015) says that data mining is the field of knowledge that

finds useful patterns in the data, but, a more complete definition can be found through Zaki

(2014) when it is said that data mining is the ”process of automatic extraction of knowledge,

from large databases, using machine learning, pattern recognition, database techniques and

statistics”.

It can be found in literature works related to time series data mining based on complex

networks, for example, network inference from multivariate time series (KRAMER et al.,

2009), time series forecasting using complex network analysis (MAO; XIAO, 2019), methodology

for nonlinear time series (GAO et al., 2016) and data mining based on complex network analysis

(FERREIRA, 2017).

3.1 Residual Evaluation

Consider one observation of a time series, yk and its respective estimator ŷk. The

residual of this estimation is given by:

ek = yk − ŷk. (3.1)

The set of residuals obtained from a forecasting assignment is used to evaluate the quality

of the forecast. For example, in the Diebold-Mariano test, see section 2.1.10, the residuals

obtained from two different methods applied to the same time series, are used to test whether

the accuracies obtained from both sets of estimators are statistically the same.

3.2 Forecast Accuracy: Performance Indicators

Given a set of a time series observations {y1, y2, . . . , ym} and those respective predicted

values {ŷ1, ŷ2, . . . , ŷm}, the performance indicators to be used in this work are:

1. Mean Absolute Error (MAE),

MAE =
1

m

m∑

t=1

|ŷt − yt| , (3.2)

According to presented in the equation 3.2, the MAE quantifies the average magnitude
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of the errors produced in a forecasting process, without taking into account whether they

are positive or negative. Observing the definition of the MAE we can note that all the

individual errors are equally weighted in the average, therefore, it is a linear score which

does not indicate whether large errors are being committed. This means that two sets of

forecasts, with different variances can present similar levels of MAE. The MAE is a scale-

dependent accuracy measure therefore it should not be considered in the task of making

comparisons between series of different scales (HYNDMAN; ATHANASOPOULOS,

2018).

2. Mean Absolute Percentage Error (MAPE),

MAPE =
1

m

m∑

t=1

∣
∣
∣
∣

ŷt − yt
yt

∣
∣
∣
∣

, and (3.3)

Given that MAPE is calculated dividing measurements with same dimensions, so the

series scale does not matter: it is a scale-free measure. Obviously if there is any zeros

within the dataset, this measure can not be applied.

3. Root Mean Squared Error (RMSE),

RMSE =

√
√
√
√

1

m

m∑

t=1

(ŷt − yt)
2
. (3.4)

The RMSE is a commonly applied in order to evaluate accuracy and it is a quadratic

scoring rule which measures the average magnitude of the error. Similarly to MAE,

the RMSE makes no distinction among the direction of the errors. RMSE is also scale

dependent, therefore it can not be used as a performance indicator between different time

series (HYNDMAN; KOEHLER, 2006). Observe that the errors are squared prior to

the average calculation, thus, the RMSE intensifies the weights given to the large errors.

This means whether large errors are unwanted, it is more appropriate using the RMSE

to measure accuracy. It is important to comment that RMSE is not larger whether the

variance of the errors are larger, but, RMSE is greater whether the variance of the error

magnitudes become more intense.

3.3 Sliding Window

Both the autocorrelation function (ACF) and the partial autocorrelation function (PACF)

quantify the influence of past observations on the current value of the time series. Additionally,

ACF or PACF can indicate whether previous values cause, or not, a significant impact on the

current observation. Considering that some past values may not be statistically significant to
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predict the next term of the time series, it is reasonable to disregard such data in the forecasting

process. The set of past observations considered in the forecast is defined as a window.

Given the set Y = {y1, y2, . . . , yn}, a sliding window, Zi, over Y is a subset with fixed

number of elements, k, which, during the simulation, changes at each iteration i, according to

the following rule:

Z1 = {y1, y2, . . . , yk} ,

Z2 = {y2, y3, . . . , yk+1} ,

. . . ,

Zn−k+1 = {yn−k+1, yn−k+2, . . . , yn} . (3.5)

The sliding window process is based on the methodology walk-forward validation

presented by Kaastra and Boyd (1996). The strategy exposed in the equation (3.5) is illustrated

in the Figure 3.1.

Figure 3.1: Description of a sliding window process
with size 40. Source: Drawn by the authors.

3.4 Naive Method

The naive estimation is one of the simplest and high cost-benefit forecasting method

(HYNDMAN; ATHANASOPOULOS, 2018), among other reasons, also because this method

outperforms other sophisticate forecasting approaches for many economic and financial time

series (HYNDMAN; ATHANASOPOULOS, 2018). The naive method is given by

ŷt+1 = yt. (3.6)



55

3.5 Exponential Smoothing Models

Exponential smoothing is a forecasting method for univariate time series proposed

in the late 1950s (BROWN, 1959) and widely used for short-term forecasts (BIAZZI, 2019).

The forecasts obtained through the exponential smoothing approaches are weighted averages

of past observations, with the weights decreasing exponentially as the observations get older

(HYNDMAN; ATHANASOPOULOS, 2018), hence, the smaller is the lag from the current

observation the higher the impact of the related weight.

3.5.1 Single Exponential Smoothing

The single exponential smoothing is one of the simplest methods among the exponential

smoothing models. The one-step-ahead estimation for time t+ 1 is given by:

ŷt+1 =
M∑

i=0

α (1− α)i yt−i. (3.7)

The result presented in the equation (3.7) gives more importance to the older observations if α

is closer to 0. In the extreme case of α = 1, the SES forecasts are equal to the naive estimation.

3.5.2 Weighted Average

The weighted average combines, using weighted arithmetic mean, the current observation,

yt, with ŷt (HYNDMAN; ATHANASOPOULOS, 2018). See equation (3.8).

ŷt+1 = αyt + (1− α) ŷt. (3.8)

3.5.3 Level Component

An alternative to SES is the level component form, represented by lt. weighted average

combines, using weighted arithmetic mean, the current observation, yt, with ŷt (HYNDMAN;

ATHANASOPOULOS, 2018). See equation (3.8).

Forecast Equation : ŷt+1 = lt

Level Equation : lt = αyt + (1− α) lt−1. (3.9)

3.5.4 Trend Component

According to Holt (2004) it is possible adjusting the simple exponential smoothing in

order to produce forecasts for a trend time series. The Holt’s Linear Trend Approach can provide
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one-step-ahead estimators by combining forecasting equation and two smoothing equations.

Forecast Equation : ŷt+1 = lt + bt

Level Equation : lt = αyt + (1− α) (lt−1 + bt−1)

Trend Equation : bt = β∗ (lt − lt−1) + (1− β∗) bt−1, (3.10)

where lt is the level component of the time series at time t, the bt is the estimate of the trend

at time t, and, as well as α, β∗ is a constant which satisfies 0 ≤ β∗ ≤ 1. Note that the term

(lt − lt−1) is an estimate of the trend in the time t, therefore, the trend equation is combining

the first past trend to the estimate of the current trend.

3.5.5 Seasonal Component

In order to capture the seasonal variations of the time series, Holt (2004) and Winters

(1960) adjusted the Holt’s original approach. According to Hyndman and Athanasopoulos

(2018) the Winter-Holt seasonal method is composed by the combination of three smoothing

equations and one forecast equation, but this ensemble is done in two forms: additive and

multiplicative. If the seasonal variations are sufficiently constant along the time series, so the

additive form is more likely to produce better accuracy. In the case of the seasonal variations

fluctuate in time, so the multiplicative form can be a better choice.

Forecast Equation : ŷt+1 = lt + bt + st+1−T

Level Equation : lt = α (yt − st−T ) + (1− α) (lt−1 + bt−1)

Trend Equation : bt = β∗ (lt − lt−1) + (1− β∗) bt−1

Seasonal Equation : st = γ (yt − lt−1 − bt−1) + (1− γ) st−T (3.11)

where T is the period of the seasonal variations and γ is a constant which satisfies 0 ≤ γ ≤ 1.

3.5.6 Error-Trend-Seasonal (ETS) Models

The Error-Trend-Seasonal (ETS) approach is a forecasting method applied to univariate

time series (JOFIPASI; MIFTAHUDDIN; HIZIR, 2018). The method aims to decompose the

original data into trend and seasonal components and combine the obtained new data to produce

forecasts (PANIGRAHI; BEHERA, 2017).

Each exponential smoothing (ES) method is classified through pair of letters (T, S)

denoting trend and seasonal, respectively. The trend component can be classified to N,A,

and Ad, which means No-Trend, Additive trend and Damped-additive trend, respectively. In

the case of the seasonal component, it can be classified as N,A and M which means No-

seasonal, Additive and Multiplicative, respectively. Some of the combinations have specific

names, for example: model (N,N) is the simple exponential smoothing; (A,N) is the Holt’s
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linear approach; (Ad, N) additive damped trend method; and (A,A) additive Holt-Winter’s

method.

The ETS models consider also the influence of the estimation errors in the forecasting

process, so a third letter is included in the ES notation. The errors can be included in the additive

and multiplicative form, so the models passes to be labeled as (E, T, S) with E = {A,M},

T = {N,A,Ad} and S = {N,A,M}. The details of each ETS combination method can be

observed in Hyndman and Athanasopoulos (2018) and Hyndman et al. (2008).

In this work, all forecasting results are one-step-ahead estimates, so, we are not presenting

the h-step-ahead ETS models, however, they are described in Hyndman and Athanasopoulos

(2018).

3.6 Autoregressive Model (AR)

Widely used in Statistics, Econometrics and Signal Processing, the Autoregressive

model (AR) is a mathematical formulation of a random process and a linear predictive modeling

technique (DAI; LIU; ZHANG, 2015). The term autoregressive relates a regression of the

variable versus itself, thus, in an autoregressive model, the current observation is predicted by

using a linear combination of past data (SHUMWAY; STOFFER, 2017). The AR(p) model,

autoregressive of order p, is described by:

yn = c+

p
∑

i=1

φiyt−i + ǫt. (3.12)

where φi is the i-th coefficient related to i-th last time series observation, c is a fixed constant

and ǫt is a white noise component. The Figures 3.2a and 3.2b show the difference in the scale

of two AR(1) models due to a change in the variance of the white noise term, without changing

the coefficients. Not that the time series patterns keeps the same.
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(a) (b)

Figure 3.2: Examples of AR(1) models built based on the same coefficients: yt = 13 −
0.6yt−1 + ǫt. But: (a) ǫt ∼ N (0, 1), and: (b) ǫt ∼ N (0, 0.4). Source: Drawn by the
author.

By changing the coefficients φi, the patterns of the time series changes, therefore, it is

possible fit the proper model to a large variety of time series showing different patterns. It can

be observed in the Figures 3.3a and 3.3b. In both cases, the white noise term has variance 1.

(a) (b)

Figure 3.3: Examples of AR(1) and AR(2) models, respectively, built based on the
same white noise parameters ǫt ∼ N (0, 1). But: (a) yt = 3−0.6yt−1+ǫt, with y1 = 1,
and: (b) yt = 1 + 0.65yt−2 + ǫt, with y1 = 1 and y2 = 0 . Source: Drawn by the
author.

The patterns obtained for the two time series in the Figure 3.3 are considered different,

given the KPSS test results: for the model in the Figure 3.3a, the KPSS test reveals an level-

stationary time series, whilst for the other model, the same test rejects the null hypothesis of

level-stationarity. Considering a generic AR(1) model,

yt = c+ φ1yt−1 + ǫt, (3.13)
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therefore the following can be concluded:

1. If φ1 = 0, so yt is a white noise centered in c.

2. If |φ1| < 1, so yt is stationary (BOX et al., 2015). In this case, E [yt] = E [yt−1] = µ, and

consequently, µ = c + φ1µ +

=0
︷ ︸︸ ︷

E [ǫt] ⇔ µ =
c

1− φ1

. Hence, yt will oscillate around the

expected value, µ.

3. If φ1 = 1, so yt is a random walk process, according to discussed in the section 2.1.9.

We consider important to present a brief discussion of how to find the parameter p

which produces the best AR fit over a stationary time series. Let’s start defining wt = yt − µy,

where µy = E [yt]. Without any loss of generality, take the p-order stationary autoregressive

model:

wt = φ1wt−1 + φ2wt−2 + · · ·+ φpwt−p + ǫt. (3.14)

Multiplying throughout in equation (3.14) by wt−k, for k ≥ 0 and next taking the expected

value of the resultant expression comes:

E [wtwt−k] = φ1E [wt−1wt−k]+φ2E [wt−2wt−k]+ · · ·+φpE [wt−pwt−k]+E [wt−kǫt] . (3.15)

The last term of the equation (3.15), E [wt−kǫt] is zero, because, wt−k is related to the

white noise terms up to ǫt−k, which are uncorrelated to ǫt. From the equation (2.16), E [wtwt−k]

is the autocovariance, γk, thus, the equation (3.15) can be re-written as a difference equation in

the autocovariances of the given time series.

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p. (3.16)

Dividing each term of the equation (3.16) by the variance of the time series, that is, γ0

(see equation 2.17), the equation (3.16) becomes

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p. (3.17)

By using the z-transform theory for difference equations presented in the formal basis

by Ogata (1995), or for practical use by Moreira (2006), the values of the autocorrelations, ρi,

can be written by

ρk = A1r
k
1 + A2r

k
2 + · · ·+ Apr

k
p , (3.18)

where r1, r2, · · · , rp are the roots of the characteristic equation of order p: xp − φ1x
p−1 −

φ2x
p−2− · · ·−φp−1x−φp = 0. We must revisit the necessity of |φi| < 1 for stationarity, and tt

is quite reasonable assume distinct roots for the characteristic equation, that is, ri 6= rj , for all

i 6= j. Hence, two situations can occur:
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(a) Real roots: so, the term Air
k
i contributes to a convergent exponential response, known as

damped exponential.

(b) Complex-conjugate roots: so, the term Air
k
i contributes to a oscillatory response with a

convergent exponential amplitude, given by |ri|k and a frequency of 2πf = sen−1

(
Im (ri)

|ri|

)

.

These terms are known as damped sine waves.

Normally, the values of ρk are composed by the influence of the two damped functions:

exponentials and sine waves. This discussion was done, just in order to show the close relation

which exists between the autocorrelation function to the coefficients of the autoregressive models.

In the practical aspect, all we know are the data, so it is possible estimate the autocorrelation

function, as shown in the equation (2.17). Generally the coefficients of the autoregressive model

are unknown, so, it is necessary finding an approach which is able to give such coefficients as

function of the estimated autocorrelation functions. One popular approach for such task is the

one based on the Yule-Walker equations, which are presented in Box et al. (2015), Hyndman

and Athanasopoulos (2018), Rao (2021) and Hamilton (1994).

According to Rao (2021) the parameter p of the AR(p) model is fully related to the

results shown in the Partial Autocorrelation Function (PACF). In the section 2.1.2 we presented

the general calculations in order to obtain the partial correlation between variables Yn and Yn−k,

which is the covariance between its residuals, normalized by the products of its standards

deviations. The equation (2.36), when applied to a stationary time series, can be simplified.

Whether the time series is at least second order stationary, the subscribe Yn−k makes no difference,

but the only significant term is the lag k, therefore the equations 2.37, 2.38 and 2.39 become:

γYnYn−k\Yex
= γk\Yex

= γk − COV (Yk,Yex)
T V ar (Yex)

−1 COV (Y0,Yex) , (3.19)

V ar (ǫn) = V ar (Yk)− COV (Yk,Yex)
T V ar (Yex)

−1 COV (Yk,Yex) , (3.20)

and,

V ar (ǫn−k) =

= V ar (Y0)− [COV (Y0,Yex)]
T V ar (Yex)

−1 COV (Y0,Yex) .

(3.21)

The sections 6.2.2, 6.2.3 and 6.2.4 from Rao (2021) are dedicated to present the

calculations which lead the use of the equations 3.19, 3.20 and 3.21 to derive the autocorrelations

of a generic AR(p) model. In the page 167, of Rao (2021) the reader can see the proof of the

following identity:

ρp\p = φp+1,p+1, (3.22)

that is, the partial correlation at lag p-1 is the last coefficient of the AR(p) model. The conclusion
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is that for AR(p) models, the partial correlation of order greater than p will be zero (RAO, 2021).

Hence, the plot ot the PACF can be helpful in order to finding the value of p in a AR(p) model.

The Figure 3.4 shows the PACF plot for the time series presented in the Figure 3.3b. See

that after the second value, the other autocorrelations keep into the insignificance region. This

indicates that p = 2, indeed, because the PACF graph was obtained from a AR(2) model.

Figure 3.4: The partial autocorrelation function of a AR(2) model built based on
white noise parameters ǫt ∼ N (0, 1) and equation yt = 1+ 0.65yt−2 + ǫt, with y1 = 1
and y2 = 0 . Source: Drawn by the author.

3.7 Moving Average Model (MA)

The moving average model (MA), or moving-average process is commonly used to

model univariate time series (RAO, 2021). According to Petris (2009) the current observation

of a time series is linearly dependent on a sequence of white noise terms, that is, the moving

average models a time series which is a weighted sum of independent random variables (RAO,

2021). As a consequence, such models by nature, always show weak stationarity. A moving

average model of order q is generally written as MA(q). Its mathematical formulation is given

by:

yn = µ+ ǫt +

q
∑

i=1

θiǫt−i. (3.23)

where θi is the i-th coefficient related to i-th last time series error, µ is a fixed constant and ǫt

is a white noise component relative to the current time series term. As discussed in the section

3.6, the coefficients θ1, θ2, · · · , θq are directly related to the patterns of the time series (BOX
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et al., 2015), that is, by changing one of these coefficients, the time series patterns changes.

The current white noise term just changes the scale of the time series. In order to understand

how is the process to estimate the order of a MA(q) model, we are going to start studying the

particularities of a MA(1) model. Consider that ǫt ∼ N (0, σ2), for all t. Adapting the equation

3.23 to q = 1 we have

yt = µ+ ǫt + θ1ǫt−1. (3.24)

Taking wt = yt − µ, the model becomes

wt = ǫt + θ1ǫt−1. (3.25)

Given the properties of the white noise terms, E [wt] = 0, γ0 = V ar [wt] = (1 + θ21) σ
2,

E [ǫtǫt−k] = 0 for all k 6= 0, and the autocovariance, γ1, is

γ1 = E [wt · wt−1] = E [(ǫt + θ1ǫt−1) · (ǫt−1 + θ1ǫt−2)] =

=

=0
︷ ︸︸ ︷

E [ǫtǫt−1] +θ1

=0
︷ ︸︸ ︷

E [ǫtǫt−2] +θ1E
[
ǫ2t−1

]
+ θ21

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−2] =

= θ1σ
2. (3.26)

Generalizing the result obtained by the equation (3.26), let’s calculate γn = E [wt · wt−n].

γ1 = E [wt · wt−n] = E [(ǫt + θ1ǫt−1) · (ǫt−n + θ1ǫt−n−1)] =

=

=0
︷ ︸︸ ︷

E [ǫtǫt−n] +θ1

=0
︷ ︸︸ ︷

E [ǫtǫt−n−1] +θ1

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−n] +θ21

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−n−1] = 0. (3.27)

Thus, for all n > 1, γn = 0. Dividing γ1 by the variance, we obtain, ρ1 =
θ1

1 + θ21
and the

autocorrelation function is composed by two non-zero values: ρ0 = 1 and ρ1 =
θ1

1 + θ21
. The

other, ρk = 0 for all k ≥ 2. Therefore, a practical procedure to define the order of the moving

average model is taking a look in the autocorrelation plot. For example, whether the third

value is placed in a region of statistical insignificance, then probably we are dealing to a MA(1)

model.

In the case of a MA(2) model, comes

wt = ǫt + θ1ǫt−1 + θ2ǫt−2, (3.28)

then, γ0 = V ar [wt] = (1 + θ21 + θ22) σ
2, γ1 = E [wtwt−1] = (θ1 + θ1θ2) σ

2, γ2 = E [wtwt−2] =

θ2σ
2, and γk = 0 for all k ≥ 3, see appendix ??. Hence, the autocorrelation function will show

three significant values and all other in the insignificance region. Thus, from the practical aspect,

we can conclude that evaluating the autocorrelation function (ACF) might be an alternative to

define the maximum lag of a moving average process, because if the first q + 1 values of the
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ACF are in the region of statistical significance, the time series might be modeled through a

MA(q) model.

According to Box et al. (2015), an AR(p) model can always be written as a MA(∞)

time series, however the inverse is only done under proper conditions (COCHRANE, 1997) and

(RAO, 2021). Just for an example, in the appendix A.14, we use Mathematical Induction to

proof that a stationary AR(1) model yt = c + φ1yt−1 + ǫt can be written as a MA(∞) model

given by

yt =
c

1− φ1

+
∞∑

i=0

φi
1ǫt−i. (3.29)

3.8 Auto-Regressive Moving Average Model (ARMA)

In the statistical analysis of time series, the model known by autoregressive–moving-

average (ARMA) gives a simple description of a stationary, or weakly stationary stochastic

process based on two linear combinations: the first for the autoregression (AR) and the other for

the moving average (MA). The ARMA model was firstly presented in the thesis of Peter Whittle,

Hypothesis testing in time series analysis, in 1951, and it became more accepted through the

book by George E. P. Box and Gwilym Jenkins, in 1970.

A model ARMA(p,q) is defined according to (3.30), where p and q are the number of

autoregressive and moving average terms, respectively (HAMILTON, 1994).

yn = c+

p
∑

i=1

φiyt−i +

q
∑

i=1

θiǫt−i (3.30)

where φi is the i-th coefficient of the autoregressive term and θi is the i-th coefficient of the

moving average term. There are an extensive theory dedicated to analyze the ARMA(p,q)

models, such in theoretical aspects as in the practical one: see Rao (2021), Hamilton (1994),

Cochrane (1997), Box et al. (2015), Shumway and Stoffer (2011), Box, Jenkins and Reinsel

(2013) and Morettin and Toloi (2006). We indicate these examples of references where the

reader will be able to know the particularities of an ARMA(p,q) model. In this work, we want

only to show one way to estimate the values of p and q which will provide the simpler model

ARMA(p,q) able to fit as better as possible, a stationary dataset.

Taking into account the proposed by Box et al. (1994), the univariate time series

modeling process using AR(p), MA(q) and ARMA(p,q) models comprises the following steps:

(a) identification of the model orders p and q; (b) parameters estimation; (c) check whether the

estimated residuals have the white noise characteristics: if yes, proceed to the forecasting task;

if no, go back to the first step.

According to discussed in the section 3.6, the coefficients of the autoregressive model

are directly related to the values of the autocorrelation function. Hence, the approach to find the

values of p and q of an ARMA model passes through looking the plots of the autocorrelation
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function, see section 2.1.2, and the partial correlation function, see section 2.1.6. However,

when both models are mixed to provide an ARMA(p,q) the identification of the model orders

p and q by just looking the autocorrelation and the partial autocorrelation functions can lead to

sub-optimal models. Therefore it is necessary using some information criteria to guarantee that

the choice for the values of p and q are the best ones.

The first method to evaluate the quality of the model is know as Akaike Information

Criteria (AIC), which is a metric that measures the quality of a statistical model considering also

its simplicity (STOICA; SELÉN, 2004). Therefore, the AIC provides a metric for comparing

and selecting models, in which the lower AIC values the greater the quality and simplicity

(TADDY, 2019). AIC aims to estimate how much information is lost by a given model: the less

information lost, the greater the model quality and the lower the AIC score (AKAIKE, 1974).

The AIC deals with the balance between the quality and parsimony of a model, that is, it works,

at the same time, with overfitting and underfitting. Its formula is given by

AIC = 2k − 2 ln(L̂) (3.31)

where L̂ is the maximum value of the model likelihood function, and k is the number of

estimated parameters (AKAIKE, 1974). In the case of a small sample, AIC tends to select

models that have too many parameters, that is, AIC can overfit (MCQUARRIE; TSAI, 1998).

Therefore, it was proposed the AICc, which is a correction in the original AIC expression

(MCQUARRIE; TSAI, 1998).

There are other measures to evaluate loss of information. The second common metric

is the Bayesian information criterion (BIC), which is similar to the formula for AIC, but the

number of parameters is penalized with k ln(n), instead of 2k as is done in the AIC (WIT;

HEUVEL; ROMEIJN, 2012).

Both metrics AIC and BIC can be calculated in order to select the best model ARMA(p,q).

The values of p and q are obtained from the model with minimum scores on these two metrics.

3.9 Autoregressive Integrated Moving Average Model

Considering Hamilton (1994) the dataset must be stationary to an ARMA model be

properly applied. Therefore in the case of non-stationary time series, it may be necessary to

take differences in the original data in order to make it stationary. Let d be the number of

differences in the given dataset until it become stationary. If ARMA(p,q) is applied to the d

times differentiated data, the model becomes ARIMA(p,d,q) (BOX et al., 2015).

3.10 State-of-the-art Method: Mao-Xiao Approach

The work presented by Mao and Xiao (2019), here in this work, called Mao-Xiao

Approach, brings a alternative method to provide time series forecasting based on complex
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networks. Essentially, a time series with n observations, i.e., points (tk, yk), is transformed to a

network through visibility graph method (LACASA et al., 2008); secondly the Node Similarity

Matrix (NSM), i.e, the matrix which contains a similarity measurement between every two pairs

of nodes that generate the complex network created in the first step, is calculated by method

exposed in Liu and Lü (2010); the NSM’s last row gives the similarity between the last node

and each one of the fist n − 1 nodes, so according to the presented methodology, the node k,

with the greater similarity value, is taken and a linear equation is calculated considering both

nodes: Nn(tn, yn) and Nk(tk, yk); the first estimation of the (n+1)th point is calculated by the

equation 3.32:

ỹn+1 = yn +
(yn − yk)

(tn − tk)
(tn+1 − tn); (3.32)

After the first estimation is done, a refining is proposed according to equation 3.33:

ŷn+1 = wn · yn + wn+1 · ỹn+1. (3.33)

The weights wn and wn+1 are, respectively, calculated using:

wn+1 =
dk→n

dk→n+1

(3.34)

and

wn =
dn→n+1

dk→n+1

. (3.35)

In the equations 3.35 and 3.34, the notation dk→n refers to a distance measurement,

fully explained by Zhang, Ashuri and Deng (2017), but essentially, this distance, dk→n, is given

in the meaning of horizontal distance between observations n and k, therefore, considering

points (tk, yk) and (tn, yn), hence dk→n = tn − tk.

Despite the MXA being an innovative method, it is necessary to comment on the fact

that the estimator generated by this method is not necessarily connected with the past value

that generated it. The natural visibility graph maps a time series into a complex network based

on the direct visibility criteria, that is, two points in the time series becomes a linked pair of

vertices in the network, if and only if, there is an unobstructed straight line connecting both

points in the time series plot.
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Figure 3.5: Analysis of the MXA forecasts in the visibility graph
approach. Source: Drawn by the authors

Consider the Case 1, illustrated in the Figure 3.5. In this case, yk is greater than yn and

the MXA-estimator is ŷn+1, in gray. Note that ŷn+1 is visually connected to yk and yn, thus, in

the correspondent network produced by the visibility graph, ŷn+1 is linked to yk and yn . Now

observe the Case 2, where yk < yn. The MXA-estimator is ŷn+1, in yellow, but in this case,

note that the yellow line connecting ŷn+1 and yk is obstructed by the yn bar , so, this estimator

is not linked to yk in the network domain.

3.11 Dynamic ARIMA

Automatic ARIMA is a method used to calculate the best one-step-ahead ARIMA(p,d,q)

estimate considering a given dataset. In this work, we use the version of Auto-ARIMA given

by a variation of the Hyndman-Khandakar algorithm (HYNDMAN; KHANDAKAR, 2008),

available in R. The best ARIMA(p,d,q) model is found after combining the unit root tests,

minimization of the second-order Akaike information criterion (AICc), and maximum likelihood

estimation (MLE). All steps of this algorithm are detailed in Hyndman and Athanasopoulos

(2018)

The Dynamic ARIMA (DA) method provides one-step-ahead forecasting considering

a sliding window and using the ARIMA method. The term Dynamic is due to the application

of the sliding window process, which constantly changes the dataset used to provide an one-

step-ahead forecasting. Consider a n-element time series, and a test set composed by the last
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m observations, yn−m+1, · · · , yn. We calculate ŷn−m+1 based on all observations from y1 to

yn−m. Next, we apply the sliding window, so we used all data, from estimate y1 to yn−m+1 to

calculate ŷn−m+2. We repeat this procedure until calculate ŷn based in all observations from y1

to yn−1. As it can be seen, we do not use one single model ARIMA to calculate all m estimates

of the test set, instead, we find m ARIMA models, each one taking all the last observations to

calculate the next one.

3.12 Support Vector Regression

The Support Vector Machines (SVM) are a common machine learning method dedicated

to classification and regression (CHANG; LIN, 2011). The SVMs variant for regression is

called Support Vector Regression (SVR). The SVR maps the original data into a high-dimensional

feature space using a nonlinear mapping and next calculate a linear regression in the feature

space (ZHOU et al., 2009). According to described in Chang and Lin (2011), consider a

training set where each k-element window Zi is associated to a target point yk+1. The function

approximation is performed as follows

y(x) = wTφ(Z) + b (3.36)

where φ(Zi) is a nonlinear function and w is the k-element weight vector. According to

Samsudin, Shabri and Saad (2010), taking the parameters C > 0 and ǫ > 0, the values of b

and w are calculated by the minimization of the function

R(C) = 0.5wTw +
C

k

k∑

i=1

Lt (di, yi) (3.37)

where di is the desired value and Lt (di, yi) = |di − yi| − ǫ if |di − yi| > ǫ and zero, otherwise.

The equation (3.37) is transformed into its primal function by the introduction of two positive

slack variables ξi and ξ∗i . The standard representation of support vector regression in the form

of a quadratic programming task

min
w,b,ξ,ξ∗

0.5wTw + C

k∑

i=1

ξi + C

k∑

i=1

ξ∗i

subject to wTφ(Zi) + b− yi ≤ ǫ+ ξi,

yi −wTφ(Zi)− b ≤ ǫ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, · · · , k. (3.38)

The parameter ǫ is called as the tube size of the SVR and is equal to the approximation accuracy

obtained on the training data points. Given Chang and Lin (2011), the dual problem related to
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the equation (3.38) is

min
α,α∗

0.5 (α− α∗)T Q (α− α∗) + ǫ

k∑

i=1

(αi + α∗
i ) +

k∑

i=1

yi (αi + α∗
i )

subject to UT (α− α∗) = 0,

0 ≤ αi, α
∗
i ≤ C, i = 1, · · · , k. (3.39)

where U is a k-element vector of one’s, Qi,j = K (Zi,Zj) = φ(Zi)
Tφ(Zj) with K (Zi,Zj)

known as the kernel function, and α and α∗ are Lagrange multipliers. According to Zhou et al.

(2009), Chang and Lin (2011) and Ma and Guo (2014) there are some commonly used kernel

functions, to be known:

1. Linear: K (Zi,Zj) = ZT
i Zj .

2. Polynomial: K (Zi,Zj) =
(
ZT

i Zj + r
)d

, with d ∈ {2, 3, · · · }.

3. Sigmoid: K (Zi,Zj) = tanh
(
γZT

i Zj + r
)
, γ > 0.

4. Radial Basis Function (RBF): K (Zi,Zj) = exp
(

−γ (Zi − Zj)
T (Zi − Zj) + r

)

, γ > 0.

Also, Rohmah et al. (2021) presents a comparison among four SVR kernels, including linear,

polynomial and RBF, with the objective to provide predictions to an econometric time series.

The approximation function is calculated by

y (Zi) =
k∑

i=1

(αi + α∗
i )K (Zi,Zj) + b. (3.40)

3.13 Multilayer Perceptron Model

According to Kaushik et al. (2020), a Multilayer Perceptron (MLP) is a variant of the

original model proposed in Rosenblatt (1961).The Figure 3.6 illustrates the original perceptron

proposed in Rosenblatt (1961).

Figure 3.6: The original perceptron proposed in Rosenblatt (1961).
Figure Source: Drawn by the author.
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The neuron functioning occurs according to described in equation (3.41):

ŷn+1 = φ

(
n∑

i=1

yiwi − b

)

, (3.41)

where φ(τ) is the activation function, yi is the i-th input, n is the number of inputs, wi is the

weigh related to the input i, and b is the bias associated to the neuron (KAUSHIK et al., 2020).

Describing equation (3.41), a neuron calculates a weighted sum of the inputs and this result is

processed by a nonlinear activation function. The neural network architecture is considered as

the universal function approximation due the presence of the activation functions (KAUSHIK

et al., 2020). The mappings from inputs to outputs are produced with influence of an activation

function and this makes the neural network able to learn complex data representations (CHUNG;

LEE; PARK, 2016). According to Chung, Lee and Park (2016) and krizhevsky, Sutskever and

Hinton (2012), the most common activation functions presented in the literature are sigmoid,

hyperbolic tangent (tanh) and ReLu functions. We can observe in krizhevsky, Sutskever and

Hinton (2012) discussions about the sigmoid and tanh activation functions suffer from the

vanishing gradient problem and about ReLu activation function overcome this problem. Based

on krizhevsky, Sutskever and Hinton (2012), ReLu also presents faster convergence and is

computationally efficient to do calculations.

The MLP mathematical and structural model is presented by Kaushik et al. (2020).

The training assignment is done based on the backpropagation approach, which is a supervised

learning method (SHIBLEE; KALRA; CHANDRA, 2008). The MLP model is composed by

three blocks: the input layer, the hidden layer and the output layer. The Figure 3.7 shows the

structure of a multiple input and single output (MISO) MLP model, composed by one hidden

layer.
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Figure 3.7: The structure of the MLP model. Figure Source: Drawn by
the author.

The MLP model calculates the output according to described in the equation (3.42):

On = φ

(
m∑

j=1

θj

k∑

i=1

yn−iwij − βi

)

, (3.42)

where m is the number of neurons in the hidden layer. A typical MLP model presents multiple

hidden layers, each one with multiple neurons and every neuron in the h-th hidden layer is fully

connected to the every neuron in the (h+ 1)-th hidden layer.

3.14 Long Short Term Memory Model

Deep learning methods such as recurrent neural network and long short-term memory

have recently being widely used to solve problems in computer vision, time series forecasting,

natural language processing, finance and other fields (NGUYEN; PHAN; ZELINKA, 2021).

Since the LSTM (Long Short-Term Memory) is an architecture inspired in the Recurrent Neural

Network (RNN) (RUMELHART; HINTON; WILLIAMS, 1986), before starting the discussion

about LSTM, we will present some basic information about the RNN structure. The Recurrent

Neural Networks (RNN) are specifically designed to work on data in sequence including time

series forecasting. According to Rumelhart, Hinton and Williams (1986), the traditional feed

forward neural networks are not able to deal with the time dependence naturally present in the

real time series and the RNNs are designed to solve this problem.

Standard basic RNNs face the vanishing gradient problem, where the gradient decreases

as rises the number of layers. For example, the deep RNNs with a high number of layers,

presents almost null gradient what compromise the network learning ability (NGUYEN; PHAN;
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ZELINKA, 2021). According to Hochreiter and Schmidhuber (1997), this problem observed

in the RNNs is the explanation of why these networks have a short-term memory and tend to

struggle when dealing to the necessity of memorizing all the information contained in long

sequence of data. The LSTM recurrent network comes to solve the vanishing gradient problem

(HOCHREITER; SCHMIDHUBER, 1997).

LTSM is composed by three gates which work together in order to keep longstanding

important information and forget the irrelevant ones (TORRES et al., 2020). Also, according

to Torres et al. (2020) These gates are Γf the forget gate, Γu the update gate and Γo the output

gate. Γf is responsible to choose what information has to be discard or kept. Γf near to zero,

means forgetting the information, whilst values close to 1 means the information must be kept.

The gate Γu works deciding if the new information c̃t will be used to update the ct memory

state. Whether ct has to be updated it happens through Γu and Γf . Lastly, Γo makes decision

about which output value be placed as input of the next hidden unit. The equations related to

every step of the LSTM work are:

c̃t = tanh (Wc · [at−1, yt] + bc) (3.43)

Γu = φ (Wu · [at−1, yt] + bu) (3.44)

Γf = φ (Wf · [at−1, yt] + bf ) (3.45)

Γo = φ (Wo · [at−1, yt] + bo) (3.46)

ct = Γu · c̃t + Γf · ct−1 (3.47)

at = Γu · tanh (ct) (3.48)

where Wu, Wf and Wo, and bu, bf and bo are the weights and biases related to the update, forget

and output gates, respectively, and Wc and bc are the weights and bias with respect to the c̃t, that

is, the memory cell candidate (TORRES et al., 2020).

3.15 Hybrid ARIMA-ANN

In agreement to was discussed in the section 3.9, the ARIMA model adjusts a linear

combination of the past observations considering a stationary data. In the case of the data is non-

stationary, differences has to be performed till the data becomes stationary. Unlike ARIMA, the

Artificial Neural Network (ANN) is a non-linear approach, and as well as the MLP structure,

the ANN model is composed by three blocks: the input layer, the hidden layer and the output

layer (KANG, 1992). Each layer is formed by the inclusion of one or more neurons. In order

to solve the time series forecasting problem the output has one single neuron. The Figure 3.8

shows the structure of a multiple input and single output (MISO) ANN model, composed by

one hidden layer.
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Figure 3.8: The structure of the ANN model. Figure Source: Drawn by
the author.

We are presenting an architecture composed by one hidden layer, but the ANN structure

can have others. The hidden layer are composed from any number of nodes, whose outputs are

considered inputs for the next layer. The input layer are fed with one or more neurons depending

on the size of the window used in the forecasting task. According to Chindanur and B (2015),

three-layer ANNs are widely used for time series forecasting.

The real time series generally present linear and non-linear characteristics, so standalone

techniques purely linear or non-linear can present weak accuracy when they deal with these

datasets to produce forecasts (CHINDANUR; B, 2015). The idea of using a hybrid approach

combining ARIMA and ANN is to benefit from the main characteristic of both methods: linearity,

in the case of ARIMA and non-linearity from ANN.

According to Khashei and Bijari (2011) a hybrid ARIMA-ANN model was proposed

to provide time series forecasting. The technique consider that any real time series is composed

by linear and non-linear components: yt = Lt + Nt. An ARIMA model is used to capture the

linear component, Lt. Next, the past original values, the prediction to the current term, and

past error data are used as inputs to an ANN model. After training and validation, the obtained

model is used to provide the one-step-ahead forecasting (KHASHEI; BIJARI, 2011).

ŷt+1 = f
(

L̂t, e1, e2, · · · , ek, yt−1, yt−2, · · · yt−k

)

(3.49)

where ei = yt−i − ŷt−i. The Figure 3.9 illustrates the Khashei-Bijari algorithm to produce the

combination between ARIMA and ANN.
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Figure 3.9: The Khashei-Bijari algorithm for the hybrid ARIMA-ANN
model. Figure Source: Drawn by the author.

It is important to clarify that the Dynamic ARIMA (DA) method provides one-step-

ahead forecasting considering a sliding window and using the ARIMA method. The ARIMA

is applied multiple times, every interaction a new model ARIMA(p, d, q) is used, considering

a different dataset, that are, the windows. Consider a n-element time series, and a test set

composed by the last m observations, yn−m+1, · · · , yn. The element ŷn−m+1 is calculated based

on all observations from y1 to yn−m. After that, the sliding window is applied, changing the next

dataset by including the element yn−m+1, so we used all data, from y1 to yn−m+1 to calculate

ŷn−m+2, which represents a estimate for the real term yn−m+2. We repeat this procedure until

calculate ŷn based in all observations from y1 to yn−1. This was the procedure adopted to

allow ARIMA gives its best results, because we observed that the h-step-ahead using ARIMA

normally led to very imprecise results when applied to real time series. Ratifying, as it can

be seen, we do not use one single model ARIMA to calculate all m estimates of the test set,

instead, we find m ARIMA models, each one taking all the last observations to calculate the

next one.

3.16 Hybrid ETS-ANN

According discussed in the section 3.5.6, the ETS models are composed by a family

of time series models with a basal state space model containing an error term (E) and a level,

trend (T) or seasonal (S) components. Despite the ETS models are not always considered an

linear approach, in the hybrid version with ANN, the ETS produces the linear component of

the real time series. According to Purohit et al. (2021) the difference between the time series

observations and the ETS forecasts feed the ANN model. The ANN output are then summed

to the current ETS forecast producing the hybrid one-step-ahead forecast. The Figure 3.10

illustrates the algorithm to produce the additive combination between ETS and ANN according

to proposed by Purohit et al. (2021).
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Figure 3.10: Algorithm for the hybrid Additive-ETS-ANN model
presented by Purohit et al. (2021). Figure Source: Drawn by the author.

The hybrid additive approach combining ETS and ANN was implemented according

to described in (PUROHIT et al., 2021). The ETS-models were defined based on the R function

“ets” from the package forecast. This function is able to calculate the best ETS model which

fits with the given time series. As well as done with ARIMA, we also used the sliding window

to create multiple ETS models to estimate the next term: each model was obtained based on the

input data, that is, the window, in each interaction of the simulation.

Consider a n-element time series, and a test set composed by the last m observations,

yn−m+1, · · · , yn. The element ŷn−m+1 is calculated based on all observations from y1 to yn−m.

After that, the sliding window is applied, changing the next dataset by including the element

yn−m+1, so we used all data, from y1 to yn−m+1 to calculate ŷn−m+2. We repeat this procedure

until calculate ŷn based in all observations from y1 to yn−1. This was the procedure adopted

to allow ETS gives its best results. We do not use one single model ETS to calculate all m

estimates of the test set, instead, we find m ETS models, each one taking all the last observations

to calculate the next one. Initially, the set with the pure ETS estimates were created and next

the combination with ANN was provided according to illustrated in the Figure 3.10.

The Table 5.11 shows the best number or nodes in the hidden layer for each time series.

These parameters were defined from the accuracy obtained on the training and validation sets.
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4 New Forecasting Methods

4.1 Method 1: Maximum Visibility Approach

The Maximum Visibility approach (MVA) is a new method based on the complex

network theory, inspired by the technique proposed in Mao and Xiao (2019), which, in this

work, is called the Mao-Xiao approach (MXA). The forecasting process is conducted based on

a time series that presents temporally correlated data; Thus, it is reasonable to research which

past terms may contain relevant information to assist in the process of forecasting the next term

in the time series (OZAKI, 2012).

The first step of the MVA considers using the autocorrelation function (ACF), related

to the given time series, to find the window size. The autocorrelation function (ACF) defines

how data points in a time series are related, on average, to the preceding data points (BOX

et al., 1994). We calculate the sequence of autocorrelations between the last observation and

each previous one: {ρn,n, ρn,n−1, · · · , ρn,1}. Next each pair (k, ρn,n−k) is plotted and in the

same graph we plot the 95% confidence bounds for strict white noise. In order to do the

forecasting task, we only use the observations that precede the first entry of the region of

statistical insignificance. This can configure a loss of information in the forecasting process, but

empirically, it was observed that when all last observations were used in the MVA’s forecasting

task the increase of time was not compensated by the gain in accuracy considering the training

and validation sets.

Figure 4.1 illustrates the autocorrelation function of the time series composed by the

monthly number of passengers for international airlines, in thousands of people, from 1949

to 1960, presented in Box and Jenkins (1976). We can observe in Figure 4.1, that the first

observation immediately before the first entry into the region of statistical insignificance is

yn−40. In this case, it becomes acceptable to consider the impact of up to the first 40 previous

data prior to yn in the modeling task and the window size is 40.
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Figure 4.1: Autocorrelation Function from the time series of the number of monthly total
of international airline passengers, in thousands of people, from 1949 to 1960. Figure
Source: Drawn by the authors.

It is important to comment that, in order to find the window size, the Partial Autocorrelation

Function (PACF) could be used instead. However, as each term of this sequence, ρyn,yn−k\Yex
,

do not consider the influence of the terms between yn and yn−k, the sequence converges faster

to the statistical insignificance region, which would give a smaller window size, hence the loss

of information could be yet higher.

The next step is to transform the given time series into a complex network. The

literature presents some methods which maps a given time series into a complex network:

visibility graph (LACASA et al., 2008), horizontal visibility graph (LUQUE et al., 2010),

multiscale limited penetrable horizontal visibility graph (GAO et al., 2016) and phase space

reconstruction (GAO; JIN, 2009). In this work, we chose the visibility graph approach due to

its ease of implementation, low computational cost and because the constructed graph inherits

several properties of the series in its structure (LACASA et al., 2008). Additionally, Lacasa

et al. (2008) shows that periodic series convert into regular graphs, random series do so into

random graphs and fractal series convert into scale-free networks.

After constructing the network, we calculated the node similarity matrix (NSM) . In

this matrix, each si,j represents the similarity calculated between nodes Ni and Nj .

Let ŷn+1|k be the pre-estimator for the time series next term, that is, yn+1, considering

only the influence of yk. This pre-estimator is calculated using a linear equation, based on the

connection between both observations: yk and yn. We introduced a multiplicative parameter, α,

to the original angular coefficient, as shown in (4.1). Consider the points: (tk, yk) and (tn, yn).
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The expression that gives ŷn+1|k is:

ŷn+1|k = yn + α

(
yn − yk
tn − tk

)

· (tn+1 − tn) , (4.1)

where α is divided into two parts: a constant K ≥ 0 and ρn,k, which are the autocorrelation

between yk and yn.

α = ρn,k −K. (4.2)

Observing the equation (4.1), the closer α is to zero, the greater is the effect of yn on

ŷn+1, approximating the forecasting result to that obtained from the naive estimation. We define

Ym
n+1 as the vector that contains all pre-estimators for yn+1, calculated through the influence of

the first m lags. Ym
n+1 is written as:

Ym
n+1 =

(
ŷn+1|n−m+1, · · · , ŷn+1|n−1

)
. (4.3)

Let si,n be the similarity value between nodes Ni and Nn, associated to the time series

terms yi and yn, respectively and calculated based on the Dice similarity, according to described

in the equation (2.75). If the last m nodes, prior to yn are considered in order to estimate y(n+1),

then the NSM has dimension m+1 and the last row of the NSM contains the similarities between

all last m observations and yn. We define Sm
n as the vector formed by the first m elements of

the last row of the NSM. Therefore, Sm
n is seen as:

Sm
n = (sn−m+1,n, sn−m+2,n, · · · , sn−1,n) . (4.4)

It is possible to find sk,n = si,n with k 6= i, therefore more than one node can share

the highest level of similarity with yn. Define ISm
n

as the vector composed by the indexes of the

elements contained in Sm
n which present the highest level of similarity to yn. The one-step-ahead

MVA estimator, ŷn+1 is calculated as:

ŷn+1 = MAX
{
ŷn+1|k ∈ Ym

n+1

}
+ h (En) , ∀k ∈ ISm

n
, (4.5)

where h (En) is a non-linear function of the error obtained in the estimation of yn, that is

En = ŷ(n) − yn. The non-linear function h (En) is given by:

h (En) = −Ene
−K·J |En|, (4.6)

where J is a positive constant.This parameter J must be positive because otherwise, the exponent

of the non-linear term can be highly positive and this will produce a divergent sequence of

estimates. For some time series, h (En) is considered zero. The decision of not include h (En)

in (4.5) is taken by observing the results achieved by MVA in the validation phase.
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Based on the result expressed by the equation (4.5) one can observe that, in practice,

the one-step-ahead estimate is calculated using just one observation. This may represent a loss

of information because there are other previous observations highly similar to the last one,

however, taking another function of some or all the pre-estimators in order to provide the one-

step-ahead estimate represents another forecasting model which must be studied as a future

work.

4.1.1 Statistical Measures of the MVA Estimator

Since ŷn+1 is a random variable, we must calculate its expected value and its variance.

Consider the definition of ŷn+1 without the nonlinear term defined in (4.6). The inclusion of

this term creates an analytic problem since the statistical measures would be undefined.

We define Tv = tn − tv and since tn−1 − tn = 1, the equation (4.1) can be rewritten as

ŷn+1|k = yn + α

(
yn − yk

Tk

)

=

(

1 +
α

Tk

)

yn −
(

α

Tk

)

yk. (4.7)

It is known that, for any random variable X and Y , and any real numbers a and b,

the V ar (aX − bY ) = a2V ar (X) + b2V ar (X) − 2abCOV (X, Y ). Given the non-negative

characteristic of the variance, it is impossible to achieve negative values of variance, no matter

the values of a and b. Based on this result, considering (4.7), and using the properties of

expectancy, which is a linear operator, we obtain the variance of ŷn+1|k, that is a non-negative

number, no matter the value of α.

V ar
(
ŷn+1|k

)
= V ar (yn)

(

1 +
α

Tk

)2

+ V ar (yk)

(
α

Tk

)2

− 2α

Tk

(

1 +
α

Tk

)

COV (yn, yk)

(4.8)

The covariance between ŷn+1|k and ŷn+1|j , for k 6= j, is given by:

COV
(
ŷn+1|k, ŷn+1|j

)
=

= V ar (yn)

(

1 +
α

Tk

)(

1 +
α

Tj

)

− α

Tj

(

1 +
α

Tk

)

COV (yn, yj)−

− α

Tk

(

1 +
α

Tj

)

COV (yn, yk) +
α2

TkTj

COV (yk, yj) . (4.9)

Consider MAX
{
ŷn+1|k ∈ Ym

n+1

}
= ŷn+1|v, thus ŷn+1 = ŷn+1|v and the expected value

of ŷn+1 is given by

E [ŷn+1] = E [yn] +
α

Tv

(E [yn]− E [yv]) . (4.10)
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The variance of ŷn+1 is given by

V ar (ŷn+1) = V ar (yn)

(

1 +
α

Tv

)2

+ V ar (yv)

(
α

Tv

)2

− 2α

Tv

(

1 +
α

Tv

)

COV (yn, yv) .

(4.11)

Take the case of a white noise process, that is, {yt}t=n
t=1 independent and identically

distributed, therefore V ar (yk) = σ2, ∀k ∈ {1, 2, . . . , n} and COV (yk, yj) = 0, ∀k 6= j. With

these conditions, equations (4.8), (4.9) and (4.11) are reduced to:

V ar
(
ŷn+1|k

)
=

((

1 +
α

Tk

)2

+

(
α

Tk

)2
)

σ2, (4.12)

COV
(
ŷn+1|k, ŷn+1|j

)
=

(

1 +
α

Tk

)(

1 +
α

Tj

)

σ2, (4.13)

and

V ar (ŷn+1) =

((

1 +
α

Tv

)2

+

(
α

Tv

)2
)

σ2. (4.14)

Given the definition, V ar (X) = E
[
(X − E [X])2

]
, V ar (ŷn+1) = f (α) is a non-

negative quadratic function that can be minimized. According to (4.2), K is the parameter of

the MVA estimator which has to be adjusted in order to produce the minimum variance. Let K̂

be the value of K that minimizes V ar (ŷn+1), thus, K̂ also minimizes the sum of squared errors

produced by ŷn+1 . By calculating
∂SSE (ŷn+1)

∂K
= 0 the value of K̂ can be derived.

Take a n-element time series {y1, · · · , yn}, and a window of size w. All of these n

elements will be used in the forecasting task. The observations from y1 to yw will be used to

produce ŷw+1. In order to calculate K̂, we consider the n − w forecasts obtained from ŷw+1 to

ŷn, then the calculated K̂ is applied to the last window {yn−w+1, yn−w+2, · · · , yn} to produce

ŷn+1. Without any loss of generality, suppose that vi is the order of the element in the i-th

window correspondent to the maximum pre-estimator. Just for a better organization of the text,

define V as the order of the last observation in the training set, a = w + 1 and Tvi = ti−1 − tvi .

The value of K̂ is given by:

K̂ =

V∑

i=a

((
yi−1 − yvi

Tvi

)2

ρi−1,vi +

(
yi−1 − yvi

Tvi

)

(yi − yi−1)

)

V∑

i=a

(
yi−1 − yvi

Tvi

)2
(4.15)

The proof for the result presented by the equation 4.15 is found in the appendix C.3.
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4.1.2 The model parameters

According to presented in the equations (4.2) and (4.6) there are two parameters, K

and J , respectively that must be defined before the forecasting process. In order to find the best

values for K and J capable of providing the best fit in the data we proposed a partitioning of

the original time series into three sets: training, validation and testing sets. The simulation has

to be performed on the training and validation sets many times as necessary and after that, the

best values of K and J are applied to the testing set to ascertain the method’s ability to make

predictions.

The separation of the dataset into training, validation and test set has be done, considering

that the validation set must be representative of the test set, therefore, we can expect, but not

guarantee, that the model fitted in the validation set will present a similar perform in the test set.

In order to generate the results presented in the section 5 we kept J constant and variate

K, until find the best sum of squared error (SSE) considering the validation set. For example,

initially take K from 1 to 6, using step of 1. Suppose K = 3 gives the best SSE in the validation

set. Secondly refine the search considering K from 2 to 4, in steps of 0.1. Suppose K = 2.6

gives the smallest SSE in the validation set. Now refine the search from 2.5 and 2.7, using

steps of 0.01. Suppose K = 2.66 gives the smallest SSE. Refine the pursuance one more time,

searching from 2.65 to 2.67, with steps of 0.001. Register the value of K associated to the

smallest SSE. This procedure is repeated considering other values of J .

We started with J ∈ {1, 10, 100, 500}. For most cases, higher values of J produces

the effect of not considering the non-linear term. After testing some values of J we create a list

of the obtained SSE’s. There is no guarantee that the pair (J,K) related to the smallest SSE

achieved in the training and validation phase will produce the smallest SSE in the testing set,

however, we kept this procedure to find the pair (J,K) to be used in the testing phase.

4.1.3 Algorithm description

We present two algorithms: (1) Steps of the MVA forecasting task, where the only

interest is to calculate the MVA one-step-ahead estimator and the parameters K, J are known;

and, (2) Steps to provide accuracy comparison against other methods.

Consider a n-element time series {y1, y2, · · · , yn}. Firstly we define the window size

w. This is done by taking the first (w − 1) lags, which are in the statistical relevance region

provided by the ACF graph, see section 3.3.
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Algorithm 1: Steps of the MVA forecasting task

Input: (K, J, w)

Output: ŷMV,n+1

Data: Y={yn−w+1, · · · , yn−1, yn}
1) Read the data.

2) Transform the window into a network using the visibility graph approach. See

section 2.6.

3) Calculate the Node Similarity Matrix (NSM) using the Dice Similarity

approach. See equation (2.75).

4) Create S
(w−1)
n , the last row of the NSM. See equation (4.4).

5) Find and register the nodes associated to the the greater value in S
(w−1)
n .

6) Calculate the pre-estimators related to the nodes registered in the previous step.

See equation (4.1).

7) Calculate ŷMV,(n+1), taking the maximum of the pre-estimators calculated in

the previous step. See equation (4.5).

With the purpose of compare MVA accuracy against other forecasting methods, we

recommend using the steps presented in the algorithm 2. The sets K and J contains the values

of k and J , respectively, which will be tested in order to find the best MVA parameters to be

used in the test set. According to was explained in the section 3.3 the MVA is applied in the

first window of size w, that is, {y1, y2, · · · , yw} with the objective to estimate yw+1. The whole

dataset is divided into: training set, {yw+1, · · · , yw+t}; validation set {yw+t+1, · · · , yw+t+v};

and test set, {yw+t+v+1, · · · , yn}. With the purpose of providing accuracy comparison we merge

the training and validation sets into a single set, which is used to find the parameters K∗ and J∗

which gives the best accuracy. Once these parameters are obtained, we proceed to the one-step-

ahead forecasting task using the test set. Firstly the we calculate ŷw+t+v+1, then we update the

window and calculate ŷw+t+v+2. We keep following this procedure until calculate the estimate

for the last term, ŷn. It is important to ratify that all of these estimates were calculated using the

same parameters K∗ and J∗ obtained in the merge of the training and validation sets. With the

set of estimates {ŷw+t+v+1, · · · , ŷn} and the real values of the test set {yw+t+v+1, · · · , yn}, we

calculate the MAE, MAPE and RMSE in order to compare the MVA accuracy with the other

comparative methods.
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Algorithm 2: Steps for accuracy comparison against other methods

Input: (K,J, w)

Output: ŷMV,n+1

Data: TrSet = {yw+1, yw+2, · · · , yw+t}
// Training Set

Data: V alSet = {yw+t+1, yw+t+2, · · · , yw+t+v}
// Validation Set

Data: TeSet = {yw+t+v+1, yw+t+v+2, · · · , yn}
// Test Set

for j ∈ {1, 2, · · · , n (K) · n (J)} do

for i ∈ {1, 2, · · · , t+ v} do

Read the i-th window: {z1 = yi, z2 = yi+1, · · · , zw = yw+i−1}.

Calculate ŷw+i using the algorithm 1.

Calculate and register SSE(j) =
t+v−1∑

k=t+1

(ŷw+k − yw+k)
2
.

Take the pair (J∗, K∗) associated to the min {SSE}.

for i ∈ {1, 2, · · · , n− w − t− v} do

Read the i-th window: {z1 = yt+v+i, · · · , zw = yt+v+w+i−1}.

Calculate ŷw+t+v+i using the algorithm 1.

Register ŷw+t+v+i.

Calculate MAE, MAPE and RMSE according to (3.2),(3.3) and (3.4),

respectively.

Also, if one is only interested in estimate the next term of the time series using MVA

but wants to search for the best parameters, then the algorithm 2 applies, but the validation and

training sets must merge to contain (n−w−1) elements and the test set has to be composed by

the last element yn. The search for the best parameters can be done based on the methodology

described in the section 4.1.2.

4.1.4 MVA Prediction Interval

In the appendix A.12 we present, respectively, the formula and the proper derivation

of the prediction interval based on a time series with normal distribution. However, the normal

distribution assumption is rarely confirmed and in these cases, another approach is needed in

order to obtain the prediction interval. In this particular section we present one solution to this
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problem, using the bootstrap simulation, discussed in Efron and Tibshirani (1994).

Consider that ȳ is an estimator for yn+1, so the estimation error is e = yn+1 − ȳ with

mean E [e] = E [yn+1]−E [ȳ] and variance V ar (e) = V ar (yn+1)+V ar (ȳ)−2COV (yn+1, ȳ).

As consequence, the statistic

(
e− E [e]

se

)

∼ W , where W has an unknown distribution. Using

the same derivation, as presented at the appendix A.13 we find the upper and lower limits of

the prediction interval. The non-parametric bootstrap simulation is performed to estimate the

distribution of W . Follow the simulation steps for the i-th interaction, where V is the size of

the training set, i ∈ {1, 2, · · · , T}, and T is the size of the test set. In the following steps, we

are using bold letters to represent sets.

1. Define the original sample: Zi =
{

ŶMV,tr (1) , · · · , ŶMV,tr (V ) , ŶMV,te (1) , · · · , ŶMV,te (i)
}

.

2. Define yin+1 = ŶMV,te (i), E
0
i = yin+1 ·U − Zi and sE0

i
=

√
√
√
√
√
√

i+V∑

u=1

(

E0,u
i − E

0

i

)2

i+ V − 1
, where U

is a set of one’s with the same size as Zi, the subscribe X relates to the arithmetic mean of the

elements of set X, and E0,u
i is the u-th element of E0

i .

3. For each value of k ∈ {1, 2, · · · , B}, calculate Zk
i that is the k-th re-sample, with replacement,

of Zi and:

(a) calculate Ek
i = yin+1 − Z

k

i ;

(b) calculate sEi,k
=

√
√
√
√
√
√

k∑

t=1

(
Et

i − Ei,k

)2

k − 1
, where Ei,k =

{
E1

i , · · · , Ek
i

}
.

(c) calculate W k
i =

Ek
i − Ei,k

sEi,k

and Wi,k =
{
W 1

i , · · · ,W k
i

}
.

4. Take Wi,B;0.025 and Wi,B;0.975, that are, respectively, the 2.5-th and 97.5-th percentiles of

Wi,B.

5. Calculate the upper, Lu
i and lower, Ll

i limits of the i-th prediction interval based on the

equations 4.16 and 4.17, respectively.

Lu
i = E

0

i + Zi +Wi,B;0.975 · sE0
i

(4.16)

Ll
i = E

0

i + Zi +Wi,B;0.025 · sE0
i

(4.17)

4.1.5 The Impact of a Superior Outlier on MVA’s Prediction

In the case of the existence of a superior outlier in the time series, the Visibility Graph

will create two separated networks connected by one single node. This happens because the

outlier works as a visibility barrier between the two sets of observations that are before and

after the outlier. Naturally, all the information that could be included in the set before the
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outlier will not be used in the forecasting process since all observations from this set will share

at maximum one common neighbor with the last observation, so the value of the dice similarity

will be low or zero. Also, the degree of the node related to the outlier will be the higher in the

complex network, so the dice similarity between the outlier and the last observation will be low,

hence the outlier will never be chosen in order to calculate the pre-estimator. Based on these

considerations, the prejudice related to the presence of an outlier in the time series will be the

loss of the information that could be contained in the set of the observations that located before

the outlier.

4.2 Method 2: Hybrid Means of Multiple Approaches

The Hybrid Means of Multiple Approaches (HMMA) is a hybrid method formed by the

combination of two of more forecasting models. The motivation to implement HMMA was the

search for accuracy better than those obtained through MVA and any other forecasting method.

For some time series, MVA obtained outstanding results, but for others the comparative methods

presented similar results to MVA, considering the values of the error measurements defined by

(3.2), (3.3) and (3.4), or the statistical comparison from the Diebold-Mariano test. Inspired by

this situation, we defined a hybrid approach considering both results. We ran both techniques,

and using weighted quadratic, arithmetic, geometric and harmonic means, we combined ŷMV ,

given by MVA, with ŷA, provided by another approach, to derive four new results. Using

simulation, in the section 5, we show that this strategy can be more accurate than MVA and

the other method, and in the worst-case scenario, HMMA statistically performed as well as the

both models.

4.2.1 HMMA-Arithmetic Mean (HAM)

The first HMMA version is the HMMA-Arithmetic Mean which is calculated as:

ŷHAM,(n+1) = β · ŷMV,(n+1) + (1− β) · ŷA,(n+1), (4.18)

where β is calculated according to described in the section 4.2.5.

4.2.2 HMMA-Geometric Mean (H-GM)

The second variant of the HMMA is the HMMA-geometric mean which is defined

by the product of two factors, fMV and fA, presented by Equations (4.19) and (4.20).

fMV =
(∣
∣ŷMV,(n+1)

∣
∣
)β

, (4.19)

and,

fA =
(∣
∣ŷA,(n+1)

∣
∣
)1−β

. (4.20)
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The value of ŷHGM,(n+1) can be derived from Equations (4.21) and (4.22). In the case

of ŷMV,(n+1) > 0 and ŷA,(n+1) > 0,

ŷHGM,(n+1) = fMV · fA. (4.21)

But if ŷMV,(n+1) < 0 or ŷA,(n+1) < 0, hence:

ŷHGM,(n+1) = −fMV · fA. (4.22)

4.2.3 HMMA-Harmonic Mean (H-HM)

The third HMMA version is the HMMA-harmonic mean. It is defined as the harmonic

mean between ŷ(MV,(n+1)) and ŷ(A,(n+1)), which is calculated as:

ŷHHM,(n+1) =
ŷMV,(n+1)ŷA,(n+1)

(1− β) ŷMV,(n+1) + βŷA,(n+1)

. (4.23)

4.2.4 HMMA-Quadratic Mean (H-QM)

The fourth and last HMMA variant is the HMMA-quadratic mean. It is defined as

the quadratic mean between ŷMV,(n+1) and ŷA,(n+1), which is calculated as

ŷHQM,(n+1) =
√

β(ŷMV,(n+1))2 + (1− β) (ŷA,(n+1))2. (4.24)

4.2.5 Calculating β

We are going to present two ways to calculate the β values. In the first they are

calculated based on errors made in estimating observations immediately preceding the current

one. Defining e1 = yn−1 − ŷMV,(n−1) and e2 = yn−1 − ŷA,(n−1), if e21 < e22, hence:

β =
e22

e21 + e22
. (4.25)

In the case of e21 > e22, so

β =
e21

e21 + e22
. (4.26)

The second way is produce the values of the parameter β is based on the minimization

of the sum of squared errors:

SSEHAM =
n−w−1∑

i=1

(yi − ŷHAM,i)
2 . (4.27)

The expression which gives the β associated with the smallest sum os squared errors
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is given by

β̂ =

n−w−1∑

i=1

(yA,i − yi) (yA,i − yMV,i)

n−w−1∑

i=1

(yA,i − yMV,i)
2

. (4.28)

The proof for the result shown in equation 4.28 is presented in the appendix C.4. It is

important to comment that the expression of β̂ presented in the equation (4.28) was calculated

considering the arithmetic mean. We did not calculated β estimators based on the other types

of means used in this work. In practice, we used the equation (4.28) to calculate the estimators

based on the other types of means. The parameter β, in fact, used to provide the HMMA

estimator is found by testing both strategies: fixed β, using the equation (4.28), and variable

using the equations (4.25) and (4.26), considering the accuracy results obtained in the training

and validation sets. In the case of the objective is just to find the one-step-ahead estimator, then

the training and validation sets are merged to one unique set containing the observations from

yw+1 to yn−1.

4.2.6 Algorithm description

Before starting the simulation, for a given time series with n observations, we define

the size w of the training sets (window). This is done by taking the first k lags, which are in the

statistical relevance region provided by the ACF graph. The simulation followed these steps.

1. Define the window of size w relative to the ith interaction: {z1 = yi, · · · , zw = yw+i−1},

considering i ∈ {1, 2, · · · , n− w − 1}.

2. For each interaction i ∈ {1, 2, · · · , n− w − 1} calculate ŷA,i .

3. For each interaction i ∈ {1, 2, · · · , n− w − 1} calculate ŷMV,i .

4. From the vectors ŷA and ŷMV , calculate the estimators ŷHQM , ŷHAM , ŷHGM and ŷHHM

according to equations (4.24), (4.18), (4.22) and (4.23), respectively. Use β = 0.5 in the

first interaction and in all others, consider β according to was described in the section

4.2.5.

5. Calculate the SSE associated to each vector ŷHQM , ŷHAM , ŷHGM and ŷHHM .

6. Calculate ŷA,n−w, ŷMV,n−w and the β associated to the last estimation in the training set.

7. Use the type of mean associated to the smallest SSE, obtained from the training set,

to calculate the one-step-ahead HMMA estimator, ŷH,n+1, considering the last window,

{z1 = yn−w+1, · · · , zw = yn}.
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4.2.7 Why HMMA Works

In Section 4.2, HMMA is defined as a hybrid method relating MVA and any other

method. According to Section 4.1, MVA is a forecasting approach that seeks relations between

nodes of a complex network to provide forecasts. In a complex network, two nodes tend to

be linked if they have a higher similarity index (MAO; XIAO, 2019). Therefore, taking into

account that MVA provides forecasts for yn+1, considering the influence of the previous time

series observations that have a greater similarity index with yn, we can expect that MVA will

succeed in reproducing the patterns contained along the time series.

We are sure that MVA is not the best method suitable to provide forecasts considering

all time series, therefore, for many other time series, some methods can perform better than

MVA in terms of accuracy. However, a combination of MVA and other method always can be

proposed in order to seek better accuracy. The question is: how the forecasts produced by MVA

and another method can be properly combined?

Section 2.4 presents the inequality means theorem for two positive numbers. When

ŷMV,(n+1) and ŷA,(n+1) are applied to equations (4.24), (4.18), (4.22) and (4.23), new one-step-

ahead estimators are derived: ŷHQM,(n+1), ŷHAM,(n+1), ŷHGM,(n+1) and ŷHHM,(n+1). The result

expressed by equation (2.81) guarantees the following relation:

ŷHQM ≥ ŷHAM ≥ ŷHGM ≥ ŷHHM (4.29)

Figure 4.2 illustrates the position of each of the four means created from ŷMV,(n+1) and ŷA,(n+1),

in both cases: (a) ŷMV,(n+1) ≤ ŷA,(n+1); and, (b) ŷMV,(n+1) ≥ ŷA,(n+1). According to Figure4.2,

Figure 4.2: Illustration of Means Inequality applied for ŷMV,(n+1) and ŷA,(n+1). Figure
Source: Drawn by the authors.

the absolute error will be smaller for the other method if

yn+1 >
ŷHQM,(n+1) + ŷA,(n+1)

2
, (4.30)
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in the case of ŷMV,(n+1) < ŷA,(n+1); or,

yn+1 <
ŷHHM,(n+1) + ŷA,(n+1)

2
; (4.31)

in the case of ŷMV,(n+1) > ŷA,(n+1). In any other situation, the absolute error will be smaller for

HMMA because there are five other estimators that will be near to yn+1. Thus, the probability

of yn+1 being nearer to any of HMMA’s possibilities is greater than yn+1 being nearer than only

ŷA,(n+1).

Additionally to was explained above, the additive combination can be more accurate,

at least to the less accurate between the two estimators considered in the combination. Observe

the following theorem stated and proofed by this author.

Theorem 4.1. Consider X and W estimates for the known m-dimensional vector Y,

such as the sum of squared errors (SSE) for X is higher than for W. Let a and b positive

numbers with a + b = 1. Under these conditions, whether Z = aX + bW, therefore,

SSE(aX+ bW) < SSE(X).

Proof of theorem 4.1. SSE(X) = (Y − X)T (Y − X), where YT is the transpose of the

column matrix Y. Suppose that SSE(aX+ bW) ≥ SSE(X), so:

(Y − aX− bW)T (Y − aX− bW) ≥ (Y −X)T (Y −X) ⇔

⇔ YTY–aYTX–bYTW–aXTY + a2XTX+ abXTW–bWTY + abWTX+ b2WTW ≥

≥ YTY–YTX–XTY +XTX. (4.32)

But YTX = XTY, XTW = WTX and WTY = YTW. Hence, from (4.32),

2abXTW + b2WTW + 2(1− a)XTY + (a2 − 1)XTX ≥ 2bYTW. (4.33)

It was given that SSE(X) > SSE(W), that is:

XTX− 2XTY > WTW − 2YTW ⇔ 2YTW > WTW–XTX+ 2XTY. (4.34)

From (4.33) and (4.34) comes:

2abXTW + b2WTW + 2(1− a)XTY + (a2 − 1)XTX > b(WTW–XTX+ 2XTY) ⇔

⇔ 2abXTW + (b2 − b)WTW + 2(1− a− b)XTY + (a2 − 1 + b)XTX > 0 (4.35)

Given that a+ b = 1, so, the term 2(1− a− b)XTY = 0. Therefore:

2abXTW + (b2–b)WTW + (a2–1 + b)XTX > 0 ⇔
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⇔ b(1–b)WTW–2b(1–b)XTW + a(1–a)XTX < 0 (4.36)

But: a(1–a) = b(1–b). Hence:

b(1–b)WTW–2b(1–b)XTW + b(1–b)XTX < 0 ⇔

⇔ b(1–b)(WTW–2XTW +XTX) < 0. (4.37)

It is known that b(1–b), by definition, is positive, so (WTW–2XTW +XTX) < 0. But,

(WTW–2XTW +XTX) = (W–X)T (W–X) =
m∑

k=1

(wk − xk)
2 > 0. (4.38)

Given this absurd result, we can conclude that our initial assumption was wrong

and therefore, (Y − aX− bW)T (Y − aX− bW) < (Y −X)T (Y −X) what proves that

SSE(aX+ bW) < SSE(X).

The result proved above only regards the arithmetic mean and do not give any information

of how more accurate the combined estimator will be than the worst one.

It is important to comment that the theorem 4.1 regards the known datasets, that is,

in practice, it is applied to encourage the realization of the ensemble model in the training and

validation tests, since they are composed by known data. The superiority in terms of SSE of the

weighted arithmetic mean is only proofed considering the less accurate of the two models to be

combined, and nothing can be concluded about the weighted arithmetic mean be more accurate

than the best estimate. Ratifying what was commented in the section 4.1.2, the separation of the

dataset into training, validation and test set has to be done, considering that the validation set

must be representative of the test set, therefore, we can expect, but not guarantee, that the model

fitted in the validation set will present a similar perform in the test set. Given the theorem 4.1,

considering the validation set, HMMA, surely, will not be worse than the two original estimates,

but there is a possibility of it be greater than both, as happened in some cases which will be

presented in the section 5.4.3.
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5 Results and Analysis

In this section, we present the performance comparison among the following forecasting

approaches: Maximum Visibility, Hybrid Mean of Multiples Approaches (HMMA), Mao-

Xiao Approach (MXA) (MAO; XIAO, 2019), Auto Regressive Integrated Moving Average

(ARIMA), Support Vector Regression (SVR), Long Short Term Memory (LSTM), Multilayer

Perceptron (MLP), Hybrid additive ARIMA-ANN (HAAA), Hybrid additive ETS-ANN (HAEA)

and naive estimation. To compare the accuracies quantitatively, we calculated the error measures

defined in the equations (3.2), (3.3), and (3.4). It is important to point out that all forecasting

processes are one-step-ahead type.

MXA was chosen as a comparative method because, according to Mao and Xiao

(2019), it is considered a successful complex-network-based forecasting method with a good

prediction performance. The ARIMA model was chosen because it is widely used as a benchmark

in the literature, so if MVA or HMMA are more accurate than ARIMA, then one or both can

be taken as benchmarks against other new prediction methods. The methods SVR, LSTM

and MLP are also being considered benchmarks given to the wide amount of works who use

these methods to provide time series forecasts. Inspired on the results of the M4-competition,

presented by Makridakis, Spiliotis and Assimakopoulos (2018), combination methods tend to

perform better than the pure one, therefore, we considered important compare the MVA and

HMMA forecasting results to other succeeded hybrid methods. We choose the Hybrid additive

ARIMA-ANN (HAAA) and Hybrid additive ETS-ANN (HAEA). Lastly, we also considered

the naive estimation because, despite its simplicity, for some kinds of time series, it has beaten

ARIMA and even some hybrid models in terms of performance.

Before starting each forecasting process, we characterized the respective time series.

First, by running the ADF and/or KPSS tests, we determine if each time series is level, trend or

non-stationary. Next, we tested seasonal behavior using the Webel-Ollech test. Finally, through

the Ljung-Box test, we check if there is any dependence between the pairs of the time series

observations.

Here, the only pre-processing job was: (a) to delete or properly replace all “NA”,

non-available, data; and (b) normalizing the data according to de following rule:

zi =
yi −min {Y}

max {Y} −min {Y} , (5.1)

where Y is the original dataset. Actually, the normalization process, or any other is not

necessary. We did that with the purpose of having comparable results, free of any scale. In

the case of ARIMA, we used the R function, auto.arima, which automatically performs all

necessary preprocessing to obtain the best ARIMA model. The size of the window used in

each forecasting process was chosen considering the results of the autocorrelation function, so

only the most significant terms, statistically speaking, were taken into account. It is important
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to emphasize that the mathematical derivations to obtain the best K and J to be considered on

MVA is beyond the scope of this work. Hence for each forecasting simulation, we found the pair

(J∗, K∗) using simulation according to explained in section 4.1.2. In all cases, to provide the

HMMA estimators, the values of β were calculated according to was described in the section

4.2.5.

In order to compare the forecasting performance achieved from MVA, HMMA, Dynamic

ARIMA, MXA, MLP, LSTM, SVR, HAAA, HAEA and naive estimation we chose the following

time series: three classic time series from different fields, provided by the R datasets package;

a Brazilian econometric time series composed of daily closing prices of the Bovespa index; and

one recursive time series that was artificially generated. It was generated two sets of results: the

first done based on the original data, and the second based on the normalized data according

described in the equation 5.1.

It is important to point out that the accuracies obtained by each method, considering

each time series, were taken from the same test set. We are emphasizing that this measure was

taken to ensure that comparisons between methods were made fairly.

5.1 Characterization of the five time series

This section is dedicated to showing the particularities of each time series used in this

research. The appropriate hypothesis tests, presented in the section 2.1.10, were chosen to

characterize the series as stationary, seasonal or independent. In all tables presented from this

point of the work, the acronym WO regards the Webel-Ollech test, for characterizing seasonal

time series.

5.1.1 International Airline Passengers Time Series

Consider the monthly number of passengers for international airlines, in thousands of

people, from 1949 to 1960, illustrated in the appendix D.1. This a 144-element time series,

which in the R astsa package is called AirPassengers, but which is also presented by Box and

Jenkins (1976).

As one can observe in the autocorrelation function presented in the Figure 4.1, a lag

of up to approximately 130 can cause any significant impact on the last observation. However,

if we take 130 as a window, many other non-significant previous observations may introduce

noise to the forecasting process; hence, we choose window 40. We applied this dataset to

the statistical tests presented in section 2.1.10. The Table 5.1 shows the characteristics of this

dataset.
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Table 5.1: Characteristics of the airline passengers
time series based on statistical tests

Statistical Test p-value Result

ADF < 0.01 TS

KPSS > 0.1 TS

Ljung-Box < 0.01 NI

WO/Period Seasonal - 12

Legend: NS - Not Stationary, TS - Trend Stationary, LS -
Level Stationary, I - Independent, NI - Not Independent.

Considering the forecasting process with the normalized data, MVA had K = 0.89,

J = 0.01 and the nonlinear term, expressed by equation (4.6), was included in the model.

The comparison based on the original data was done with K = 0.886, J = 6. The first 40

observations were used in the first window, so the rest of the 104 observations, that is, y41 to

y144 were divided into training and test set. The training and validation sets were merged into a

single set of 70% of these remaining data, that is, size 77. Naturally, the test set is composed by

31 observations, that is, the same values of K and J were used to calculate estimates for the 31

last observations following the sliding window process described in the section 3.3.

5.1.2 Lynx Trappings Time Series

In agreement with Campbell and Walker (1977), ‘lynx’ is a time series of annual

numbers of lynx trapped in Canada from 1821 to 1934. There are 114 observations in this

time series, see appendix D.2. The Table 5.2 presents the characteristics of this time series

based on the results of the proper statistical tests.

Table 5.2: Characteristics of the lynx trappings time
series based on statistical tests

Statistical Test p-value Result

ADF < 0.01 TS

KPSS > 0.1 TS

Ljung-Box < 0.01 NI

WO/Period Seasonal - 19

Legend: NS - Not Stationary, TS - Trend Stationary, LS -
Level Stationary, I - Independent, NI - Not Independent.

The ACF indicates that the first 77 past terms may contain significant information with

respect to the current element, see appendix D.3, therefore we chose w = 77. Additionally, the
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most significant values of autocorrelation between terms occur from time to time, suggesting

that the series has a seasonal behavior, which was confirmed through the application of the WO

test.

Considering the forecasting process with the normalized data, MVA had K = 0.6,

J = 2 and the nonlinear term, expressed by equation (4.6), was included in the model. The

comparison based on the original data was done with K = 0.89, J = 0.01. The first 77

observations composed the first window so the last 37 elements were divided into training and

test sets. We toke 70% of these remaining observations to compose the training set, which gives

a set with 26 elements. Hence, the test set is composed by the last 11 observations.

5.1.3 Financial Time Series

Ibovespa is the most important performance indicator of stocks traded on the Brazilian

financial market (B3, 2020). It was created in 1968 and has since served as a reference for

investors worldwide (B3, 2020). The third time series is made up of daily closing prices of

Ibovespa from January 1, 2019 to July 28, 2020, see appendix D.4. The 389 data used in this

simulation were taken from the Yahoo Finance website and, according to can be observed in the

appendix D.5, the ACF indicates window of length 200.

Table 5.3: Characteristics of the IBOVESPA time
series based on the statistical tests.

Statistical Test p-value Result

ADF 0.45 NS

KPSS < 0.01 NS

Ljung-Box < 0.01 NI

WO/Period Seasonal - 7

Legend: NS - Not Stationary, TS - Trend Stationary, LS -
Level Stationary, I - Independent, NI - Not Independent.

According to the proper statistical tests, this is a non-stationary dataset, with no trend,

seasonal and with dependency among its observations, see Table 5.3. In this case, we calibrated

MVA with K = 0.75, J = 0.003 for the original data and K = 0.844, J = 150 for the

normalized data. In both cases, the nonlinear term has been considered in the model.

The first 200 observations were used in the first window, so the rest of the 189 observations,

were split into training and test set. The training and validation sets were merged into a single

set of 50% of these remaining data, that is, size 95. Therefore, the test set is composed by the

94 remaining observations.
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5.1.4 New Haven Annual Temperature Time Series

The fourth dataset is the 60-element time series named “nhtem” on the R datasets

package which regards the mean annual temperature, in degrees Fahrenheit, in New Haven,

Connecticut, from 1912 to 1971 (TEAM; WORLDWIDE, 2021). In this forecasting process,

we calibrated MVA with K = 1, J = 100 for the original data and K = 1.087, J = 500 for the

normalized data. In both cases, the nonlinear term has been considered in the model.

The first 10 observations were used in the first window, so the rest of the 50 observations,

that is, y11 to y60 were split into training and test set. The training and validation sets were

merged into a single set of 80% of these remaining data, that is, size 40. Naturally, the test set

is composed by 10 observations, that is, the same values of K and J were used to calculate

estimates for the 10 last observations following the sliding window process.

5.1.5 Recursive Time Series

The last dataset comprises a recurrence-based time series with 100 observations. Each

observation is given by the following law:

yt = 0.54yt−1 + 0.17yt−2 + 0.3yt−3 + 0.4wt, (5.2)

where wt is a random variable normally distributed with zero mean and variance 1. Additionally,

y0 = 10, y1 = 9.5, y2 = 9 and t ∈ {0, 1, 2, · · · , 99}.

In this forecasting process, we calibrated MVA with K = 2.5, J = 0.9 for the original

data and K = 1.9, J = 100 for the normalized data. In both cases, the nonlinear term has been

considered in the model. The first 30 observations were used in the first window, so the rest

of the 70 observations, that is, y31 to y100 were split into training and test set. The training and

validation sets were merged into a single set of 75% of these remaining data, that is, size 53.

Therefore, the test set is composed by the 17 remaining observations. The same values of K

and J were used to calculate estimates for the 17 last observations following the sliding window

process described in the section 3.3.

5.1.6 Summary of the characteristics of the five time series

The Table 5.4 summarizes the characteristics of the five time series presented in this

work, showing all their features, confirmed by proper statistical tests.
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Table 5.4: The characteristics of the five time series.

Dataset Level Trend Seasonal Indep

Air Pass No Yes Yes No

Lynx No Yes Yes No

Ibovespa No No Yes No

nhtemp No Yes Yes No

RBTS No No Yes No

5.2 Adjusting the Machine Learning Models

One of the most determining steps in creating a suitable forecasting model based

on Machine Learning approaches such as ANN and SVR models is the choice of the input

variables.

5.2.1 The SVR Models

In this work we started the search for the best SVR hyper-parameters according to was

considered in Samsudin, Shabri and Saad (2010): C = 10 and ǫ = 0.1. The kernel choice is for

the radial basis function (RBF) starts with γ = 0.1 since, according to Ma and Guo (2014) and

Zhou et al. (2009), this kernel has good performance in time series forecasting problem, it is

able to capture nonlinear characteristics of the time series and presents less numerical problems.

We applied the SVR models in the training set, for multiples combinations of (C, ǫ, γ).

The set or parameters which provided the smallest MAE was applied to the testing set. Some

forecasting strategies were tested to perform the SVR. Firstly we compared the 10-fold cross

validation technique according to described in Samsudin, Shabri and Saad (2010) with the

“leave one out cross validation” (LOOCV) based on described in Vehtari, Gelman and Gabry

(2017). The second one gives better results in the training sets. However, the walk-forward

validation technique, presented by Kaastra and Boyd (1996), and used in all other methods,

gave the smallest MAE considering the training sets. Each window of size w, let say, y1, · · · , yw,

works as the input set X ∈ Rw and the next term, that is yw+1 is the output Y ∈ R. After a

model is obtained, we use this fitted model to estimate yw+2 using the window y2, · · · , yw+1.

This procedure is continued until finding the estimate for the last element of the time series.

At the end of the process, considering a m− element test set, we have a vector of estimates,

ŷn−m+1, · · · , ŷn and the equivalent set of real elements and based on these two sets, all error

measures MAE, MAPE and RMSE are evaluated.

The Tables 5.5 and 5.6 shows the parameters considered in the SVR models considering

the original data and the normalized one, respectively.
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Table 5.5: Hyperparameters considered in each SVR model applied in the original data.

Time Series C γ ǫ

Air Pass 30 38 0.1

Lynx 3 140 0.1

Ibovespa 15 40 0.1

nhtemp 1 20 0.1

RBTS 2 0.05 0.1

Table 5.6: Hyperparameters considered in each SVR model applied in the normalized
data.

Time Series C γ ǫ

Air Pass 30 38 0.1

Lynx 3 107 0.1

Ibovespa 15 40 0.1

nhtemp 1 20 0.1

RBTS 3 1 0.1

5.2.2 The LSTM Models

An LSTM model is an recurrent network model with memory, that is, this model

can remember information from earlier points in the network (KAUSHIK et al., 2020). The

architecture of an LSTM consists of units called memory cells, self-connections and gates

which are special multiplicative units (HOCHREITER; SCHMIDHUBER, 1997). According

to Kaushik et al. (2020) the connections keeps in memory the temporal state of the memory

cells and the gates control the flow of information.

We considered a LSTM model according to proposed by Kaushik et al. (2020). The

hyperparameters used to reach the best accuracy in the validation set, for each time series, are

described in the Table 5.7. The column called ‘hl’ gives the number of neurons in the hidden

layer.
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Table 5.7: Hyperparameters considered in each LSTM model.

Time Series epochs hl lrate

Air Pass 1000 512 0.1

Lynx 200 240 0.1

Ibovespa 500 128 0.1

nhtemp 200 64 0.1

RBTS 40 600 0.1

5.2.3 The MLP Models

We considered a MLP structure composed by three layers of nodes: an input layer,

a hidden layer and an output layer. All neurons were processed by the sigmoidal activation

function, except for the output layer for which a linear activation function was used. The

forecasting tasks were produced by the mlp function included in the nnfor R package. For

each time series, the testing set is the same considered to all other forecasting methods and the

forecasts were combined using the median operator. The Table 5.8 shows the hyperparameters

which provide the best accuracy in the training and validation sets.

Table 5.8: Hyperparameters considered in each MLP model.

Time Series epochs h=nodes lags

Air Pass 15 5 15

Lynx 10 10 29

Ibovespa 500 128 0.1

nhtemp 18 5 5

RBTS 25 8 50

To enable reproducibility, we set the seed at 2, so all randomly generated initial weights

are always be the same.

5.3 Adjusting the Hybrid Models

The last two time series forecasting methods are hybrid approaches. These are additive

combinations of ANN with ARIMA and ANN with ETS. We consider the number of nodes in

the ANN model’s input layer to be equal to the window size considered for all other forecasting

methods. We tried other values of w, but in all cases, the obtained accuracy, relative to the

validation sets, only got worse.
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According to Samsudin, Shabri and Saad (2010) and Khashei and Bijari (2011), a

three-layer feed-forward ANN model is commonly used for time series forecasting. We normalized

the training and testing data to fit in the interval [0, 1] according to equation (5.1). The hyperbolic

tangent function was used as the transfer function between the input and the hidden layers

because it resulted in the best accuracy. We chose the linear function as the transfer function

between the hidden and the output layers due to its robustness for continuous output variables

(SAMSUDIN; SHABRI; SAAD, 2010). The optimal number of neurons in the hidden layer,

h, was obtained by trial and error, but initially we used previous practical results (KANG,

1992): h = 0.5i, where i is the number of input data. The initial model weights were chosen

considering a uniform distribution in the interval [−0.1, 0.1], with seed 2. Each training assignment

was performed minimizing the mean absolute error.

5.3.1 The ARIMA-ANN Models

The hybrid additive approach combining ARIMA and ANN was implemented according

to described in Chindanur and B (2015) using the Khashei-Bijari approach (KHASHEI; BIJARI,

2011). The Tables 5.9 and 5.10 show the best number of nodes in the hidden layer for each

time series considering the normalized and original data, respectively. These parameters were

defined from the accuracy obtained on the training and validation sets.

Table 5.9: Parameters considered in each ANN-ARIMA model applied in the normalized
data.

Time Series Number of hidden nodes

Air Pass 5

Lynx 3

Ibovespa 5

nhtemp 10

RBTS 20
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Table 5.10: Parameters considered in each ANN-ARIMA model applied in the original
data.

Time Series Number of hidden nodes

Air Pass 1

Lynx 1

Ibovespa 1

nhtemp 3

RBTS 3

5.3.2 The ETS-ANN Models

The ETS models are composed by a family of time series models with a basal state

space model containing an error term (E) and a level, trend (T) or seasonal (S) components. The

hybrid additive approach combining ETS and ANN was implemented according to described

in Purohit et al. (2021). The ETS-models were defined based on the R function “ets” from the

package forecast. This function is able to calculate the best ETS model which fits with the given

time series. The Tables 5.11 and 5.12 show the best number of nodes in the hidden layer for

each time series considering the normalized and original data, respectively. These parameters

were defined from the accuracy obtained on the training and validation sets.

Table 5.11: Parameters considered in each ANN-ETS model.

Time Series Number of hidden nodes

Air Pass 5

Lynx 20

Ibovespa 20

nhtemp 14

RBTS 42
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Table 5.12: Parameters considered in each ANN-ETS model applied in the original data.

Time Series Number of hidden nodes

Air Pass 4

Lynx 3

Ibovespa 6

nhtemp 6

RBTS 9

5.4 Comparing the error results

In the last three sections we described the five datasets used in this work and we

presented the eight forecasting techniques and their respective set of parameters considered in

each forecasting process. Firstly, we will present the error comparisons among MVA and each

comparative method considering the normalized and the original data. Next, HMMA results are

presented.

5.4.1 Errors obtained from MVA and the comparative methods considering

the normalized data

In this section we show the comparisons among the results obtained by MVA and the

eight comparative methods in terms of MAE, MAPE and RMSE, according to defined in the

equations (3.2), (3.3) and (3.4), respectively. All accuracy results presented in this section

were obtained using the normalized data. In order to verify whether the residuals produced by

each method are stationary, we applied the KPSS and ADF tests, according to described in the

sections 2.1.10.2 and 2.1.10.1, respectively. Actually, according to Kwiatkowski et al. (1992),

the KPSS test tends to reject the null hypothesis too often, so, to overcome this issue, if the null

hypothesis is rejected, then we run the ADF test to confirm the time series non-stationarity

behavior. This step is important because the Diebold-Mariano test is used to compare the

statistical superiority between MVA and the comparative methods and the condition for using

this hypothesis test is whether the residuals are stationary. The results of accuracy, presented

in the Table 5.13, were obtained considering the test set, using the parameters adjusted in the

training and validation sets.
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Table 5.13: Comparative performance indicators obtained from the forecasting process
of the five normalized time series considering MVA and the eight comparative methods.

Time Series: AirPassengers

MVA MXA DA Naive HAAA HAEA LSTM MLP SVR

MAE 0.0711 0.0894 0.0897 0.0887 0.0923 0.0972 0.0800 0.0995 0.0791
MAPE 10.89 14.26 13.74 13.93 14.24 15.35 26.52 14.98 12.39
RMSE 0.0833 0.1090 0.1095 0.1030 0.1071 0.1144 0.0941 0.1151 0.0927

Time Series: lynx

MVA MXA DA Naive HAAA HAEA LSTM MLP SVR

MAE 0.0700 0.1393 0.0877 0.1104 0.1115 0.0725 0.1053 0.1267 0.0828
MAPE 38.81 64.92 32.88 52.91 54.18 43.07 155.94 60.78 39.48
RMSE 0.1045 0.1514 0.1125 0.1268 0.1241 0.0970 0.1226 0.1525 0.0964

Time Series: IBOV

MVA MXA DA Naive HAAA HAEA LSTM MLP SVR

MAE 0.0272 0.0308 0.0470 0.0276 0.0287 0.0429 0.0815 0.0361 0.0386
MAPE 23.53 24.71 45.59 23.85 22.97 42.63 146.3 25.13 27.52
RMSE 0.0372 0.0448 0.0881 0.0379 0.0382 0.0643 0.1362 0.0525 0.0485

Time Series: nhtemp

MVA MXA DA Naive HAAA HAEA LSTM MLP SVR

MAE 0.0906 0.1139 0.1094 0.0970 0.1131 0.1125 0.1105 0.1222 0.0982
MAPE 17.16 22.74 21.53 18.98 20.52 21.53 16.89 24.49 19.29
RMSE 0.1060 0.1392 0.1324 0.1174 0.1406 0.1309 0.1290 0.1543 0.1233

Time Series: RBTS

MVA MXA DA Naive HAAA HAEA LSTM MLP SVR

MAE 0.0227 0.0322 0.0308 0.0279 0.0346 0.0462 0.0298 0.0285 0.0289
MAPE 2.38 3.38 3.26 2.93 3.59 4.83 2.82 2.98 3.01
RMSE 0.0286 0.0378 0.0367 0.0323 0.0439 0.0555 0.0326 0.0364 0.0345

According to the contents for the Air Passengers dataset presented in the Table 5.13,

MVA outperformed all other methods based on the MAE, MAPE and RMSE values. The KPSS

test showed that all methods, except the LSTM model, provided stationary residuals. Applying

the ADF test we confirmed the non-stationary behavior of the LSTM residuals. For the Air

Passengers time series, MVA had its superiority confirmed by the Diebold-Mariano(DM) test,

see Table 5.14, when compared to all methods except for LSTM and SVR for which the quality

of the forecasts are statistically equivalent. Given that the LSTM residuals are non-stationary,

the statistical comparison using the DM test is not valid. In the Figure 5.1 we can see the
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forecasts for the Air Passengers time series considering MVA, MXA, LSTM and SVR. Since

the DM test did not find any method to be superior to MVA and considering that its errors are

the smallest, we can conclude that MVA is the most accurate method, among all those who

participated in this study, to make predictions for this time series.

Figure 5.1: Forecasts for Air Passengers time series considering
MVA, MXA, LSTM and SVR. Source: Drawn by the author.

With respect to the results obtained for the Lynx time series, the KPSS test was applied

to the residuals produced by all forecasting models and the stationarity was confirmed in all

cases. Considering the results of Tables 5.13 and 5.14 for the Lynx time series, MXA, naive,

Additive-ARIMA-ANN, LSTM and MLP are less accurate than MVA, quantitative and qualitatively

given that their values of MAE, MAPE and RMSE are higher than MVA’s, and the DM test

indicates MVA’s superiority. However, MVA, ARIMA, Additive-ANN-ETS (HAEA) and SVR

showed similar results considering error measures and statistical comparison. In order to illustrate

the closeness of these methods to the real values in the test set, we have plotted the comparison

graph for lynx time series and presented it in the Figure 5.2.
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Figure 5.2: Forecasts for lynx time series considering MVA, DA,
Additive-ANN-ETS and SVR. Source: Drawn by the author.

Consider the results obtained for the IBOVESPA time series. The KPSS test was

applied to the residuals produced by all forecasting models and the stationarity was confirmed

in all cases except for the LSTM model which had non-stationary residuals confirmed by the

ADF test. Comparing the accuracy results obtained by each method for the IBOVESPA time

series, MVA outperformed all other methods. Naive is the only method which provided similar

results, statistically speaking, confirmed by the DM test. In the Figure 5.3 we can see the

forecasts for the IBOVESPA time series considering MVA, MXA, Additive-ANN-ARIMA and

Naive. Definitely, in order to produce forecasts for the IBOVESPA time series, MVA is the

most indicated method among all methods considered in this study.
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Figure 5.3: Forecasts for IBOVESPA time series considering MVA,
MXA, Additive-ANN-ARIMA and Naive. Source: Drawn by the
author.

The fourth time series, was chosen precisely because it is a dataset with characteristics

that are difficult to define. How would all methods respond in the forecasting process for this

time series? It is classified as trend stationary, seasonal and not-independent dataset, however,

the p-values obtained from each hypothesis test is very close to the 10% type I error. It was

expected that most methods would present statistically similar results (thought confirmed by the

results in the Table 5.14), therefore the most accurate method would have to be defined based

on the error measures. According to the results presented in the Table 5.13, MVA outperforms

all other methods in terms of MAE, MAPE and RMSE, which indicates that the variance of the

magnitudes of the errors obtained by MVA is smaller than that produced by the benchmarks,

thus, MVA is considered the most accurate method in the forecasting assignment for this time

series.

Lastly, we present the results for a recurrence based time series artificially created.

This dataset was created with the intention of favoring the Dynamic ARIMA method, since

the sequence is based on an AR(3) model. Dynamic ARIMA was expected to achieve the best

results, however, MVA had the best accuracy. The conclusion is similar to that obtained in

the case of the air passengers time series, since MVA obtained the smallest errors, but tied

with other methods in the statistical comparison of the quality of the estimation. None of the

considered methods were classified by the DM test as superior to MVA.

We consider important to emphasize that all MVA forecasts, presented in this work,

were obtained based on using the Dice similarity. We considered using other methods, such as
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Table 5.14: P-values obtained from the application of the Diebold-Mariano
test in the forecasting residuals of the five datasets

Time Series: AirPassengers (Tipe I error = 10%)

MXA ARIMA Naive HAAA HAEA LSTM MLP SVR

MVA 0.0470 0.0170 0.0076 0.0055 0.0130 0.2033 0.0012 0.1483

Time Series: Lynx (Tipe I error = 10%)

MXA ARIMA Naive HAAA HAEA LSTM MLP SVR

MVA 0.0114 0.3263 0.0396 0.0491 0.4847 0.0904 0.0875 0.2937

Time Series: IBOV (Tipe I error = 10%)

MXA ARIMA Naive HAAA HAEA LSTM MLP SVR

MVA 0.0321 < 0.001 0.2587 0.0563 < 0.001 < 0.001 0.0012 < 0.001

Time Series: nhtemp (Tipe I error = 10%)

MXA ARIMA Naive HAAA HAEA LSTM MLP SVR

MVA 0.1558 0.1637 0.3462 0.1830 0.1237 < 0.001 0.0560 0.3486

Recurrence-based Time Series (Tipe I error = 10%)

MXA ARIMA Naive HAAA HAEA LSTM MLP SVR

MVA 0.0235 0.1070 0.0409 0.1263 0.0055 0.1594 0.1324 0.1854

Jaccard (ARNABOLDI et al., 2015) and the Inverse Log-weighted (ADAMIC; ADAR, 2003),

both cited in the section 2.3.3. In order to compare the results, the obtained RMSE, for each

time series, was taken into account.

Table 5.15: Comparative MVA’s RMSE when calculated from Jaccard, Dice and Inverse
Log-Weighted similarities considering the five time series.

RMSE - MVA

Jaccard Dice InvLogWeighted

Air Passengers 0.0804 0.0804 0.0954

Linx 0.1016 0.1016 0.0980

IBOVESPA 0.0372 0.0372 0.0384

NHtemp 0.1060 0.1060 0.1158

RBTS 0.0281 0.0281 0.0297
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The Jaccard method led to the same results obtained from the Dice similarity index,

considering the five time series presented here. The Inverse Log-weighted similarity produced

similar results to those presented here. Better if compared to that obtained from Dice, for the

Lynx time series and worse in the other cases. The comparative analysis of the MVA accuracy

based on the different measures of similarities is beyond the scope of this work, but we ratify that

this is an important topic to be considered since improved versions of MVA can be developed.

5.4.2 Errors obtained from MVA and the comparative methods considering

the original data

We created this section in order to evaluate whether there is any difference on the

results in the case of applying the original data, without data normalization. In the last section

it was shown that MLP and LSTM did not presented accuracy comparable with MVA in the

five simulations. So, in the next set of results we considered comparing MVA with MXA, DA,

Naive, HAAA, HAEA and SVR only.
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Table 5.16: Comparative performance indicators obtained from the forecasting process
of the five original time series considering MVA and six comparative methods.

Time Series: AirPassengers

MVA MXA DA Naive HAAA HAEA SVR

MAE 37.097 46.272 45.064 45.967 45.9677 44.708 41.027
MAPE 8.32 10.71 10.08 10.50 10.50 10.17 9.33
RMSE 43.310 56.445 54.890 53.347 53.347 52.551 48.044

Time Series: lynx

MVA MXA DA Naive HAAA HAEA SVR

MAE 566.001 969.02 563.600 767.45 767.45 552.91 609.86
MAPE 49.27 62.33 32.29 50.66 50.66 34.71 43.46
RMSE 639.68 1052.61 674.15 881.79 881.81 724.97 717.78

Time Series: IBOV

MVA MXA DA Naive HAAA HAEA SVR

MAE 1531.75 1742.64 1840.01 1561.59 1548.83 1821.91 2190.18
MAPE 1.95 2.24 2.38 1.99 1.97 2.32 2.74
RMSE 2130.36 2529.58 2687.946 2136.09 2126.87 2678.081 2752.38

Time Series: nhtemp

MVA MXA DA Naive HAAA HAEA SVR

MAE 0.6075 0.7635 0.6812 0.6500 0.6500 0.6232 0.6541
MAPE 1.17 1.48 1.32 1.26 1.26 1.20 1.27
RMSE 0.7107 0.9332 0.8588 0.7867 0.7867 0.7481 0.8187

Time Series: RBTS

MVA MXA DA Naive HAAA HAEA SVR

MAE 0.2872 0.3853 0.3847 0.3352 0.3737 0.4101 0.3243
MAPE 1.40 1.88 1.89 1.64 1.82 2.01 1.59
RMSE 0.3477 0.4537 0.4651 0.3878 0.4313 0.5251 0.3971

One can observe in the Table 5.16 that the results are similar to those obtained considering

the normalized data. As well as what is observed for the normalized data, in the Air Passengers

time series, MVA outperformed all other methods based on the MAE, MAPE and RMSE values.

Considering the lynx time series MVA, HAEA, DA and SVR presented similar results and better

than the other comparative methods. This same results can be observed based on the analysis

regarding the normalized data. Regarding the IBOVESPA time series, MVA, Naive and HAAA

presented the best accuracy considering both types of data: the normalized and the original data.

Finally, considering the two last time series, MVA outperformed all other comparative methods
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based on the results of MAE, MAPE and RMSE, and this results can be observed considering

the normalized and the original data.

5.4.3 Errors obtained from HMMA and the comparative methods considering

the normalized data

In this section, we present the errors comparisons between the Hybrid Means of Multiple

Approaches (HMMA) and each respective pair of approaches in its standalone results. We

repeated the simulation for several values of β in order to define the type of mean will compose

the HMMA estimators. Once defined the type of mean, we proceeded as defined in the section

4.2.5 to define whether way should be used to calculate the best β.

As discussed in the immediately preceding section, considering the Air Passengers

time series, the SVR model has an accuracy statistically similar to MVA but with larger errors.

Therefore, we chose the SVR model to be combined to MVA in order to produce the HMMA

estimator for this time series. For the Air Passengers time series, the training set revealed that

the fixed β, found based on a search using the training set, gives the smallest SSE. The search

gave β = 0.778225 and, for this time series, HMMA is composed by the harmonic mean. The

Table 5.17 presents the accuracies obtained from HMMA, MVA and SVR for the Air Passengers

time series, considering the testing set.

Table 5.17: Comparative performance indicators obtained from
HMMA, MVA and SVR for the Air Passengers time series.

Time Series: Air Passengers

MVA SVR HMMA

MAE 0.0700 0.0791 0.0690
RMSE 0.0833 0.0927 0.0815

The estimation of the parameter β is designed to give the smallest SSE. According to

the Table 5.17 the hybrid formulation outperformed both methods in terms of MAE and RMSE.

Statistically, HMMA is more accurate than SVR but has similar accuracy is compared to MVA.

These findings are an illustration of the result expressed in the theorem 4.1. Figure 5.4 shows

the comparison among the forecasts for Air Passengers time series considering MVA, SVR and

HMMA applied to the test set.
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Figure 5.4: Forecasts for the Air Passengers time series considering
MVA, SVR and HMMA. Source: Drawn by the author.

Considering the Lynx time series, the Hybrid-Additive-ANN-ETS (HAEA) obtained

the best accuracy results whether compared to the other comparative methods, see Table 5.13,

so we chose the HAEA estimators to combine with MVA and produce HMMA. After running

the simulation for several values of β the arithmetic mean was chosen to provide HMMA

estimators. Given the accuracies achieved from the training set, the value of β = 0.7857,

used in the forecasting process, was the same: such from the search among several values of β,

as from that obtained using the equation 4.28. This were already expected since the arithmetic

mean was used in this case and the equation 4.28 was derived using the arithmetic mean. The

Table 5.18 presents the accuracies obtained from HMMA, MVA and HAEA for the Lynx time

series, considering the testing set.

Table 5.18: Comparative performance indicators obtained from
HMMA, MVA and HAEA for the Lynx time series.

Time Series: Lynx

MVA HAEA HMMA

MAE 0.0714 0.0725 0.0672
RMSE 0.1016 0.1144 0.0930

It can be observed from the Table 5.18 that HMMA is more accurate than MVA

and HAEA. This is one of those cases where the ensemble achieves accuracy superior to its
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standalone methods because the harmonic mean could produce values closer to the real values

than the original estimators. The Figure 5.5 shows the comparison among the forecasts for the

Lynx time series considering MVA, HAEA and HMMA applied to the test set.

Figure 5.5: Forecasts for the Lynx time series considering MVA,
HAEA and HMMA. Source: Drawn by the author.

The third analysis is regarding the IBOVESPA time series. Based on the results shown

in the Table 5.13, the naive estimation obtained the best accuracy results whether compared to

the other comparative methods, so its estimators were used to combine with MVA and produce

HMMA. After running the simulation for several values of β the arithmetic mean was chosen to

provide HMMA estimators. Given the accuracies achieved from the training set, the fixed value

of β had to be used in the forecasting process, see equation 4.28. Surprisingly, the equation 4.28

gave β = 1.946712, which is greater than 1. Indeed, in the proof of the equation 4.28, presented

in the appendix C.4, there is no impediment for the β value to be greater than 1, however, the

theorem 4.1 is not valid in this case. Given this situation, we considered combining MVA to

the second best accurate comparative method, which is the HAAA. In this case, the simulation,

looking to the training set, also indicated that a fixed β = 0.596153 provided the smallest SSE,

thus given the theorem 4.1, a RMSE smaller than HAAA’s is expected. The Table 5.19 presents

the accuracies obtained from HMMA, MVA, HAAA and naive for the IBOVESPA time series,

considering the testing set.
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Table 5.19: Comparative performance indicators obtained from HMMA, MVA,
HAAA and Naive for the IBOVESPA time series.

Time Series: IBOVESPA

MVA Naive HMMA (Naive) HAAA HMMA (HAAA)

MAE 0.0272 0.0276 0.0277 0.0287 0.0278
RMSE 0.0372 0.0379 0.0375 0.0382 0.0377

Statistically, all estimators are similar, given the results of the DM test. As can be

observed, when MVA is combined to the naive estimation, the HMMA accuracy is worse than

both original estimators and it is likely once the theorem 4.1 is not valid. However, when

HMMA is produced by the combination of MVA with HAAA, the best β is smaller than one,

so the the theorem 4.1 is valid and, as expected, HMMA quantitative accuracy is at least greater

than HAAA’s. For this time series, it is worth always simulate MVA and HMMA in order to

produce forecasts because by including one or two observations, the best predictor, considering

both techniques, can change. The Figure 5.6 shows the closeness among the forecasts for the

IBOVESPA time series produced by MVA, Naive and HMMA (HAAA) applied to the test set.

Figure 5.6: Forecasts for the IBOVESPA time series considering
MVA, Naive and HMMA. Source: Drawn by the author.

Consider the Nhtemp time series, defined in the section 2.1.3. Based on the results

shown in the Table 5.13, the naive estimation obtained the best accuracy results whether compared

to the other comparative methods, so its estimators were used to combine with MVA and
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produce HMMA. After running the simulation for several values of β the quadratic mean was

chosen to provide HMMA estimators. Given the accuracies achieved based on the training set,

the fixed value of β = 0.819561 had to be used in the forecasting process, see equation 4.28.

Since β ∈ [0, 1], according to the theorem 4.1, we expect that HMMA’s RMSE will be at least

better than Naive’s. The Table 5.20 presents the accuracies obtained from HMMA, MVA and

naive for the Nhtemp time series, considering the test set.

Table 5.20: Comparative performance indicators
obtained from HMMA, MVA and Naive for the
Nhtemp time series.

Time Series: Nhtemp

MVA Naive HMMA

MAE 0.0906 0.0970 0.0897
RMSE 0.1060 0.1174 0.1063

Statistically, all estimators are similar, given the results of the DM test. Indeed, HMMA’s

RMSE is smaller than Naive’s, since all conditions to the theorem 4.1 are satisfied. Despite

HMMA presents the smallest MAE, we can not state that this method is, quantitatively, the

most accurate for this time series, once the HMMA’s RMSE is practically the same as that found

for MVA, hence, the variance of the magnitudes of the errors obtained by the two methods are

statistically and quantitatively equal.

Considering the recurrence-based time series, the SVR obtained the best accuracy

results whether compared to the other comparative methods, see Table 5.13, so we chose the

SVR estimators to combine with MVA and produce HMMA. After running the simulation for

several values of β, considering the training set, the quadratic mean was chosen to provide

HMMA estimators. Given the accuracies achieved based on the training set, the fixed value of

β = 0.88342 had to be used in the forecasting process, see equation 4.28. Since β ∈ [0, 1],

according to the theorem 4.1, we expect that HMMA’s RMSE will be at least better than

SVR’s. The Table 5.21 presents the accuracies obtained from HMMA, MVA and SVR for

the Recurrence-Based time series, considering the testing set.

Table 5.21: Comparative performance indicators obtained from
HMMA, MVA and SVR for the Recurrence-Based time series.

Time Series: Recurrence-Based

MVA SVR HMMA

MAE 0.0227 0.0289 0.0219
RMSE 0.0286 0.0345 0.0281
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Statistically, all estimators are similar, given the results of the DM test. Indeed, HMMA’s

MAE and RMSE are smaller than SVR’s, since all conditions to the theorem 4.1 are satisfied,

but surprisingly, HMMA’s MAE and RMSE are smaller than the MVA either. Observing this

result, we can affirm that, quantitatively, the variance of the magnitudes of the errors obtained

by HMMA is smaller than that obtained by both methods which were used to produce HMMA,

hence, the combination is the most accurate in order to produce forecasts for this time series.

Figure 5.7: Forecasts for the Recurrence-Based time series
considering MVA, SVR and HMMA. Source: Drawn by the author.

It is important to point out that results, as obtained from the Air Passengers, Lynx and

Recurrence-Based time series, are sufficient to do encouraging, at least, include HMMA among

the candidates for providing estimation because given the randomness of the real time series,

HMMA can outperform the other methods originally considered in the forecasting assignment.

5.5 Time Complexity of MVA

As we commented that one of the advantages of MVA is its low computational cost,

it is important to present a brief discussion about the time complexity of the method. Defining

n as the size of the window to be mapped in a graph, consider the following worst-case time

complexity analysis for each step of the MVA algorithm.

1. Read the time series data - Complexity: O(n).

2. Normalize the data - Complexity: O(n).
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3. Map the time series into a network (visibility graph) - Complexity: O(n2). See Lan et al.

(2015).

4. Calculate the Dice similarity - Complexity: O(dn2), where d is the maximum degree of

the vertices in the graph. See Csardi and Nepusz (2006).

5. Use of the function which.max to find the nodes which share the greatest similarity with

yn - Complexity: O(n).

6. Calculate the pre-estimators - Complexity: O(n).

7. Take the maximum among the pre-estimators - Complexity: O(n).

All these steps are performed sequentially, so the complexity of the whole algorithm

is given by the maximum among the individual complexities, that is, O(dn2). Obviously, the

maximum value for d is (n−1), so in the worst case scenario, our code is O(n3). However, this

is very unlikely, given the inputs are real time series, so, rarely, is one observation connected

to all other observations. In summary, the complexity for MVA depends on the maximum

degree of the vertices in the graph, but based on the randomness of the real time series, this

maximum degree is relatively low, for example, considering the time series used in this work,

the maximum degree were always less than 5% of the time series length. Therefore, MVA can

be considered approximately O(n2) in most applications.

Just for an example, we ran the simulation of the MVA with fixed K and J , considering

95% (also very unlikely) of the data to compose the window. So the algorithm just read the data,

normalized it, constructed the complex network, calculated the dice similarities of all pairs of

vertices, found the greater value among all values, calculated the pre-estimators considering

only the points which presented this greater level of similarity with the current observation, and

finally took as the MVA one-step-ahead estimator the maximum value among all pre-estimators.

We ran this simulation for an artificial time series AR(1) composed by: 100, 500, 1000, 5000

and 10000 points, which means, respectively, networks with 95, 475, 950, 4750 and 9500

vertices. The execution times were, respectively, 0.007, 0.183, 0.340, 6.827 and 27.927 seconds,

which is in consonance with quadratic time complexity. The simulations were performed in a

Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz with 8.00GB (RAM) processor based on x64

under Windows 8.1.
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6 Conclusion

In summary, this study addresses one new time series forecasting method, the Maximum

Visibility approach (MVA) and ensemble method, the Hybrid Means of Multiple Approaches

(HMMA). To calculate the forecast with MVA, we used the visibility graph technique to map a

given time series into a complex network, and then we calculated the node similarity matrix. All

nodes with the higher similarity index with the node associated to the last time series observation

can be chosen to provide the calculation of the ŷMV,n+1. We calculated HMMA forecasts by

combining the results obtained from MVA and the best among the comparative method, in four

different ways: arithmetic mean, geometric mean, harmonic mean and quadratic mean. This

strategy was proposed because, through the means inequalities, HMMA produces, at the same

time, five one-step-ahead time series estimators, which can increase the probability of reaching

the next term of the real time series.

Just in order to compare the performances, we chose the comparative methods ARIMA,

the Mao-Xiao approach (MAO; XIAO, 2019), naive estimation, support vector regression (SVR),

long-short term memory (LSTM), multilayer perceptron (MLP) and the hybrid additive models

ARIMA-ANN and ETS-ANN, where ANN refers to the artificial neural networks and ETS is

the error trend seasonal components. The nine methods discussed in this work were applied

to five different time series. Each dataset has some or none of the characteristics: seasonal

behavior, level or trend stationarity, and dependence between pairs of observations. It is important

to note that the time series used in this work also have different time horizons: daily, monthly,

annual, and weekly data. The performance results were measured using the mean absolute

error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).

Additionally, the Diebold-Mariano test (DIEBOLD; MARIANO, 1995) was considered to evaluate

the statistical comparison between accuracy achieved by MVA and each comparative method.

All comparisons were calculated considering the normalized data and the original ones.

Considering the normalized data and based on the MAE and RMSE values, MVA

outperformed all comparative methods for all time series, except for the Lynx time series,

in which the methods ARIMA, additive ARIMA-ETS and SVR reached the same level of

accuracy as that obtained by MVA. Looking to the accuracy comparison regarding the original

data, one can observe that the results are similar to those one obtained from the normalized

data. This only ratify that MVA can be applied to the original data and no data normalization

is necessarily needed. This set of results reveals that our proposed method is capable of

presenting at least similar accuracy, when compared to other well-established methods in the

literature, considering varied applications and datasets with different time horizons. Therefore,

our method can contribute not only in the academic field, but also in practical aspects.

One can observe that HMMA also outperformed all comparative methods, considering

all five time series and, in the case of the Lynx time series, HMMA presented accuracy higher

than both methods used in the ensemble. Not only is HMMA a new forecasting technique,
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but also a way to provide other time series forecasting approaches. Since HMMA combines

the results of two forecasting methods using the means inequalities, this same strategy can be

applied to other well-known accurate methods, in the seek of better accuracy results. The same

principles of creating four new one-step-ahead estimators, which can be closer to the real value,

stands.

Among the advantages observed with the use of MVA in the forecasting task are the

ease of implementation, low computational cost and adaptability to different types of time

series, considering characteristics of stationarity, seasonality and dependence between observations.

This study showed that the only pre-processing necessary is to delete or properly replace the

‘NA’ data (not available) if any, no further pre-processing is necessary, thus, the prediction

process can be carried out considering the original data. Given the inclusion of the non-linear

term, MVA is able to quickly correct the error made in the previous prediction. We can point

out as a disadvantage the lower capacity to predict the reversal of the trend of the time series.

The greatest errors produced by MVA were mainly at trend reversal points.

We will end this section by making it clear that the results presented here do not mean

that MVA and HMMA will be able to outperform all forecasting methods, considering all time

series. However, such results certainly indicate that our both techniques are excellent options

of approaches to be considered in time series forecasting processes, both for research purposes

and for practical use.

6.1 Future Works

Despite the good forecasting performance of HMMA shown in this work, this method

can be improved. In future works, one could: investigate of the impact on accuracy obtained by

using different time series mapping methods in complex networks; create of a hybrid methodology

to combine MVA with MLP, LSTM, ANN or other prediction methods based on machine

learning, such as the Elman Recurrent Neural Networks (ERNN), similarly to what was proposed

by Aladag, Egrioglu and Kadilar (2009); develop a mathematical derivation for best values of

βA and βS , presented by equation (4.26), and α by equation (4.1); create MVA and HMMA

forecasting accuracy considering h-step-ahead, with h > 1; study adequate data pre-processing

to increase HMMA and MVA forecasting accuracy; provide the comparative analysis of the

MVA accuracy based on the different measures of similarities; and develop multidimensional

versions of MVA and HMMA, where more than one time series can provide information to

achieve better forecasting performance of one or more time series at the same time.
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LIU, W.; Lü, L. Link prediction based on local random walk. EPL (Europhysics Letters),

IOP Publishing, v. 89, n. 5, p. 58007, Mar 2010. ISSN 1286-4854. Disponı́vel em:

〈http://dx.doi.org/10.1209/0295-5075/89/58007〉. Acesso em: 01 ago. 2020.

LJUNG, G.; BOX, G. On a measure of lack of fit in time series models. Biometrika, v. 65,

08 1978. Disponı́vel em: 〈https://www.researchgate.net/publication/246995234\ On\ a\
Measure\ of\ Lack\ of\ Fit\ in\ Time\ Series\ Models〉. Acesso em: 17 Ago. 2020.
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32, 2015. Disponı́vel em: 〈http://www.rbhm.org.br/issues/RBHM\%20-\%20vol.15,no30/3\
%20-\%20Frederico\%20Lopes.pdf〉. Acesso em: 06 abr. 2020.



124

LU, L.; ZHOU, T. Link prediction in complex networks: A survey. ArXiv, abs/1010.0725,

2010.

LUQUE, B.; LACASA, L.; BALLESTEROS, F.; LUQUE, J. Horizontal visibility graphs:

Exact results for random time series. Phys. Rev. E, American Physical Society, v. 80, p.

046103, Oct 2010. Disponı́vel em: 〈https://link.aps.org/doi/10.1103/PhysRevE.80.046103〉.
Acesso em: 08 abr. 2020.

LYTRAS, D. On seasonality: Comparing x-13arima-seats diagnostics for quarterly series.

U.S. Census Working Papers, 2015. Disponı́vel em: 〈https://www.census.gov/library/

working-papers/2015/adrm/lytras-01.html〉. Acesso em: 02 Set. 2020.

MA, Y.; GUO, G. Support Vector Machines Applications. [S.l.]: Springer, Cham, 2014. ISBN

978-3-319-02300-7.

MACROTRENDS. South Korea Infant Mortality Rate 1950-2021. 2021. Disponı́vel em:

〈https://www.macrotrends.net/countries/KOR/south-korea/infant-mortality-rate〉.

MAKRIDAKIS, S.; SPILIOTIS, E.; ASSIMAKOPOULOS, V. Statistical and machine learning

forecasting methods: Concerns and ways forward. PloS one, Public Library of Science, v. 13,

n. 3, p. e0194889–e0194889, Mar 2018. ISSN 1932-6203. 29584784[pmid]. Disponı́vel em:

〈https://pubmed.ncbi.nlm.nih.gov/29584784〉.

MAO, S.; XIAO, F. Time series forecasting based on complex network analysis. IEEE Access,

v. 7, p. 40220 – 40229, 2019. Disponı́vel em: 〈https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=8669744〉. Acesso em: 20 jul. 2020.

MARTINEZ, N. D.; HAWKINS, B. A.; DAWAH, H. A.; FEIFAREK, B. P. Effects of sampling

effort on characterization of food-web structure. Ecology, John Wiley and Sons, v. 80, n. 3, p.

1044–1055, Apr 1999.

MARUSICH, L. R.; BUCHLER, N. Time series modeling of army mission command

communication networks: an event-driven analysis. Computational and Mathematical

Organization Theory, v. 22, n. 4, p. 467–486, 2016. Disponı́vel em: 〈https://doi.org/10.1007/

s10588-016-9211-7〉. Acesso em: 30 mar. 2020.

MARWAN, N.; DONGES, J. F.; ZOU, Y.; DONNER, R. V.; KURTHS, J. Complex

network approach for recurrence analysis of time series. Physics Letters A, Elsevier

BV, v. 373, n. 46, p. 4246–4254, Nov 2009. ISSN 0375-9601. Disponı́vel em: 〈http:

//dx.doi.org/10.1016/j.physleta.2009.09.042〉.

MCQUARRIE, A. D. R.; TSAI, C.-L. Regression and Time Series Model Selection. WORLD

SCIENTIFIC, 1998. Disponı́vel em: 〈https://www.worldscientific.com/doi/abs/10.1142/3573〉.
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Appendix A

A.1 Proof of equation 2.4

To proof equation 2.4, consider any two real numbers α and β, and any two random variables,

Yt and Xt, from the same space of probability (Ω,F , P ).

Proof of equation 2.4.

E [αXt + βWt] =

∫

Ω

(αXt(ω) + βWt(ω)) dP (ω) =

= α

∫

Ω

Xt(ω)dP (ω) + β

∫

Ω

Wt(ω)dP (ω) =

= αE [Xt] + βE [Wt] (A.1)

A.2 Proof of equation 2.6

To proof equation 2.6, consider a random variable Yt from the space of probability (Ω,F , P ).

Proof of equation 2.6.

V ar (Yt) = E
[
(Yt − E [Yt])

2] = E
[
Y 2
t − 2YtE [Yt] + (E [Yt])

2] =

= E
[
Y 2
t

]
− 2 (E [Yt])

2 + (E [Yt])
2

= E
[
Y 2
t

]
− µ2

Yt
. (A.2)

A.3 Proof of equation 2.14

Proof of equation 2.14. Let u and v be vectors such as θ is the angle between them.

The inner product between u and v is calculated as <u · v> = |u| · |v| cos(θ). But, as

|cos(θ)| ≤ 1, hence: ∣
∣
∣
∣

<u · v>
|u| · |v|

∣
∣
∣
∣
≤ 1. (A.3)

The result expressed in equation A.3 is known as Cauchy-Schwartz inequality. Let

u = (x1 − µx, x2 − µx, · · · , xn − µx) and v = (y1 − µy, y2 − µy, · · · , yn − µy), applying the
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vectors u and v in Cauchy-Schwartz inequality, as describing just above, yields:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1

(xi − µx) (yi − µy)

√
n∑

i=1

(xi − µx)
2

√
n∑

i=1

(yi − µy)
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ 1. (A.4)

This result, given by equation A.4 is known as the sample correlation, ρXY ,

between two random variables X and Y and it means that −1 ≤ ρXY ≤ 1. Define both

vectors u = (yk+1 − ȳ, yk+2 − ȳ, · · · , yn − ȳ) and v = (y1 − ȳ, y2 − ȳ, · · · , yn−k − ȳ). The

inner product between u and v , <u · v> is calculated as:

<u · v> =
n∑

i=k+1

(yi − ȳ) (yi−k − ȳ) . (A.5)

Follows the modulus of both vectors u and v and each correspondent inequalities

shown in equations A.6 and A.7.

|u| =

√
√
√
√

n∑

i=k+1

(yi − ȳ)2 ≤

√
√
√
√

n∑

i=1

(yi − ȳ)2 (A.6)

|v| =

√
√
√
√

n∑

i=k+1

(yi−k − ȳ)2 ≤

√
√
√
√

n∑

i=1

(yi − ȳ)2 (A.7)

Taking into account equations A.6 and A.7, comes:

|u| · |v| ≤
n∑

i=1

(yi − ȳ)2 (A.8)

The estimator ρ̂t,k, defined in equation 2.13 is combined with equation A.8 and

Cauchy-Schwartz inequality, therefore, comes the following result:

|ρ̂t,k| =
|<u · v>|
n∑

i=1

(yi − ȳ)2
≤ |u| · |v|

n∑

i=1

(yi − ȳ)2
≤

n∑

i=1

(yi − ȳ)2

n∑

i=1

(yi − ȳ)2
= 1. (A.9)

A.4 Proof of equation 2.22

In order to verify the claim given by equation 2.22, consider the following calculations.
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Proof of equation 2.22.

E
[
(Yn+1 − g (Yn,k))

2] = E
[
(Yn+1 − E [Yn+1|Yn,k] + E [Yn+1|Yn,k]− g (Yn,k))

2] =

= E
[
(Yn+1 − E [Yn+1|Yn,k])

2]−

− 2E [(Yn+1 − E [Yn+1|Yn,k]) (E [Yn+1|Yn,k]− g (Yn,k))] +

+ E
[
(E [Yn+1|Yn,k]− g (Yn,k))

2] . (A.10)

Given the result shown in equation A.10, the three terms on the right hand of

the last equality must be discussed separately. Starting with the middle term, that is:

E [(Yn+1 − E [Yn+1|Yn,k]) (E [Yn+1|Yn,k]− g (Yn,k))] . (A.11)

Define ln+1 = (Yn+1 − E [Yn+1|Yn,k]) (E [Yn+1|Yn,k]− g (Yn,k)). Considering that Yn,k

is already known, it becomes reasonable calculating E [ln+1|Yn,k] and taking into account

the result of the Law of Interacted Expectation, E [ln+1|Yn,k] = E [ln+1] (HAMILTON,

1994) . Given that Yn,k is fully known, E [Yn+1|Yn,k] and g (Yn,k) are constant, with

respect to Yn,k, hence the factor (E [Yn+1|Yn,k]− g (Yn,k)) can be excluded of the

expectancy, therefore:

E [Yn+1|Yn,k] =

=0
︷ ︸︸ ︷

E [(Yn+1 − E [Yn+1|Yn,k]) |Yn,k]×E [(E [Yn+1|Yn,k]− g (Yn,k))] = 0

.(A.12)

The next term in equation A.10 to be analyzed is E
[
(Yn+1 − E [Yn+1|Yn,k])

2].

Note that this term is always non-negative and not dependent of g (Yn,k), hence, any

choice taken to g (Yn,k) will impact this term. Therefore, the smaller is the term

E
[
(E [Yn+1|Yn,k]− g (Yn,k))

2], the smaller is E
[
(Yn+1 − g (Yn,k))

2]. It is easy to observe

that the term E
[
(E [Yn+1|Yn,k]− g (Yn,k))

2] is always non-negative and its minimum

value is achieved when g (Yn,k) = E [Yn+1|Yn,k]. Hence, the claim given by equation 2.22

is correct.
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A.5 Proof of equation 2.25

The vector β must be calculated in the task of minimizing the mean squared error

(MSE), given by

MSE = E

[(

Ŷn+1|k − βTYn,k

)2
]

= E

[(

Ŷn+1|k − βTYn,k

)

·
(

Ŷn+1|k − βTYn,k

)T
]

=

= E
[(

Ŷn+1|k − βTYn,k

)

·
(

Ŷn+1|k − YT
n,k

β
)]

= E
[

Ŷ 2
n+1|k

]

− βTE
[

Ŷn+1|k · Yn,k

]

−

− E
[

Ŷn+1|k · YT
n,k

]

β + E
[

βTYn,kYT
n,k

β
]

.

Taking into account that βTYn,k = YT
n,k

β,

MSE = E
[

Ŷ 2
n+1|k

]

− 2βTE
[

Ŷn+1|k · Yn,k

]

+ E
[

βTYn,kYT
n,k

β
]

. (A.13)

Differentiating the result achieved by A.13 with respect to βi and making the result

equals to null-vector, yields:

−2E
[

Ŷn+1|k · Yn,k

]

+ 2E
[

Yn,kYT
n,k

]

β̂ = 0 ⇔

⇔ β̂ = E
[

Yn,kYT
n,k

]−1

E
[

Ŷn+1|k · Yn,k

]

. (A.14)

A.6 Proof of equation 2.31

Proof of equation 2.31.

SSE
(

β̂OLS

)

=
(

Yn,k −Yβ̂OLS

)T

·
(

Yn,k −Yβ̂OLS

)

=

=
(

YT
n,k

− β̂T
OLS

YT
)

·
(

Yn,k −Yβ̂OLS

)

=

= YT
n,k

Yn,k −YT
n,k

Yβ̂OLS − β̂T
OLS

YTYn,k + β̂T
OLS

YTYβ̂OLS =

Given the result obtained from equation 2.29,

SSE = YT
n,k

Yn,k −YT
n,k

Y
(
YTY

)−1
YTYn,k. (A.15)
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A.7 Proof of equation 2.37

Consider that
[
V ar (Yex)

−1 COV (Yn,Yex)
]T

and
[
V ar (Yex)

−1 COV (Yn−k,Yex)
]T

are replaced by A and B, respectively, in the equations 2.34 and 2.35.

Proof of equation 2.37.

γYnYn−k\Yex
= COV ((Yn − PYex

(Yn)) , (Yn−k − PYex
(Yn−k))) =

= COV ((Yn − AYex) , (Yn−k − BYex)) =

= COV (Yn, Yn−k)− A · COV (Yex, Yn−k)− B · COV (Yn,Yex)

+ A · V ar (Yex) · BT = COV (Yn, Yn−k)−

− COV (Yn,Yex)
T V ar (Yex)

−1 COV (Yn−k,Yex)−

− COV (Yn−k,Yex)
T V ar (Yex)

−1 COV (Yex, Yn) +

+ COV (Yn,Yex)
T V ar (Yex)

−1 V ar (Yex)V ar (Yex)
−1 COV (Yn−k,Yex) =

= COV (Yn, Yn−k)− COV (Yn,Yex)
T V ar (Yex)

−1 COV (Yn−k,Yex)

(A.16)

A.8 Proof of equation 2.38

Similarly to what was done in equation A.16, the variances of (Yn − PYex
(Yn)) and

(Yn−k − PYex
(Yn−k)) can be evaluated and their results are:



135

Proof of equation 2.38.

V ar (Yn − PYex
(Yn)) = V ar (Yn − AYex) = E

[
(Yn − AYex)

2]− (E [Yn]− AE [Yex])
2 =

= E
[
y2n
]
− 2AE [YnYex] + E

[
AYexY

T
exA

T
]
− E [yn]

2 − 2AE [yn]E [Yex]−

− AE [Yex]E [Yex]
T AT = V ar (Yn)− 2A · COV (Yn,Yex) + 2A · V ar (Yex)A

T =

= V ar (Yn)− 2COV (Yn,Yex)
T V ar (Yex)

−1 COV (Yn,Yex) +

+ COV (Yn,Yex)
T V ar (Yex)

−1 V ar (Yex)V ar (Yex)
−1 COV (Yn,Yex) =

= V ar (Yn)− COV (Yn,Yex)
T V ar (Yex)

−1 COV (Yn,Yex) , (A.17)

and analogously,

V ar (Yn−k − PYex
(Yn−k)) =

= V ar (Yn−k)− [COV (Yn−k,Yex)]
T V ar (Yex)

−1 COV (Yn−k,Yex) . (A.18)

A.9 Proof of equations 2.43, 2.44 and 2.45

Let {yn} be the random walk process starting with y0 = 0 and defined by equation

2.41. Therefore, E [ǫt] = 0, V ar (ǫt) = σ2
ǫ and COV (yt−1, ǫt) = 0 since yt−1 and ǫt are

independent. Also, V ar (y1) = V ar (ǫ1) = σ2
ǫ and E [y1] = δ since y0 = 0.
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Proof of equation 2.43.

V ar (yt) = E
[
(δ + yt−1 + ǫt)

2]− (E [δ + yt−1 + ǫt])
2 =

= E
[
(δ)2

]
+ E

[
(yt−1)

2]+ E
[
(ǫt)

2]+ 2δE [yt−1] + 2δE [ǫt] + 2E [yt−1ǫt]−

− (E [δ])2 − (E [yt−1])
2 − (E [ǫt])

2 − 2δE [yt−1]− 2δE [ǫt]− 2E [yt−1]E [ǫt] =

= V ar(yt−1) + σ2
ǫ + 2COV (yt−1, ǫt) = V ar(yt−1) + σ2

ǫ .

Hence,

V ar(y2) + · · ·+ V ar(yn) = V ar(y1) + · · ·+ V ar(yn−1) + (n− 1)σ2
ǫ ⇔

⇔ V ar(yn) =

=σ2
ǫ

︷ ︸︸ ︷

V ar(y1)+(n− 1)σ2
ǫ = nσ2

ǫ (A.19)

Considering the particular case of the random walk process defined in Figure 2.5,

n = t and σǫ = 1, so V ar(yt) = t.

Proof of equation 2.44.

E [yt] = E





constant
︷︸︸︷

δ +yt−1 + ǫt



 = δ + E [yt−1] +

=0
︷ ︸︸ ︷

E [ǫt] ⇔

⇔ E [y2] + · · ·+ E [yn] = E [y1] + · · ·+ E [yn−1] + (n− 1)δ ⇔

⇔ E [yn] = nδ. (A.20)

In order to demonstrate equation 2.45 consider the random walk process given by

equation 2.42. Given that {ǫ1, ǫ2, · · · , ǫn} is a sequence of independent and identically distributed

random variables , E [ǫiǫj] = 0, ∀i 6= j.
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Proof of equations 2.45.

γk = COV (yn, yn−k) = COV

(
n∑

i=1

ǫi,

n−k∑

i=1

ǫi

)

=

= E

[
n∑

i=1

ǫi ·
n−k∑

i=1

ǫi

]

− E

[
n∑

i=1

ǫi

]

E

[
n−k∑

i=1

ǫi

]

=

= E

[
n∑

i=1

ǫi ·
n−k∑

i=1

ǫi

]

−
n∑

i=1

=0
︷ ︸︸ ︷

E [ǫi]
n−k∑

i=1

=0
︷ ︸︸ ︷

E [ǫi] = E

[
n∑

i=1

ǫi ·
n−k∑

i=1

ǫi

]

=

= E [(ǫ1 + ·+ ǫn−k) (ǫ1 + ·+ ǫn)] =
n−k∑

i=1

E
[
ǫ2i
]
+ 2

n−k∑

i=1

n∑

j=i+1

=0
︷ ︸︸ ︷

E [ǫiǫj] = (n− k)σ2
ǫ .

(A.21)

A.10 Proof Means Inequality theorem

Let {x1, x2, · · · , xn} be a set of positive real numbers and taking w = w1 + · · ·+ wn,

with wk ≥ 0 and w > 0.

Proof of Means Inequality theorem. According to Gao, Sitharam and Roitberg (2019), for

concave functions, the Jensen Inequality applies:

f









n∑

k=1

wkxk

n∑

k=1

wk









≥

n∑

k=1

wkf (xk)

n∑

k=1

wk

. (A.22)

Given that f : ]0,+∞] → ℜ, such as f(x) = ln(x) is a concave function ∀x ∈ Df :

ln









n∑

k=1

wkxk

w









≥

n∑

k=1

wk ln (xk)

w
=

n∑

k=1

ln (xwk

k )

w
=

ln

(
n∏

k=1

xwk

k

)

w
= ln







(
n∏

k=1

xwk

k

)
1

w







.

(A.23)
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Considering (A.23) and taking into account that f(x) is a injective function,

n∑

k=1

wkxk

w
≥ w

√
√
√
√

n∏

k=1

xwk

k . (A.24)

A.11 Derivation of the mean confidence interval

Given that the n-element random sample y1, y2, · · · , yn is taken from a normal distribution

y ∼ N (µ, σ2), hence, y ∼ N

(

µ,
σ2

n

)

.

Derivation of the mean confidence interval. The statistic

(
y − µ

σ/
√
n

)

∼ Z, however, observe

that µ and σ are unknown, so it is necessary replace σ by s, which is the sample standard

deviation, but as consequence, the distribution of the statistic changes to a t-student with

n-1 degrees of freedom:

(
y − µ

s/
√
n

)

∼ tn−1.

P (Li ≤ µ ≤ Ls) = P (−Ls ≤ −µ ≤ −Li) = P ((y − Ls) ≤ (y − µ) ≤ (y − Li)) =

= P







(y − Ls)

s/
√
n

≤

tn−1

︷ ︸︸ ︷

(y − µ)

s/
√
n

≤ (y − Li)

s/
√
n







(A.25)

Given that tn−1 is symmetrical, let’s take:

(y − Li)

s/
√
n

= −
∣
∣tα/2;n−1

∣
∣ ⇔ Li = y −

∣
∣tα/2;n−1

∣
∣

s√
n

and

(y − Ls)

s/
√
n

=
∣
∣tα/2;n−1

∣
∣ ⇔ Ls = y +

∣
∣tα/2;n−1

∣
∣

s√
n
.
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A.12 Derivation of the prediction confidence interval

Given that the n-element random sample y1, y2, · · · , yn is taken from a normal distribution

y ∼ N (µ, σ2), hence, y ∼ N

(

µ,
σ2

n

)

.

Derivation of the prediction confidence interval. The statistic

(
y − µ

σ/
√
n

)

∼ Z, however,

observe that µ and σ are unknown, so it is necessary replace σ by s, which is the sample

standard deviation, but as consequence, the distribution of the statistic changes to a t-

student with n-1 degrees of freedom:

(
y − µ

s/
√
n

)

∼ tn−1. Consider that ȳ is an estimator

for yn+1, so the estimation error is e = yn+1 − ȳ with zero mean and variance V ar (e) =

(

1 +
1

n

)

σ2. As consequence, the statistic







yn+1 − ȳ

σ

√

1 +
1

n







∼ Z, and since σ is unknown,

by replacing it to s,







yn+1 − ȳ

s

√

1 +
1

n







∼ tn−1 .

P (Li ≤ yn+1 ≤ Ls) = P (Li − ȳ ≤ yn+1 − ȳ ≤ Ls − ȳ) =

= P







Li − ȳ

s

√

1 +
1

n

≤ yn+1 − ȳ

s

√

1 +
1

n

≤ Ls − ȳ

s

√

1 +
1

n







= P







Li − ȳ

s

√

1 +
1

n

≤ tn−1 ≤
Ls − ȳ

s

√

1 +
1

n







(A.26)

Given that tn−1 is symmetrical, let’s take:

Li − ȳ

s

√

1 +
1

n

= −
∣
∣tα/2;n−1

∣
∣ ⇔ Li = y − s

∣
∣tα/2;n−1

∣
∣

√

1 +
1

n

and

Ls − ȳ

s

√

1 +
1

n

=
∣
∣tα/2;n−1

∣
∣ ⇔ Ls = y + s

∣
∣tα/2;n−1

∣
∣

√

1 +
1

n
.
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Hence,

IC (µ; 1− α) :

]

ȳ −
∣
∣tα/2;n−1

∣
∣ s

√

1 +
1

n
; ȳ +

∣
∣tα/2;n−1

∣
∣ s

√

1 +
1

n

[

. (A.27)

A.13 Converting an AR(1) into a MA(∞)

Statement: Consider an stationary AR(1) model yt = c+φ1yt−1+ǫt. This model can be written

as a MA(∞) model given by:

yt =
c

1− φ1

+
∞∑

i=0

φi
1ǫt−i. (A.28)

Proof of the statement. Demonstration by Mathematical Induction.

Firstly we will demonstrate that it is possible to write an AR(1) model as the following

quasi -MA(n) model, given by:

yt = c
n∑

i=0

φk
1 +

n∑

i=0

φi
1ǫt−i + φn+1

1 yt−(n+1) (A.29)

Base of induction: the property is valid to k = 2.

yt = c+ φ1yt−1 + ǫt =

= c+ φ1 (c+ φ1yt−2 + ǫt−1) + ǫt = c (1 + φ1) + φ1ǫt−1 + ǫt + φ2
1yt−2. (A.30)

Inductive step: Admitting that the property is valid to k = u.

yt = c
u∑

i=0

φk
1 +

u∑

i=0

φi
1ǫt−i + φu+1

1 yt−(u+1) (A.31)

Proofing that whether the property is valid to k = u, therefore it is valid to k = u+ 1.
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yt = c
u∑

i=0

φi
1 +

u∑

i=0

φi
1ǫt−i + φu+1

1 yt−(u+1) =

= c

u∑

i=0

φi
1 +

u∑

i=0

φi
1ǫt−i + φu+1

1

(
c+ φ1yt−(n+2) + ǫt−(n+1)

)
=

= c
u∑

i=0

φi
1 +

u∑

i=0

φi
1ǫt−i + cφu+1

1 + φu+2
1 yt−(n+2) + φu+1

1 ǫt−(n+1) =

= c

u+1∑

i=0

φi
1 +

u+1∑

i=0

φi
1ǫt−i + φu+2

1 yt−(u+2). (A.32)

Since the property is valid to k = 2, see base of induction, and given that if it is valid to

k = u, therefore it is valid to k = u+ 1, by mathematical induction, the property is valid

to k = n, ∀n ∈ N. Thus,

yt = c

n∑

i=0

φi
1 +

n∑

i=0

φi
1ǫt−i + φn+1

1 yt−(n+1) (A.33)

Given that yt is stationary, |φ1| < 1. Applying the limit of yt, when n tends to ∞ we find:

lim
n−→∞

yt = yt = c

∞∑

i=0

φi
1 +

∞∑

i=0

φi
1ǫt−i + lim

n−→∞

(
φn+1
1 yt−(n+1)

)
. (A.34)

Given that yt−(n+1) is finite, and lim
n−→∞

(
φn+1
1

)
= 0, so, limn−→∞

(
φn+1
1 yt−(n+1)

)
= 0. Thus,

lim
n−→∞

yt = c
∞∑

i=0

φi
1 +

∞∑

i=0

φi
1ǫt−i. (A.35)

which is a MA(∞) model.

But, since |φ1| < 1, the first term of the equation A.35 is an infinite geometric series,

which converges to a finite value according to:
∞∑

i=0

φi
1 =

1

1− φ1

. Therefore,

yt =
c

1− φ1

+
∞∑

i=0

φi
1ǫt−i, (A.36)

and the statement is proofed.

A.14 Statistical Measures from a MA(2) model

Consider the MA(2) model, according to described in the equation 3.28, that is, wt =

ǫt + θ1ǫt−1 + θ2ǫt−2. Given that ǫt−k is a white noise term, E [ǫt−k] = 0 and V ar [ǫt−k] =
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E
[
ǫ2t−k

]
= σ2, for all k ≥ 0. The expected value of wt is

E [wt] = E [ǫt + θ1ǫt−1 + θ2ǫt−2] = E [ǫt] + θ1E [ǫt−1] + θ2E [ǫt−2] = 0. (A.37)

Since the white noise terms are uncorrelated, E [ǫtǫt−k] = E [ǫt]E [ǫt−k] = 0, for all k 6= 0.

The variance of wt, γ0, is given by

V ar [wt] = E
[
w2

t

]
−





=0
︷ ︸︸ ︷

E [wt]





2

= E
[
(ǫt + θ1ǫt−1 + θ2ǫt−2)

2] =

= E
[
ǫ2t
]
+ θ21E

[
ǫ2t−1

]
+ θ22E

[
ǫ2t−2

]
+ 2θ1E [ǫtǫt−1] + 2θ2E [ǫtǫt−2] +

+ 2θ1θ2E [ǫt−1ǫt−2] =
(
1 + θ21 + θ22

)
σ2. (A.38)

The autocovariance γ1 is given by

γ1 = E [wt · wt−1] = E [(ǫt + θ1ǫt−1 + θ2ǫt−2) · (ǫt−1 + θ1ǫt−2 + θ2ǫt−3)] =

=

=0
︷ ︸︸ ︷

E [ǫtǫt−1] +θ1

=0
︷ ︸︸ ︷

E [ǫtǫt−2] +θ2

=0
︷ ︸︸ ︷

E [ǫtǫt−3] +θ1E
[
ǫ2t−1

]
+ θ21

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−2] +

+ θ1θ2

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−3] +θ2

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−2] +θ1θ2E
[
ǫ2t−2

]
+ θ22

=0
︷ ︸︸ ︷

E [ǫt−2ǫt−3] =

= (θ1 + θ1θ2) σ
2. (A.39)

The autocovariance γ2 is given by

γ2 = E [wt · wt−2] = E [(ǫt + θ1ǫt−1 + θ2ǫt−2) · (ǫt−2 + θ1ǫt−3 + θ2ǫt−4)] =

=

=0
︷ ︸︸ ︷

E [ǫtǫt−2] +θ1

=0
︷ ︸︸ ︷

E [ǫtǫt−3] +θ2

=0
︷ ︸︸ ︷

E [ǫtǫt−4] +θ1

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−2] +θ21

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−3] +

+ θ1θ2

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−4] +θ2E
[
ǫ2t−2

]
+ θ1θ2

=0
︷ ︸︸ ︷

E [ǫt−2ǫt−3] +θ22

=0
︷ ︸︸ ︷

E [ǫt−2ǫt−4] =

= θ2σ
2. (A.40)

The autocovariance γk, with k ≥ 3 is given by

γk = E [wt · wt−k] = E [(ǫt + θ1ǫt−1 + θ2ǫt−2) · (ǫt−k + θ1ǫt−k−1 + θ2ǫt−k−2)] =

=

=0
︷ ︸︸ ︷

E [ǫtǫt−k] +θ1

=0
︷ ︸︸ ︷

E [ǫtǫt−k−1] +θ2

=0
︷ ︸︸ ︷

E [ǫtǫt−k−2] +θ1

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−k] +θ21

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−k−1] +

+ θ1θ2

=0
︷ ︸︸ ︷

E [ǫt−1ǫt−k−2] +θ2

=0
︷ ︸︸ ︷

E [ǫt−2ǫt−k] +θ1θ2

=0
︷ ︸︸ ︷

E [ǫt−2ǫt−k−1] +θ22

=0
︷ ︸︸ ︷

E [ǫt−2ǫt−k−2] = 0.

(A.41)
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Appendix B

From time series to complex networks: method not used in this
research

B.1 Horizontal Visibility Graph

Consider a time series, represented in a bar plot as shown in Figure B.1. Suppose that

this time series will be mapped into a graph where each node is associated to a unique bar. Any

two nodes in the graph are linked if the correspondent bars can be connected by a horizontal

line without crossing any other intermediate bar (LUQUE et al., 2010).

Figure B.1: Scheme for horizontal visibility graph methodology: A 10-elements time series
is mapped into a graph where each node represents a bar, and each edge represents the
connection between two bars. Source: Drawn by the author

In formal basis, two nodes vi and vk in the graph are connected only if, for each ti <

tj < tk, both vk < vj and vk < vi occur. The horizontal visibility graph leads to a natural graph-

theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics

(GAO et al., 2016).
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Appendix C

Proofs of the Statistical Results of MVA

C.1 Variance of the MVA Pre-estimator - Equation 4.8

Let ŷn+1|k be the MVA pre-estimator for the next observation in the time series, yn+1,

considering only the influence of yk. It is defined in equation 4.7.

Proof of the Variance of the MVA Pre-estimator.

V ar
(
ŷn+1|k

)
=

= V ar (yn) +

(
α

Tk

)2

V ar (yn − yk) +

(
2α

Tk

)

COV (yn, (yn − yk)) =

= V ar (yn) +

(
α

Tk

)2

[V ar (yn) + V ar (yk)− 2COV (yn, yk)] +

+

(
2α

Tk

)

[V ar (yn)− COV (yn, yk)] =

= V ar (yn)

(

1 +
α

Tk

)2

+ V ar (yk)

(
α

Tk

)2

− 2α

Tk

(

1 +
α

Tk

)

COV (yn, yk) . (C.1)

C.2 Covariance between two MVA Pre-estimators - Equation

4.9

Let ŷn+1|k and ŷn+1|j be two MVA pre-estimators for yn+1, for k 6= j.
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Proof of the Covariance between two MVA Pre-estimators.

COV
(
ŷn+1|k, ŷn+1|j

)
=

= E

[(

yn +
α

Tk

(yn − yk)

)(

yn +
α

Tj

(yn − yj)

)]

−

− E

[(

yn +
α

Tk

(yn − yk)

)]

E

[(

yn +
α

Tj

(yn − yj)

)]

=

=
(
E
[
y2n
]
− (E [yn])

2)+
α

Tj

(
E
[
y2n
]
− E [ynyj]

)
+

α

Tk

(
E
[
y2n
]
− E [ynyk]

)
+

+
α2

TkTj

(
E
[
y2n
]
− E [ynyk]− E [ynyj] + E [ykyj]

)
−

− α

Tj

(
(E [yn])

2 − E [yn]E [yj]
)
− α

Tk

(
(E [yn])

2 − E [yn]E [yk]
)
−

− α2

TkTj

(
(E [yn])

2 − E [yn]E [yk]− E [yn]E [yj]
)
− α2

TkTj

(E [yk]E [yj]) =

= V ar (yn)

(

1 +
α

Tk

)(

1 +
α

Tj

)

− α

Tj

(

1 +
α

Tk

)

COV (yn, yj)−

− α

Tk

(

1 +
α

Tj

)

COV (yn, yk) +
α2

TkTj

COV (yk, yj) . (C.2)

C.3 Derivation of the best K for the MVA model

Let V ar (ŷn+1) be the variance of the MVA estimator according to presented in the

equation (4.11). The value of K that minimizes such variance can be determined by calculating
∂SSE

(
ŷ(n+1)

)

∂K
= 0. Suppose that vi is the order of the element in the i-th window correspondent

to the maximum pre-estimator. Just for a better organization of the text, define V as the order

of the last observation in the training set, a = w + 1, Tvi = ti−1 − tvi , and ρi−1,vi as the

autocorrelation between yi−1 and yvi , where yvi is the maximum of the past observation with

the highest level of similarity with yi−1.
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Proof of the equation 4.15.

SSE (ŷn+1) =
V∑

k=a

(yi − ŷi)
2 =

V∑

k=a

(

yi − yi−1 − (γi−1,vi −K)

(
yi−1 − yvi
ti−1 − tvi

))2

=

=
V∑

k=a

(yi − yi−1)
2 − 2

V∑

k=a

(γi−1,vi −K) (yi − yi−1)

(
yi−1 − yvi

Tvi

)

+

+
V∑

k=a

(γi−1,vi −K)2
(
yi−1 − yvi

Tvi

)2

(C.3)

∂SSE (ŷn+1)

∂K
=

2
V∑

k=a

(yi − yi−1)

(
yi−1 − yvi

Tvi

)

− 2
V∑

k=a

(γi−1,vi −K)

(
yi−1 − yvi

Tvi

)2

(C.4)

Equaling (C.4) to zero and isolating K, comes:

K̂ =

V∑

i=a

((
yi−1 − yvi

Tvi

)2

ρi−1,vi −
(
yi−1 − yvi

Tvi

)

(yi − yi−1)

)

V∑

i=a

(
yi−1 − yvi

Tvi

)2
(C.5)

C.4 Derivation of the estimator for β in the HAM model

Proof of the equation 4.28.

SSEHAM =
n−w−1∑

i=1

(yi − ŷHAM,i)
2 =

n−w−1∑

i=1

(yi − βŷMV,i − (1− β) ŷAA,i)
2 =

=
n−w−1∑

i=1

y2i + β2

n−w−1∑

i=1

ŷ2MV,i + (1− β)2
n−w−1∑

i=1

ŷ2AA,i − 2β
n−w−1∑

i=1

yiŷMV,i −

− 2 (1− β)
n−w−1∑

i=1

yiŷAA,i + 2β (1− β)
n−w−1∑

i=1

ŷMV,iŷAA,i. (C.6)
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∂SSEHAM

∂β
= 2β

n−w−1∑

i=1

ŷ2MV,i + 2 (β − 1)
n−w−1∑

i=1

ŷ2AA,i − 2
n−w−1∑

i=1

yiŷMV,i +

+ 2
n−w−1∑

i=1

yiŷAA,i + 2
n−w−1∑

i=1

ŷAA,iŷMV,i − 4β
n−w−1∑

i=1

ŷAA,iŷMV,i. (C.7)

Equaling (C.7) to zero, β turns into β̂. Isolating β̂ comes:

β̂ =

n−w−1∑

i=1

(ŷAA,i − yi) (ŷAA,i − ŷMV,i)

n−w−1∑

i=1

(ŷAA,i − ŷMV,i)
2

(C.8)
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Appendix D

Important Figures

D.1 Plot of the Air Passengers Time Series

Figure D.1: Time series of the monthly number of passengers for
international airlines, in thousands of people, from 1949 to 1960. Figure
Source: Drawn by the author.
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D.2 Plot of the Lynx Time Series

Figure D.2: Time series of the annual numbers of lynx trapped in
Canada from 1821 to 1934. Figure Source: Drawn by the author.
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D.3 Autocorrelation Function of the Lynx Time Series

Figure D.3: Autocorrelation Function of the Lynx Time series. Figure
Source: Drawn by the author.
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D.4 Plot of the IBOVESPA Time Series

Figure D.4: Daily IBOVESPA stock closing prices from 2019/01/01 to
2020/07/28. Data Source: Yahoo Finance. Figure Source: Drawn by
the author.



152

D.5 Autocorrelation Function of the IBOVESPA Time Series

Figure D.5: Autocorrelation Function of the IBOVESPA Time series.
Figure Source: Drawn by the author.
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D.6 Plot of the NHtemp Time Series

Figure D.6: The mean annual temperature, in degrees Fahrenheit, in
New Haven, Connecticut, from 1912 to 1971. Figure Source: Drawn by
the author.
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D.7 Autocorrelation Function of the NHtemp Time Series

Figure D.7: Autocorrelation Function of the NHtemp Time series.
Figure Source: Drawn by the author.
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D.8 Plot of the Recurrence-Based Time Series

Figure D.8: The recursive time series according to described in the
section 5.1.5. Figure Source: Drawn by the author.
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D.9 Autocorrelation Function of the Recurrence-Based Time

Series

Figure D.9: Autocorrelation Function of the Recurrence-Based Time
series. Figure Source: Drawn by the author.
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Appendix E

R Codes Used in this Work

In this section we present the codes used to generate the accuracy comparisons between some of

the time series forecasting methods used in this work. They are: Maximum Visibility Approach,

Hybrid Multiple Means Approach, Dynamic ARIMA, Mao-Xiao Approach, Naive, Support

Vector Regression, Hybrid ANN-ETS and the Hybrid ANN-ARIMA.

E.1 Maximum Visibility Approach R Code

In this section we present the R code used to calculate MAE, MAPE and RMSE from the one-

step-ahead forecasting process using the Maximum Visibility Approach. The time series is split

into training and test set. The first w observations compose the first window. The values of

ŷw+1, · · · , ŷw+t are calculated and from this values MAE, MAPE and RMSE are calculated.

We choose the values of K and J related to the minimum value of
√
MAE ·RMSE. Next,

this pair of K∗ and J∗ are used to calculate the estimates of the test set: ŷw+t+1, · · · , ŷn. These

last set of estimates are used to calculate the MAE, MAPE and RMSE related to the test set.

l i b r a r y ( e1071 )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom )

l i b r a r y ( dgof )

l i b r a r y ( quantmod )

l i b r a r y ( g g p l o t 2 )

l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )
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# T h i s code was used t o c a l c u l a t e MAE, MAPE and RMSE from

# t h e f o r e c a s t i n g p r o c e s s o f a g i v e n t im e s e r i e s u s i n g

# t h e Maximum V i s i b i l i t y Approach .

f o r (ON i n 1 : 1 ){

metodo = ” d i c e ”

# Which Time S e r i e s − Choose t s

# from 1 , 2 , 3 , 4 o r 5 .

t s =2

i f ( t s ==1){
x1 = r e a d . csv ( f i l e = ” A i r P a s s e n g e r s . c sv ” )

w=40

x1=x1 [ , 1 ]

f a c t o r =0 .7

J =0 .01

K=0.89

}
i f ( t s ==2){

x1 = r e a d . csv ( f i l e = ” lynx . csv ” )

w=77

x1=x1 [ , 1 ]

f a c t o r =0 .7

J =0 .001

K=0.633

}
i f ( t s ==3){

x1 = r e a d . csv ( f i l e = ”IBOV . csv ” )

w=200

x1=x1 [ , 1 ]

f a c t o r =0 .5

J =0 .005

K=0.7

}
i f ( t s ==4){

x1 = r e a d . csv ( f i l e = ” nhtemp . csv ” )
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w=10

x1=x1 [ , 1 ]

f a c t o r =0 .8

J =100

K=1

}
i f ( t s ==5){

x1 = r e a d . csv ( f i l e = ”RBTS . csv ” )

w=30

x1=x1 [ , 1 ]

f a c t o r =0 .75

J =0 .9

K=2 .5

}

n= l e n g t h ( x1 )

D= m a t r i x ( r e p ( 0 ,w*( n−w) ) , n c o l =w)

f o r ( u i n 1 : ( n−w) ) {
f o r ( v i n 1 :w ){

D[ u , v ]= x1 [ u+v −1]

}
}

# S i z e o f t h e t r a i n i n g s e t

t r a i = c e i l i n g ( f a c t o r * ( n−w) )

f o r (Q i n 1 : 1 ){
f o r ( qa i n 1 : 1 ){

yMV = c ( )

yMVfor = c ( )

ymaxY1 = c ( )

ALFA= m a t r i x ( r e p ( 0 , (w)* t r a i ) ,

n c o l =(w) , byrow=TRUE)

facNL=c ( )

}
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f o r ( b i n 1 : t r a i ){
y = D[ b , ]

x = b : ( w+b −1)

a = w

y1n = y [w]

t n = x [w]

i f ( b ==1){

facNL [ b ]=0

# Non− l i n e a r te rm added t o t h e

# pre − e s t i m a t o r s and compose MVA f o r e c a s t .

}

i f ( b>1){
facNL [ b ]= −( (yMV[ ( b −1)] − y1n ) ) *

( exp ( − J *K* abs (yMV[ ( b −1)] − y1n ) ) )

# Non− l i n e a r te rm added t o t h e

# pre − e s t i m a t o r s and compose MVA f o r e c a s t .

}

# C o n s t r u c t i n g t h e Complex Network

# Adjacency m a t r i x

MAdj1 = m a t r i x ( 0 , nrow = a , n c o l = a )

f o r ( i i n 1 : ( a − 2 ) ){
MAdj1 [ i , ( i +1) ]=1

m=( y [ ( i +1)] − y [ i ] ) / ( x [ ( i +1)] − x [ i ] )

f o r ( j i n ( i + 2 ) : a ){

y t j =y [ i ]+m*( x [ j ] −x [ i ] )

i f ( y [ j ]>= y t j ){
m=( y [ j ] − y [ i ] ) / ( x [ j ] − x [ i ] )
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MAdj1 [ i , j ]=1

}
}

}

MAdj1 [ ( i + 1 ) , ( i +2) ]=1

M1 = MAdj1 + t ( MAdj1 )

g1 = g r a p h f r o m a d j a c e n c y m a t r i x (M1,

mode=c ( ’ u n d i r e c t e d ’ ) )

Sim1Dice = s i m i l a r i t y ( g1 , method = metodo )

# method = ” d i c e ”

# i n v l o g w e i g h t e d

Sim1 = Sim1Dice −1* d i a g ( r e p ( 1 , a ) )

# O b t a i n i n g t h e v e c t o r o f s i m i l a r i t i e s

# between t h e l a s t v e r t e x and t h e o t h e r s

SimComp1 = Sim1 [ a , 1 : ( a − 1 ) ]

Y1 = as . v e c t o r ( r e p ( 0 , ( a − 1 ) ) )

uu=which ( SimComp1==max ( SimComp1 ) )

AC= a c f ( y , l a g . max = l e n g t h ( y ) , p l o t =FALSE )

AU= r e p ( 0 , l e n g t h ( AC$acf ) )

f o r ( u i n 1 : l e n g t h ( AC$acf ) ) {
AU[ u ]= AC$acf [ ( l e n g t h ( AC$acf ) −u + 1 ) ]

}
ALFA[ b , ] =AU

f o r ( u i n uu ){

a l f a =AU[ u ]

i f ( b ==1){
Y1 [ u ]= y1n + ( −K+ a l f a ) * ( ( y1n
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−y [ u ] ) / ( t n − x [ u ] ) )

}
i f ( b>1){

Y1 [ u ]= ( y1n + ( −K+ a l f a ) * ( ( y1n

−y [ u ] ) / ( t n − x [ u ] ) ) )

}

}

# C a l c u l a t i n g MVA #

indexY1=which ( SimComp1==max ( SimComp1 ) )

yMV[ b ] = max ( Y1 [ indexY1 ] ) + ( facNL [ b ] )

r e a l =x1 [ (w+ 1 ) : (w+b ) ]

erroMV= r e a l −yMV

SumErro=sum ( erroMV ˆ 2 )

# C a l c u l a t i n g t h e T r a i n i n g MAE, MAPE and RMSE

# The v a l u e s o f K and J must be choosen

# based on t h e s m a l l e s t e r r o r s

MAEMV=mean ( abs ( erroMV ) )

MAPEMV=mean ( abs ( erroMV ) / r e a l )*100

RMSEMV= s q r t ( mean ( erroMV ˆ 2 ) )

#####################################

} # End of t h e f o r i n b

}

p r i n t ( c ( ’MAE−MVA: ’ , MAEMV, K, J ) )

p r i n t ( c ( ’RMSE−MVA: ’ , RMSEMV, K, J ) )

p r i n t ( c ( ’ Index : ’ , s q r t (RMSEMV*MAEMV) ) )
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# We used t h i s i n d e x t o choose K and J .

# The chosen p a r a m e t e r s a r e r e l a t e d t o

# t h e s m a l l e s t v a l u e o f t h i s i n d e x .

p r i n t ( c ( ’ F o r e c a s t s t a r t s ’ ,K) )

yMVtrai=yMV

pred =n−w− t r a i ## S i z e o f t h e

# t e s t s e t

f o r ( qa i n 1 : 1 ){
yMV = c ( )

ALFA= m a t r i x ( r e p ( 0 , (w)* p red ) , n c o l =(w) ,

byrow=TRUE)

facNL=c ( )

}
f o r ( b i n 1 : p red ){

y = D[ t r a i +b , ]

x = ( t r a i +b ) : ( t r a i +b+w−1)

a = w

y1n = y [w]

t n = x [w]

i f ( b ==1){
facNL [ b ]= −( yMVtrai [ ( l e n g t h ( yMVtrai ) ) ] −

y [ ( w− 1 ) ] ) * ( exp ( − J * abs ( yMVtrai [ ( l e n g t h ( yMVtrai ) ) ]

−y [ ( w− 1 ) ] ) ) )

}
i f ( b>1){

facNL [ b ]= −( yMVfor [ ( b −1)] − y1n )*

( exp ( − J *K* abs ( yMVfor [ ( b −1)] − y1n ) ) )

}

# C o n s t r u c t i n g Network #

# Adjacency M at r i x
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MAdj1 = m a t r i x ( 0 , nrow = a , n c o l = a )

f o r ( i i n 1 : ( a − 2 ) ){
MAdj1 [ i , ( i +1) ]=1

m=( y [ ( i +1)] − y [ i ] ) / ( x [ ( i +1)] − x [ i ] )

f o r ( j i n ( i + 2 ) : a ){

y t j =y [ i ]+m*( x [ j ] −x [ i ] )

i f ( y [ j ]>= y t j ){
m=( y [ j ] − y [ i ] ) / ( x [ j ] − x [ i ] )

MAdj1 [ i , j ]=1

}
}

}

MAdj1 [ ( i + 1 ) , ( i +2) ]=1

M1 = MAdj1 + t ( MAdj1 )

g r a f o 1 = g r a p h f r o m a d j a c e n c y m a t r i x (M1,

mode=c ( ’ u n d i r e c t e d ’ ) )

Sim1Dice = s i m i l a r i t y ( g ra fo1 , method = metodo )

Sim1 = Sim1Dice −1* d i a g ( r e p ( 1 , a ) )

# O b t a i n i n g t h e v e c t o r o f s i m i l a r i t i e s

# between t h e l a s t v e r t e x and t h e o t h e r s

SimComp1 = Sim1 [ a , 1 : ( a − 1 ) ]

Y1 = as . v e c t o r ( r e p ( 0 , ( a − 1 ) ) )

uu=which ( SimComp1==max ( SimComp1 ) )

AC= a c f ( y , l a g . max = l e n g t h ( y ) , p l o t =FALSE )

AU= r e p ( 0 , l e n g t h ( AC$acf ) )
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f o r ( u i n 1 : l e n g t h ( AC$acf ) ) {
AU[ u ]= AC$acf [ ( l e n g t h ( AC$acf ) −u + 1 ) ]

}
ALFA[ b , ] =AU

f o r ( u i n uu ){

a l f a =AU[ u ]

i f ( b ==1){
Y1 [ u ]= y1n + ( −K+ a l f a ) * ( ( y1n

− y [ u ] ) / ( t n − x [ u ] ) )

}
i f ( b>1){

Y1 [ u ]= ( y1n + ( −K+ a l f a ) * ( ( y1n

− y [ u ] ) / ( t n − x [ u ] ) ) )

}

}

# C a l c u l a t i n g MVA #

indexY1=which ( SimComp1==max ( SimComp1 ) )

yMVfor [ b ] = max ( Y1 [ indexY1 ] ) + ( facNL [ b ] )

r e a l =x1 [ ( t r a i +w+ 1 ) : ( t r a i +w+b ) ]

erroMV= r e a l −yMVfor

MAEMVfor=mean ( abs ( erroMV ) )

MAPEMVfor=mean ( abs ( erroMV ) / r e a l )*100

RMSEMVfor= s q r t ( mean ( erroMV ˆ 2 ) )

#####################################

} # End of t h e f o r i n b

p r i n t ( c (MAEMVfor , b ) )
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p r i n t ( c ( ’MAE: MV’ , MAEMVfor ) )

p r i n t ( c ( ’MAPE: MV’ , MAPEMVfor ) )

p r i n t ( c ( ’RMSE: MV’ , RMSEMVfor ) )

y l im = c ( min ( yMVfor , r e a l ) , max ( yMVfor , r e a l ) )

y l im = c ( min ( yMVfor , r e a l ) , max ( yMVfor , r e a l ) )

x l im = c ( 1 , l e n g t h ( yMVfor ) )

p l o t ( r e a l , c o l =” b l u e ” , y l im =ylim ,

x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( r e a l , t y p e = ’o ’ , pch =20 ,

cex = 0 . 8 5 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t ( yMVfor , c o l =” magenta ” , y l im =ylim ,

x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( yMVfor , t y p e = ’o ’ , pch =20 ,

cex = 0 . 8 5 , c o l = ’ magenta ’ )

} # End of t h e f o r i n ON

E.2 Hybrid Means of Multiple Approaches R Code

In this section we present the R code used to provide the one-step-ahead forecasting using the

Hybrid Means of Multiple Approaches. Firstly we use the training set to search the value of

β which gives the smallest sum of squared error, fore each type of mean. Next, the algorithm

produces the multiple values of β, according described in the equations (4.25) and (4.26), and

apply this vector in the four types of means. In the end of this forecasting process, done in

the training set, the sum of squared error is evaluated. Lastly, we use the result of the equation

(4.28) to calculate the HMMA in the training set and next the SSE is evaluated. The minimum

value of SSE reveals what type of β and what type of mean will be used in the test set.

l i b r a r y ( e1071 )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom ) # Invoke t h e L i b r a r y

l i b r a r y ( dgof )

l i b r a r y ( quantmod )

l i b r a r y ( g g p l o t 2 )
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l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )

###############################

f o r (QAAA i n 1 : 1 ){
t i c ( )

s t a r t =0 .03

end =0.99

s t e p =0.025

t s =2 ### E s c o l h e r t s e n t r e 1 , 2 , 3 , 4 , 5 , 6 , 7 e 8 .

Indexmin =c ( )

# I m p o r t i n g t h e d a t a s e t s used t o c r e a t e HMMA

i f ( t s ==1){
MV = r e a d . csv ( f i l e = ”yMVforAIR . csv ” )

MVt = r e a d . csv ( f i l e = ” yMVtraiAIR . csv ” )

Auxt = r e a d . csv ( f i l e =” SVMtraiAIR . csv ” )

Aux = r e a d . csv ( f i l e =”SVMforAIR . csv ” )

Aux=Aux [ , 1 ]

Auxt=Auxt [ , 1 ]

MV=MV[ , 1 ]

MVt=MVt [ , 1 ]

r e a l t = r e a d . csv ( f i l e = ” r e a l t r a i A I R . csv ” )

r e a l = r e a d . csv ( f i l e = ” r e a l f o r A I R . csv ” )

r e a l = r e a l [ , 1 ]

r e a l t = r e a l t [ , 1 ]

}
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i f ( t s ==2){
MV = r e a d . csv ( f i l e = ”yMVforLYNX . csv ” )

MVt = r e a d . csv ( f i l e = ”yMVtraiLYNX . csv ” )

Auxt = r e a d . csv ( f i l e =” yANNetstraiLYNX . csv ” )

Aux = r e a d . csv ( f i l e =”yANNetsforLYNX . csv ” )

Aux=Aux [ , 1 ]

Auxt=Auxt [ , 1 ]

MV=MV[ , 1 ]

MVt=MVt [ , 1 ]

r e a l t = r e a d . csv ( f i l e = ” rea l t r a iLYNX . csv ” )

r e a l = r e a d . csv ( f i l e = ” realforLYNX . csv ” )

r e a l = r e a l [ , 1 ]

r e a l t = r e a l t [ , 1 ]

r e a l t = r e a l t [ −1]

r e a l t = r e a l t [ −1]

MVt=MVt[ −1]

MVt=MVt[ −1]

}
i f ( t s ==3){

MV = r e a d . csv ( f i l e = ”yMVforIBOV . csv ” )

MVt = r e a d . csv ( f i l e = ” yMVtraiIBOV . csv ” )

Auxt = r e a d . csv ( f i l e =”SVMtraiIBOV . csv ” )

Aux = r e a d . csv ( f i l e =”SVMforIBOV . csv ” )

Aux=Aux [ , 1 ]

Auxt=Auxt [ , 1 ]

MV=MV[ , 1 ]

MVt=MVt [ , 1 ]

r e a l t = r e a d . csv ( f i l e = ” r e a l t r a i I B O V . csv ” )

r e a l = r e a d . csv ( f i l e = ” rea l fo r IBO V . csv ” )

r e a l = r e a l [ , 1 ]

r e a l t = r e a l t [ , 1 ]

#MVt=MVt[ −1]

# r e a l t = r e a l t [ −1]

}
i f ( t s ==4){

MV = r e a d . csv ( f i l e = ”yMVforNHT . csv ” )

MVt = r e a d . csv ( f i l e = ”yMVtraiNHT . csv ” )

Auxt = r e a d . csv ( f i l e =”SVMtraiNHT . csv ” )
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Aux = r e a d . csv ( f i l e =”SVMforNHT . csv ” )

Aux=Aux [ , 1 ]

Auxt=Auxt [ , 1 ]

MV=MV[ , 1 ]

MVt=MVt [ , 1 ]

r e a l t = r e a d . csv ( f i l e = ” r e a l t r a i N H T . csv ” )

r e a l = r e a d . csv ( f i l e = ” rea l fo rNHT . csv ” )

r e a l = r e a l [ , 1 ]

r e a l t = r e a l t [ , 1 ]

}
i f ( t s ==5){

MV = r e a d . csv ( f i l e = ”yMVforRBTS . csv ” )

MVt = r e a d . csv ( f i l e = ” yMVtraiRBTS . csv ” )

Auxt = r e a d . csv ( f i l e =”SVMtraiRBTS . csv ” )

Aux = r e a d . csv ( f i l e =”SVMforRBTS . csv ” )

Aux=Aux [ , 1 ]

Auxt=Auxt [ , 1 ]

MV=MV[ , 1 ]

MVt=MVt [ , 1 ]

r e a l t = r e a d . csv ( f i l e = ” r e a l t r a i R B T S . csv ” )

r e a l = r e a d . csv ( f i l e = ” rea l fo rRBTS . csv ” )

r e a l = r e a l [ , 1 ]

r e a l t = r e a l t [ , 1 ]

}

f o r (QAA i n 1 : 5 ){
# In t h i s f o r , t h e code s e a r c h t h e b e s t b e t a

# t o be used i n t h e HMMA e s t i m a t i o n .

Be ta =c ( )

KK= seq ( s t a r t , end , s t e p )

maeH= m a t r i x ( r e p ( 0 , 4 * l e n g t h (KK) ) , n c o l =4)

SSE= m a t r i x ( r e p ( 0 , 4 * l e n g t h (KK) ) , n c o l =4)

f o r (QA i n 1 : l e n g t h (KK) ) {

b e t a =KK[QA]
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###############################################

# Weighted Q u a d r a t i c Mean

HQMt= s q r t ( b e t a *MVtˆ2+(1 − b e t a )* Auxt ˆ 2 )

# Weighted A r i t h m e t i c Mean

HGMt=c ( )

f o r ( u i n 1 : l e n g t h (MVt ) ) {
i f (MVt[ u]>0 && Auxt [ u ]>0){

HGMt[ u ] = (MVt[ u ] ˆ b e t a ) * ( Auxt [ u ] ˆ ( 1 − b e t a ) )

}
i f (MVt[ u]<0 | | Auxt [ u ]<0){

HGMt[ u ]= −( abs (MVt[ u ] ) ˆ b e t a ) * ( abs ( Auxt [ u ] ) ˆ ( 1 − b e t a ) )

}
}

# Weighted A r i t h m e t i c Mean

HAMt= b e t a *MVt+(1 − b e t a )* Auxt

# Weighted Harmonic Mean

HHMt=Auxt *MVt / ( b e t a * Auxt +(1 − b e t a )*MVt)

# E v a l u a t i n g t h e r e s i d u a l s

eQ= r e a l t −HQMt

eA= r e a l t −HAMt

eG= r e a l t −HGMt

eH= r e a l t −HHMt

# E v a l u a t i n g sum of s q u a r e d e r r o r s

SumEQ=sum ( eQ ˆ 2 )

SumEA=sum ( eA ˆ 2 )

SumEG=sum ( eG ˆ 2 )
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SumEH=sum ( eH ˆ 2 )

# E v a l u a t i n g MAE

MAEQ=mean ( abs ( eQ ) )

MAEA=mean ( abs ( eA ) )

MAEG=mean ( abs ( eG ) )

MAEH=mean ( abs ( eH ) )

# E v a l u a t i n g RMSE

RMSEQ= s q r t ( mean ( eQ ˆ 2 ) )

RMSEA= s q r t ( mean ( eA ˆ 2 ) )

RMSEG= s q r t ( mean ( eG ˆ 2 ) )

RMSEH= s q r t ( mean ( eH ˆ 2 ) )

maeH [QA, 1 ] =MAEQ

maeH [QA, 2 ] =MAEA

maeH [QA, 3 ] =MAEG

maeH [QA, 4 ] =MAEH

Beta [QA]= b e t a

SSE [QA, 1 ] =SumEQ

SSE [QA, 2 ] =SumEA

SSE [QA, 3 ] =SumEG

SSE [QA, 4 ] =SumEH

}

i f (QAA<=3){

IminSSE=which ( SSE==min ( SSE ) )

l i n =IminSSE %% l e n g t h (KK)

i f ( l i n ==0){
l i n = l e n g t h (KK)
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}
i f ( IminSSE== l e n g t h (KK) * 4 ){

c o l =4

}
i f ( IminSSE != l e n g t h (KK) * 4 ){ c o l =IminSSE %/% l e n g t h (KK)+1

}
b e t a = Beta [ l i n ]

# R e f i n i n g t h e s e a r c h s e t f o r b e t a

s t a r t = be t a − s t e p

end= b e t a + s t e p

s t e p = s t e p / 1 0

}

i f (QAA==4){

IminSSE=which ( SSE==min ( SSE ) )

p r i n t ( c ( ’ s i z e KK: ’ , l e n g t h (KK) ) )

l i n =IminSSE %% l e n g t h (KK)

i f ( l i n ==0){
l i n = l e n g t h (KK)

}
i f ( IminSSE == l e n g t h (KK) * 4 ){

c o l =4

}
i f ( IminSSE != l e n g t h (KK) * 4 ){

c o l =IminSSE %/% l e n g t h (KK)+1

}

b e t a = Beta [ l i n ]

t y p e = c o l

s t a r t = b e t a

end= b e t a

s t e p = s t e p

}

}
p r i n t ( ’ R e s u l t s f o r f i x e d b e t a i n t h e t r a i n i n g s e t ’ )



173

p r i n t ( c ( be t a , min ( SSE ) ) )

#************************************************#

Ht=c ( )

SSEt=c ( )

BETAt=c ( )

BETAt [ 1 ] = 0 . 5

f o r ( u i n 2 : l e n g t h ( Auxt ) ) {
e a u x t =( r e a l t [ ( u −1)] − Auxt [ ( u − 1 ) ] ) ˆ 2

emvt =( r e a l t [ ( u −1)] −MVt [ ( u − 1 ) ] ) ˆ 2

i f ( eaux t>emvt ){
BETAt [ u ]= e a u x t / ( e a u x t +emvt )

}
i f ( eaux t<emvt ){
BETAt [ u ]= emvt / ( e a u x t +emvt )

}
}

b e t a t =BETAt

i f ( t y p e ==1){
Ht= s q r t ( b e t a t *MVtˆ2+(1 − b e t a t )* Auxt ˆ 2 )

}

i f ( t y p e ==2){
Ht =( b e t a t )*MVt+(1 − b e t a t )* Auxt

}

i f ( t y p e ==3){
Ht =(MVt ˆ ( b e t a t ) ) * ( Auxt ˆ (1 − b e t a t ) )

}
i f ( t y p e ==4){
Ht=Auxt *MVt / ( ( 1 − b e t a t )*MVt+( b e t a t )* Auxt )

}

e t = r e a l t −Ht

SumEt=sum ( e t ˆ 2 )

SSEt [ 1 ] = SumEt
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p r i n t ( ’ R e s u l t s f o r v a r i a b l e b e t a i n t h e t r a i n i n g s e t ’ )

p r i n t ( c ( b e t a t , SumEt ) )

# C a l c u l a t i n g SSE i n t h e t r a i n i n g s e t w i t h f i x e d b e t a

b e t a t 4 2 8 =sum ( ( Auxt − r e a l t ) * ( Auxt −MVt ) ) / sum ( ( MVt−Auxt ) ˆ 2 )

i f ( t y p e ==1){
Ht= s q r t ( b e t a t 4 2 8 *MVtˆ2+(1 − b e t a t 4 2 8 )* Auxt ˆ 2 )

}

i f ( t y p e ==2){
Ht =( b e t a t 4 2 8 )*MVt+(1 − b e t a t 4 2 8 )* Auxt

}

i f ( t y p e ==3){
Ht =(MVt ˆ ( b e t a t 4 2 8 ) ) * ( Auxt ˆ (1 − b e t a t 4 2 8 ) )

}
i f ( t y p e ==4){
Ht=Auxt *MVt / ( ( 1 − b e t a t 4 2 8 )*MVt+( b e t a t 4 2 8 )* Auxt )

}

e t = r e a l t −Ht

SumEt=sum ( e t ˆ 2 )

SSEt [ 2 ] = SumEt

p r i n t ( ’ R e s u l t s f o r f i x e d b e t a based on eq 4 . 2 8 i n

t h e t r a i n i n g s e t ’ )

p r i n t ( c ( b e t a t 4 2 8 , SumEt ) )

#***********************************************#

BETA=c ( )

BETA[ 1 ] = 0 . 5

f o r ( u i n 2 : l e n g t h ( Aux ) ) {
eaux =( r e a l [ ( u −1)] −Aux [ ( u − 1 ) ] ) ˆ 2

emv=( r e a l [ ( u −1)] −MV[ ( u − 1 ) ] ) ˆ 2
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i f ( eaux>emv ){
BETA[ u ]= eaux / ( eaux+emv )

}
i f ( eaux<emv ){
BETA[ u ]=emv / ( eaux+emv )

}

}

b e t a F =BETA

b e t a F =sum ( ( Auxt − r e a l t ) * ( Auxt −MVt ) ) / sum ( ( MVt−Auxt ) ˆ 2 )

b e t a F = b e t a

i f ( t y p e ==1){
H= s q r t ( b e t a F *MVˆ2+(1 − b e t a F )* Aux ˆ 2 )

}

i f ( t y p e ==2){
H=( b e t a F )*MV+(1 − b e t a F )* Aux

}

i f ( t y p e ==3){
H=(MVˆ ( b e t a F ) ) * ( Aux ˆ(1 − b e t a F ) )

}
i f ( t y p e ==4){

H=Aux*MV/ ( ( 1 − b e t a F )*MV+( b e t a F )* Aux )

}

er roH = r e a l −H

MAE=mean ( abs ( er roH ) )

RMSE= s q r t ( mean ( er roH ˆ 2 ) )

SSEf=sum ( er roH ˆ 2 )

p r i n t ( c (MAE,RMSE, SSEf ) )

p r i n t ( c ( b e t a F ) )

p r i n t ( c ( ’ t y p e : ’ , t y p e ) )

# Here we a r e u s i n g t h e Diebold −Mariano t e s t
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# t o o b s e r v e whe the r HMMA i s more a c c u r a t e

# t h e n t h e methods used t o g e n e r a t e t h e HMMA

# model .

eMV= r e a l −MV

eAUX= r e a l −Aux

t e s t e = dm . t e s t (eMV, erroH , a l t e r n a t i v e = ” g r e a t e r ” ,

h = 1 , power = 1)

pMV= t e s t e $ p . v a l u e

t e s t e = dm . t e s t (eAUX, erroH , a l t e r n a t i v e = ” g r e a t e r ” ,

h = 1 , power = 1)

pAUX= t e s t e $ p . v a l u e

p r i n t ( c (pMV, pAUX ) )

png ( f i l e = ”PLOT . png ” , wid th = 6 , h e i g h t = 5 , u n i t s = ’ in ’ ,

r e s =600)

y l im = c ( min (H, r e a l , Aux ) − 0 . 0 2 , ( max (H, r e a l , Aux ) + 0 . 0 5 ) )

x l im = c ( 1 , l e n g t h (H) )

p l o t ( r e a l , c o l =” b l u e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( r e a l , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t ( Aux , c o l =” g r e e n ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( Aux , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ green ’ )

p a r ( new=TRUE)

p l o t (H, c o l =” r e d ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s (H, t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ red ’ )

p a r ( new=TRUE)

p l o t (MV, c o l =” o r a ng e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s (MV, t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ orange ’ )

metodos1= c b i n d ( r e a l , Aux )

metodos2= c b i n d (H, MV)

colnames ( metodos1 ) = c ( ” Rea l Value ” , ” Method 2 ” )

co lnames ( metodos2 ) = c ( ”HMMA” , ”MVA” )

l e g e n d ( 1 , 1 . 0 2 5 ,

l e g e n d = colnames ( metodos1 ) ,

b t y = ” n ” ,
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c o l = c ( ” b l u e ” , ” g r e e n ” ) ,

pch = c ( 1 6 , 1 6 ) ,

cex = 0 . 9 ,

t e x t . f o n t =2 , h o r i z = TRUE,

l t y = c ( 1 , 1 )

)

l e g e n d ( 1 , 1 . 0 ,

l e g e n d = colnames ( metodos2 ) ,

b t y = ” n ” ,

c o l = c ( ” r e d ” , ” o ra ng e ” ) ,

pch = c ( 1 6 , 1 6 ) ,

cex = 0 . 9 ,

t e x t . f o n t =2 , h o r i z = TRUE,

l t y = c ( 1 , 1 )

)

dev . o f f ( )

}

E.3 Mao-Xiao Approach and Naive R Code

In this section we present the R code used to provide the one-step-ahead forecasting

using the Mao-Xiao Approach and Naive Estimation. No parameters must be estimated in these

methods, hence, both methods are applied directly in the test set. Consider the m-element test

set yn−m+1, yn−m+2, · · · , yn. The window considered to estimate the first element of the test set

is the w-element set yn−m−w+1, · · · , yn−m. The last window is composed by the observations

yn−w, · · · , yn−1, which is used to estimate yn. The set ŷn−w+1, · · · , ŷn represents the MXA

estimates for the test set and this set is used to calculate MAE, MAPE and RMSE.

l i b r a r y ( e1071 )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom ) # Invoke t h e L i b r a r y

l i b r a r y ( dgof )

l i b r a r y ( quantmod )

l i b r a r y ( g g p l o t 2 )
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l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )

f o r (AA i n 1 : 1 ){
t s =5

# o r i g i s 0 i f t h e i n p u t s e t i s composed by t h e o r i g i n a l d a t a

# o r i g i s 1 i f t h e i n p u t s e t i s composed by t h e n o r m a l i z e d d a t a

o r i g =0

i f ( t s ==1){
x1 = r e a d . csv ( f i l e = ” A i r P a s s e n g e r s . c sv ” )

i n i =40

x1=x1 [ , 1 ]

f a c t o r =0 .7

}
i f ( t s ==2){
x1 = r e a d . csv ( f i l e = ” lynx . csv ” )

i n i =77

x1=x1 [ , 1 ]

f a c t o r =0 .7

}

i f ( t s ==3){
x1 = r e a d . csv ( f i l e = ”IBOV . csv ” )

i n i =200

x1=x1 [ , 1 ]

f a c t o r =0 .5
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}

i f ( t s ==4){
x1 = r e a d . csv ( f i l e = ” nhtemp . csv ” )

i n i =10

x1=x1 [ , 1 ]

f a c t o r =0 .8

}
i f ( t s ==5){
x1 = r e a d . csv ( f i l e = ”RBTS . csv ” )

i n i =30

x1=x1 [ , 1 ]

f a c t o r =0 .75

}

###########################################

n= l e n g t h ( x1 )

w= i n i

i f ( o r i g ==0){
M=max ( x1 )

m=min ( x1 )

x1 =( x1−m ) / (M−m)

}

t r a i = c e i l i n g ( f a c t o r * ( n−w) ) # s i z e o f t h e t r a i n i n g s e t

p r ed = l e n g t h ( x1 ) −(w+ t r a i ) # s i z e o f t h e t e s t s e t

D= m a t r i x ( r e p ( 0 ,w*( n−w) ) , n c o l =w)

f o r ( u i n 1 : ( n−w) ) {
f o r ( v i n 1 :w ){
D[ u , v ]= x1 [ u+v −1]

}
}

f o r ( qa i n 1 : 1 ){
yMX = c ( )
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yNai = c ( )

} # Fim do f o r em qa

f o r ( b i n 1 : ( n−w) ) {

# B u i l d i n g Network − v i s i b i l i t y g raph #

y = D[ b , ]

x = b : ( w+b −1)

a = w

MAdj1 = m a t r i x ( 0 , nrow = a , n c o l = a )

f o r ( i i n 1 : ( a − 2 ) ){
MAdj1 [ i , ( i +1) ]=1

m=( y [ ( i +1)] − y [ i ] ) / ( x [ ( i +1)] − x [ i ] )

f o r ( j i n ( i + 2 ) : a ){

y t j =y [ i ]+m*( x [ j ] −x [ i ] )

i f ( y [ j ]>= y t j ){
m=( y [ j ] − y [ i ] ) / ( x [ j ] − x [ i ] )

MAdj1 [ i , j ]=1

}
}
}
MAdj1 [ ( i + 1 ) , ( i +2) ]=1

M1 = MAdj1 + t ( MAdj1 )

g r a f o 1 = g r a p h f r o m a d j a c e n c y m a t r i x (M1, mode=c ( ’ d i r e c t e d ’ ) )

Sim1Dice = s i m i l a r i t y ( g ra fo1 , method = ” d i c e ” )

Sim1 = Sim1Dice −1* d i a g ( r e p ( 1 , a ) )

## C a l c u l a t i n g s i m i l a r i t i e s be tween each p r e v i o u s o b s e r v a t i o n

## and t h e l a s t one

SimComp1 = Sim1 [ a , 1 : ( a − 1 ) ]

y1n = y [w]

t n = x [w]
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############ Method ( Mao & Xiao , 2019) ##############

## V er t e x wi th t h e h i g h e r s i m i l a r i t y wi th t h e l a s t p o i n t

## of t h e window

NC1=which . max ( SimComp1 )

## C a l c u l a t i n g t h e a n g u l a r c o e f i c i e n t

caC = ( y [ a ] − y [NC1 ] ) / ( x [ a ] − x [NC1 ] )

# Pre − e s t i m a t e f o r y ( a +1)

yMXaux = caC * ( 1 ) + y [ a ]

## w e i g h t 1

wN1C = ( a−NC1 ) / ( a+1−NC1)

## complement o f t h e w e i g h t 1

wNC = 1 / ( a+1−NC1)

### C a l c u l a t i n g t h e one − s t e p − ahead MXA e s t i m a t i o n

yMX[ b ] = yMXaux*wN1C+y [ a ]*wNC

## C a l c u l a t i n g Naive Approach ##

q= l e n g t h ( y )

yNai [ b ] = y [ q ]

}

yMXtrai=yMX[ 1 : t r a i ] # E x t r a c t i n g MXA from t h e t r a i n i n g s e t

y N a i t r a i =yNai [ 1 : t r a i ] # E x t r a c t i n g Naive from t h e t r a i n i n g s e t

r e a l t r a i =x1 [ (w+ 1 ) : (w+ t r a i ) ]

e r r o n a i t r a i = r e a l t r a i − y N a i t r a i

e r r o m x t r a i = r e a l t r a i −yMXtrai

#### C a l c u l a n d o os MAEs SW e Arima

MAEmxtrai=mean ( abs ( e r r o m x t r a i ) )
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MAPEmxtrai=mean ( abs ( e r r o m x t r a i ) / r e a l t r a i )*100

RMSEmxtrai= s q r t ( mean ( e r r o m x t r a i ˆ 2 ) )

MAEnai t ra i =mean ( abs ( e r r o n a i t r a i ) )

MAPEnai t ra i=mean ( abs ( e r r o n a i t r a i ) / r e a l t r a i )*100

RMSEnai t ra i = s q r t ( mean ( e r r o n a i t r a i ˆ 2 ) )

p r i n t ( c ( ’ Naive − T r a i n n i n g ’ , MAEnai t ra i , MAPEnaitrai , RMSEnai t ra i ) )

p r i n t ( c ( ’MXA− T r a i n n i n g ’ , MAEmxtrai , MAPEmxtrai , RMSEmxtrai ) )

#####################################

yMXfor=yMX[ ( t r a i + 1 ) : ( l e n g t h (yMX) ) ]

y N a i f o r =yNai [ ( t r a i + 1 ) : ( l e n g t h (yMX) ) ]

r e a l f o r =x1 [ (w+ t r a i + 1 ) : ( n ) ]

i n d z e r o =which ( r e a l f o r ==0)

# e r r o n a i f o r = r e a l f o r [ − i n d z e r o ] − y N a i f o r [ − i n d z e r o ]

# e r r o m x f o r = r e a l f o r [ − i n d z e r o ] −yMXfor [ − i n d z e r o ]

e r r o n a i f o r = r e a l f o r − y N a i f o r

e r r o m x f o r = r e a l f o r −yMXfor

#### C a l c u l a n d o os MAEs SW e Arima

MAEmxfor=mean ( abs ( e r r o m x f o r ) )

#MAPEmxfor=mean ( abs ( e r r o m x f o r [ − i n d z e r o ] ) / r e a l f o r [ − i n d z e r o ] ) * 1 0 0

MAPEmxfor=mean ( abs ( e r r o m x f o r ) / r e a l f o r )*100

RMSEmxfor= s q r t ( mean ( e r r o m x f o r ˆ 2 ) )

MAEnaifor=mean ( abs ( e r r o n a i f o r ) )

# MAPEnaifor=mean ( abs ( e r r o n a i f o r [ − i n d z e r o ] ) / r e a l f o r [ − i n d z e r o ] ) * 1 0 0

MAPEnaifor=mean ( abs ( e r r o n a i f o r ) / r e a l f o r )*100

RMSEnaifor= s q r t ( mean ( e r r o n a i f o r ˆ 2 ) )

p r i n t ( c ( ’***************************************** ’) )

p r i n t ( c ( ’ Naive − F o r e c a s t i n g ’ , MAEnaifor , MAPEnaifor , RMSEnaifor ) )

p r i n t ( c ( ’MXA− F o r e c a s t i n g ’ , MAEmxfor , MAPEmxfor , RMSEmxfor ) )
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yl im = c ( min ( yMXfor , yNa i fo r , r e a l f o r ) , max ( yMXfor , yNa i fo r , r e a l f o r ) )

x l im = c ( 1 , l e n g t h ( yMXfor ) )

p l o t ( r e a l f o r , c o l =” b l u e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( r e a l f o r , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t ( yNa i fo r , c o l =” g r e e n ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( yNa i fo r , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ green ’ )

p a r ( new=TRUE)

p l o t ( yMXfor , c o l =” o r a ng e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( yMXfor , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ orange ’ )

}

E.4 Dynamic ARIMA R Code

l i b r a r y ( e1071 )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom )

l i b r a r y ( dgof )

l i b r a r y ( quantmod )

l i b r a r y ( g g p l o t 2 )

l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )

###############################
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f o r (Q i n 1 : 1 ){
t i c ( )

o r i g =0

t s =4

i f ( t s ==1){
x1 = r e a d . csv ( f i l e = ” A i r P a s s e n g e r s . c sv ” )

i n i =40

x1=x1 [ , 1 ]

f a c t o r =0 .7

}
i f ( t s ==2){
x1 = r e a d . csv ( f i l e = ” lynx . csv ” )

i n i =77

x1=x1 [ , 1 ]

f a c t o r =0 .7

}
i f ( t s ==3){
x1 = r e a d . csv ( f i l e = ”IBOV . csv ” )

i n i =200

x1=x1 [ , 1 ]

f a c t o r =0 .5

}
i f ( t s ==4){
x1 = r e a d . csv ( f i l e = ” nhtemp . csv ” )

i n i =10

x1=x1 [ , 1 ]

f a c t o r =0 .8

}
i f ( t s ==5){
x1 = r e a d . csv ( f i l e = ”RBTS . csv ” )

i n i =30

x1=x1 [ , 1 ]

f a c t o r =0 .75
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}

n= l e n g t h ( x1 )

w= i n i

i f ( o r i g ==0){
M=max ( x1 )

m=min ( x1 )

x1 =( x1−m ) / (M−m)

}

t r a i = c e i l i n g ( f a c t o r * ( n−w) ) # S i z e o f t h e t r a i n i n g s e t

p r ed =n−w− t r a i # S i z e o f t h e t e s t s e t

##################################################

f o r ( qa i n 1 : 1 ){

x1 = as . v e c t o r ( x1 )

x1n = x1

n = l e n g t h ( x1n )

t = as . v e c t o r ( 0 : ( n − 1 ) )

p l o t ( t , x1n , t y p e = ’ l ’ )

y r e a l = r e p ( 0 , ( n− i n i ) )

yArima = r e p ( 0 , ( n− i n i ) )

Modelos = r e p ( 0 , ( n− i n i ) )

} # Fim do f o r em qa

f o r ( b i n i n i : ( n − 1 ) ){

i n d = ( b− i n i +1)

## C a l c u l a t i n g Dynamic ARIMA ##
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yAR = x1n [ i n d : b ]

Lambda = BoxCox . lambda (yAR)

arimaY = a u t o . a r ima (yAR , s t e p w i s e = FALSE , s e a s o n a l =TRUE,

a p p r o x i m a t i o n = FALSE , a l l o w d r i f t = T , al lowmean = T ,

lambda = Lambda )

YarimaFor = f o r e c a s t ( arimaY , l e v e l = c ( 9 5 ) , h = 1)

yArima [ i n d ]= YarimaFor$mean [ 1 ]

ya=yArima [ i n d ]

Modelos [ i n d ]= YarimaFor$method

}

y r e a l =x1 [ ( i n i + 1 ) : l e n g t h ( x1 ) ]

yAr imafor =yArima [ ( t r a i + 1 ) : ( n−w) ]

y r e a l f o r = y r e a l [ ( t r a i + 1 ) : ( n−w) ]

Di f = ( yArima − y r e a l )

D i f f o r = Di f [ ( t r a i + 1 ) : ( n−w) ]

ModDif = abs ( D i f f o r )

b i a s = −mean ( D i f f o r )

MAE=mean ( ModDif )

MAPE=100*mean ( abs ( Di f [ ( t r a i + 1 ) : ( n−w ) ] / y r e a l [ ( t r a i + 1 ) : ( n−w ) ] ) )

RMSE= s q r t ( mean ( Di f [ ( t r a i + 1 ) : ( n−w ) ] ˆ 2 ) )

p r i n t ( c (MAE,MAPE, RMSE) )

## P e r f o r m a n c e s

RESULTS1 = c b i n d ( (MAE) , (MAPE) , (RMSE) )

co lnames ( RESULTS1 ) = c ( ”MAE” , ”MAPE” , ”RMSE” )
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rownames ( RESULTS1 ) = c ( ”ARIMA” )

p r i n t ( RESULTS1 )

y l im = c ( min ( yArimafor , y r e a l f o r ) , max ( yArimafor , y r e a l f o r ) )

y l im = c ( min ( yArimafor , y r e a l f o r ) , max ( yArimafor , y r e a l f o r ) )

x l im = c ( 1 , l e n g t h ( y r e a l f o r ) )

p l o t ( y r e a l f o r , c o l =” b l u e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( y r e a l f o r , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t ( yArimafor , c o l =” magenta ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( yArimafor , t y p e = ’o ’ , pch =20 , cex = 0 . 8 5 , c o l = ’ magenta ’ )

t o c ( )

}

E.5 Suport Vector Regression R Code

l i b r a r y ( e1071 )

l i b r a r y ( r p a r t )

l i b r a r y ( fdm2id )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom )

l i b r a r y ( dgof )

l i b r a r y ( quantmod )

l i b r a r y ( g g p l o t 2 )

l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )
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# p r e p a r e sample d a t a i n t h e form of d a t a f rame

# w i t h c o l s o f t i m e s t e p s ( x ) and v a l u e s ( y )

f o r (BB i n 1 : 1 ){

t s =2

f o r (AA i n 1 : 1 ){

i f ( t s ==1){
x1 = r e a d . csv ( f i l e = ” A i r P a s s e n g e r s . c sv ” )

i n i =40

x1=x1 [ , 1 ]

f a c t o r =0 .7

v a l =36

i f ( o r i g ==0){
C=30 ; gama=38 ; e p s i =0 .1

}
i f ( o r i g ==1){
C=30 ; gama=38 ; e p s i =0 .1

}
}
i f ( t s ==2){
x1 = r e a d . csv ( f i l e = ” lynx . csv ” )

i n i =77

x1=x1 [ , 1 ]

f a c t o r =0 .7

v a l =13

i f ( o r i g ==0){
C=3 ; gama=107 ; e p s i =0 .1

}
i f ( o r i g ==1){
C=3 ; gama=140 ; e p s i =0 .1

}

}
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i f ( t s ==3){
x1 = r e a d . csv ( f i l e = ”IBOV . csv ” )

i n i =200

x1=x1 [ , 1 ]

f a c t o r =0 .5

v a l =50

i f ( o r i g ==0){
C=15 ; gama=40 ; e p s i = 0 . 1 ;

}
i f ( o r i g ==1){
C=15 ; gama=40 ; e p s i = 0 . 1 ;

}
}
i f ( t s ==4){
x1 = r e a d . csv ( f i l e = ” nhtemp . csv ” )

i n i =10

x1=x1 [ , 1 ]

f a c t o r =0 .8

v a l =20

i f ( o r i g ==0){
C=1 ; gama=20 ; e p s i =0 .1

}
i f ( o r i g ==1){
C=1 ; gama=20 ; e p s i =0 .1

}

}
i f ( t s ==5){
x1 = r e a d . csv ( f i l e = ”RBTS . csv ” )

i n i =30

x1=x1 [ , 1 ]

f a c t o r =0 .75

v a l =4

i f ( o r i g ==0){
C=3 ; gama=1 ; e p s i =0 .1

}
i f ( o r i g ==1){
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C=2 ; gama =0.05 ; e p s i =0 .1

}
}
}

n= l e n g t h ( x1 ) ; w= i n i ; m=min ( x1 ) ; M=max ( x1 )

X=x1

i f ( o r i g ==0){
M=max ( x1 )

m=min ( x1 )

X=( x1−m ) / (M−m)

}

D= m a t r i x ( r e p ( 0 ,w*( n−w) ) , n c o l =w)

f o r ( u i n 1 : ( n−w) ) {
f o r ( v i n 1 :w ){
D[ u , v ]=X[ u+v −1]

}
}
t r a i = c e i l i n g ( f a c t o r * ( n−w) ) # S i z e o f t h e t r a i n i n g s e t

p r ed =n −( t r a i +w) # S i z e o f t h e t e s t s e t

months =1: l e n g t h (X)

f o r ( q i n 1 : 1 ){
SVMfor=c ( ) ; T r a i =c ( ) ;W=1: l e n g t h (X)

f o r ( u i n 1 : ( t r a i ) ) {

months=u : ( u+w−1)

t i m e s =months

window=D[ u , ]

DF = d a t a . f rame ( t imes , window )

colnames (DF)= c ( ” x ” , ” y ” )

# t r a i n an svm model , c o n s i d e r f u r t h e r t u n i n g

# p a r a m e t e r s f o r lower MSE
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svmodel = svm ( y ˜ x , d a t a =DF , t y p e =” eps − r e g r e s s i o n ” ,

k e r n e l =” r a d i a l ” , c o s t =C , e p s i l o n = e p s i , gamma=gama )

# s p e c i f y t i m e s t e p s f o r f o r e c a s t , eg f o r a l l

# window + 1 month ahead

nd = u : ( u+w)

### compute f o r e c a s t f o r a l l t h e w+1 months

e s t i = p r e d i c t ( svmodel , newdata = d a t a . f rame ( x=nd ) )

p r e = u n c l a s s ( e s t i )

T r a i [ u ]= p r e [ (w+ 1 ) ]

}

e r r o s v m t r a i = T r a i [ 1 : ( t r a i − v a l ) ] −X[ (w+ 1 ) : (w+ t r a i − v a l ) ]

r e a l s v m t r a i =X[ (w+ 1 ) : (w+ t r a i − v a l ) ]

MAE=mean ( abs ( e r r o s v m t r a i ) )

MAPE=mean ( abs ( e r r o s v m t r a i ) / r e a l s v m t r a i )*100

RMSE= s q r t ( mean ( e r r o s v m t r a i ˆ 2 ) )

p r i n t ( c ( ’ T r a i n i n g E r r o r s : ’ ) )

RESULTSSVM = c b i n d ( (MAE) , (MAPE) , (RMSE) )

co lnames (RESULTSSVM) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTSSVM) = c ( ”SVR” )

p r i n t (RESULTSSVM)

e r r o s v m v a l = T r a i [ ( t r a i − v a l + 1 ) : t r a i ] −X[ (w+ t r a i − v a l + 1 ) : (w+ t r a i ) ]

r e a l s v m v a l =X[ (w+ t r a i − v a l + 1 ) : (w+ t r a i ) ]

MAE=mean ( abs ( e r r o s v m v a l ) )

MAPE=mean ( abs ( e r r o s v m v a l ) / r e a l s v m v a l )*100

RMSE= s q r t ( mean ( e r r o s v m v a l ˆ 2 ) )

p r i n t ( c ( ’ V a l i d a t i o n E r r o r s : ’ ) )

RESULTSSVM = c b i n d ( (MAE) , (MAPE) , (RMSE) )

co lnames (RESULTSSVM) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTSSVM) = c ( ”SVM” )

p r i n t (RESULTSSVM)
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p r i n t ( c ( s q r t (MAE*RMSE ) ) )

p r i n t ( c(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’))

# S t a r t i n g p r e d i c t i o n i n t h e t e s t s e t w i t h t h e model

# d e f i n e d i n t h e t r a i n i n g s e t

f o r ( u i n 1 : p red ){

months =( u+ t r a i ) : ( u+ t r a i +w−1)

window=D[ u+ t r a i , ]

DF = d a t a . f rame ( months , window )

colnames (DF)= c ( ” x ” , ” y ” )

# t r a i n an svm model , c o n s i d e r f u r t h e r t u n i n g

# p a r a m e t e r s f o r lower MSE

svmodel = svm ( y ˜ x , d a t a =DF , t y p e =” eps − r e g r e s s i o n ” ,

k e r n e l =” r a d i a l ” , c o s t =C , e p s i l o n = e p s i , gamma=gama )

# s p e c i f y t i m e s t e p s f o r f o r e c a s t , eg f o r a l l

# window + 1 month ahead

nd = ( u+ t r a i ) : ( u+ t r a i +w)

### compute f o r e c a s t f o r a l l t h e w+1 months

e s t i = p r e d i c t ( svmodel , newdata = d a t a . f rame ( x=nd ) )

p r e = u n c l a s s ( e s t i )

SVMfor [ u ]= p r e [ (w+ 1 ) ]

}

e r r o s v m f o r =SVMfor−X[ (w+ t r a i + 1 ) : n ]

r e a l s v m f o r =X[ (w+ t r a i + 1 ) : n ]

i n d z e r o =which ( r e a l s v m f o r ==0)

i n d z e r o t r a i =which ( r e a l s v m t r a i ==0)

MAEfor=mean ( abs ( e r r o s v m f o r ) )

MAPEfor=mean ( abs ( e r r o s v m f o r ) / r e a l s v m f o r )*100
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MAPEfor=mean ( abs ( e r r o s v m f o r [ − i n d z e r o ] ) / r e a l s v m f o r [ − i n d z e r o ] ) * 1 0 0

RMSEfor= s q r t ( mean ( e r r o s v m f o r ˆ 2 ) )

p r i n t ( c ( ’ T e s t s e t e r r o r s : ’ ) )

RESULTSSVM = c b i n d ( ( MAEfor ) , ( MAPEfor ) , ( RMSEfor ) )

co lnames (RESULTSSVM) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTSSVM) = c ( ”SVR” )

p r i n t (RESULTSSVM)

p r i n t ( c (”*************************************************”))

# p l o t t h e r e s u l t s

y l im = c ( min ( SVMfor , r e a l s v m f o r ) − 0 . 0 5 ,

max ( SVMfor , r e a l s v m f o r ) + 0 . 0 5 )

x l im = c ( 1 , l e n g t h ( r e a l s v m f o r ) )

p l o t ( r e a l s v m f o r , c o l =” b l u e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( r e a l s v m f o r , t y p e = ’o ’ , pch =20 , cex = 0 . 9 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t ( SVMfor , c o l =” g r e e n ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( SVMfor , t y p e = ’o ’ , pch =20 , cex = 0 . 9 , c o l = ’ green ’ )

}

}

E.6 Hybrid ANN-ETS R Code

r e q u i r e ( v a l i d a n n )

r e q u i r e ( d p l y r )

r e q u i r e (ANN2)

l i b r a r y ( e1071 )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom )

l i b r a r y ( dgof )

l i b r a r y ( quantmod )
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l i b r a r y ( g g p l o t 2 )

l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )

f o r (AB i n 1 : 1 ){
h=3 # Number o f h i d de n l a y e r s

o r i g =1 # o r i g i s 1 i f t h e o r i g i n a l d a t a i s

# b e i n g used . Otherwise , t h a t i s , i f t h e d a t a

# a r e no rm a l i zed , o r i g =0

############################################

f o r (AA i n 1 : 1 ){
t s =1

i f ( t s ==1){
x1 = r e a d . csv ( f i l e = ” A i r P a s s e n g e r s . c sv ” )

i n i =40

x1=x1 [ , 1 ]

f a c t o r =0 .7

v a l =36

}
i f ( t s ==2){
x1 = r e a d . csv ( f i l e = ” lynx . csv ” )

i n i =77

x1=x1 [ , 1 ]

f a c t o r =0 .7

v a l =13

}
i f ( t s ==4){
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x1 = r e a d . csv ( f i l e = ”IBOV . csv ” )

i n i =200

x1=x1 [ , 1 ]

f a c t o r =0 .5

v a l =50

}
i f ( t s ==6){
x1 = r e a d . csv ( f i l e = ” nhtemp . csv ” )

i n i =10

x1=x1 [ , 1 ]

f a c t o r =0 .8

v a l =20

}
i f ( t s ==7){
x1 = r e a d . csv ( f i l e = ”RBTS . csv ” )

i n i =30

x1=x1 [ , 1 ]

f a c t o r =0 .75

v a l =4

}

}
################################################

s e t . s eed ( 2 )

X=x1

X = as . v e c t o r (X)

i f ( o r i g ==0){
M=max ( x1 )

m=min ( x1 )

X=( x1−m ) / (M−m)

}

n= l e n g t h (X)

w= i n i

D= m a t r i x ( r e p ( 0 ,w*( n−w) ) , n c o l =w)
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f o r ( u i n 1 : ( n−w) ) {
f o r ( v i n 1 :w ){
D[ u , v ]=X[ u+v −1]

}
}

mae= f u n c t i o n ( y , y h a t ){
r e t u r n ( sum ( ( y− y h a t ) ˆ 2 ) )

}

##################################################

t r a i = c e i l i n g ( f a c t o r * ( n−w) ) # S i z e o f t h e t r a i n i n g s e t

p r ed =n −(w+ t r a i ) # S i z e o f t h e t e s t s e t

NETS=c ( )

y e t s =c ( )

# P r o d u c i n g t h e ETS one − s t e p − ahead f o r e c a s t s

f o r ( u i n 1 : ( n−w) ) {

x t r a i n =D[ u , ]

x t r a i n = as . v e c t o r ( x t r a i n )

Yets = e t s ( x t r a i n , model = ’ZZZ ’ )

y a u x e t s = f o r e c a s t ( Yets )

y e t s [ u ]= yauxe ts$mean [ 1 ]

}

r e a l e t s =X[ (w+ 1 ) : n ]

e r r o e t s = r e a l e t s − y e t s

f o r ( u i n 1 : ( n−w− 2 ) ){
p r i n t ( u )

p e s o s = r u n i f ( ( h * ( u +1)+ h + 1 ) , − 0 . 1 , 0 . 1 )

x t r a i n = t ( e r r o e t s [ ( 1 ) : ( u ) ] ) #
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x t e s t e = t ( e r r o e t s [ ( 2 ) : ( u + 1 ) ] ) ### S t a r t s g e t t i n g N3

y t r a i n = e r r o e t s [ ( u + 1 ) ]

f i t = ann ( x t r a i n , y t r a i n , s i z e =h , a c t h i d = ” t a n h ” ,

a c t o u t = ” l i n e a r ” , Wts= pesos , o b j f n = mae )

NETS[ u ] = p r e d i c t ( f i t , x t e s t e )

}

y e t s 1 = y e t s [ −1]

y e t s 2 = y e t s 1 [ −1]

yANNets= y e t s 2 +NETS

realHEAA=X[ (w+ 3 ) : n ]

erroHEAA=realHEAA−yANNets

realHEAAt=X[ (w+ 3 ) : (w+ t r a i − v a l ) ]

erroHEAAt=realHEAAt −yANNets [ 1 : ( t r a i − va l − 2 ) ]

MAEt=mean ( abs ( erroHEAAt ) )

MAPEt=mean ( abs ( erroHEAAt ) / realHEAAt )*100

RMSEt= s q r t ( mean ( erroHEAAt ˆ 2 ) )

p r i n t ( c ( ’ T r a i n i n g s e t e r r o r s : ’ ) )

RESULTHEAA = c b i n d ( ( MAEt ) , ( MAPEt ) , ( RMSEt ) )

co lnames (RESULTHEAA) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTHEAA) = c ( ”HEAA” )

p r i n t (RESULTHEAA)

p r i n t ( c (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’))

realHEAAv=X[ (w+ t r a i − v a l + 1 ) : (w+ t r a i ) ]

erroHEAAv=realHEAAv −yANNets [ ( t r a i − v a l + 1 ) : ( t r a i ) ]

MAEv=mean ( abs ( erroHEAAv ) )

MAPEv=mean ( abs ( erroHEAAv ) / realHEAAv )*100

RMSEv= s q r t ( mean ( erroHEAAv ˆ 2 ) )

SSE=10000*sum ( erroHEAAv ˆ 2 )



198

p r i n t ( c ( ’ V a l i d a t i o n s e t e r r o r s : ’ ) )

RESULTHEAA = c b i n d ( (MAEv) , ( MAPEv ) , ( RMSEv ) )

co lnames (RESULTHEAA) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTHEAA) = c ( ”HEAA” )

p r i n t (RESULTHEAA)

p r i n t ( c ( ’ SSE : ’ , SSE ) )

p r i n t ( c ( ’ h : ’ , h ) )

p r i n t ( c (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’))

realHEAAfor=X[ (w+ t r a i + 1 ) : ( n ) ]

EA=yANNets [ ( t r a i − 1 ) : ( l e n g t h ( yANNets ) ) ]

erroHEAAfor=realHEAAfor −EA

MAEfor=mean ( abs ( erroHEAAfor ) )

MAPEfor=mean ( abs ( erroHEAAfor ) / realHEAAfor )*100

RMSEfor= s q r t ( mean ( erroHEAAfor ˆ 2 ) )

p r i n t ( c ( ’ T e s t S e t E r r o r s : ’ ) )

RESULTHEAA = c b i n d ( ( MAEfor ) , ( MAPEfor ) , ( RMSEfor ) )

co lnames (RESULTHEAA) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTHEAA) = c ( ”HEAA” )

p r i n t (RESULTHEAA)

p r i n t ( c ( ’******************************************** ’) )

yANNetsfor=yANNets [ ( t r a i − 1 ) : ( l e n g t h ( yANNets ) ) ]

yANNetsfor=EA

# p l o t t i n g t h e r e s u l t s

y l im = c ( min ( yANNetsfor , realHEAAfor ) − 0 . 0 5 , max ( yANNetsfor ,

realHEAAfor ) + 0 . 0 5 )

x l im = c ( 1 , l e n g t h ( yANNetsfor ) )

p l o t ( realHEAAfor , c o l =” b l u e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )
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p o i n t s ( realHEAAfor , t y p e = ’o ’ , pch =20 , cex = 0 . 9 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t ( yANNetsfor , c o l =” g r e e n ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( yANNetsfor , t y p e = ’o ’ , pch =20 , cex = 0 . 9 , c o l = ’ green ’ )

}

E.7 Hybrid ANN-ARIMA R Code

r e q u i r e ( v a l i d a n n )

r e q u i r e ( d p l y r )

r e q u i r e (ANN2)

l i b r a r y ( e1071 )

l i b r a r y ( s e a s t e s t s )

l i b r a r y ( u r c a )

l i b r a r y ( zoom ) # Invoke t h e L i b r a r y

l i b r a r y ( dgof )

l i b r a r y ( quantmod )

l i b r a r y ( g g p l o t 2 )

l i b r a r y ( x t s )

l i b r a r y ( i g r a p h )

l i b r a r y ( c o r r p l o t )

l i b r a r y ( f o r e c a s t )

l i b r a r y ( l m t e s t )

l i b r a r y ( t s e r i e s )

l i b r a r y (PMCMR)

l i b r a r y ( a s t s a )

l i b r a r y ( t i c t o c )

l i b r a r y ( x t a b l e )

l i b r a r y ( s t a r g a z e r )

f o r (AAA i n 1 : 1 ){
h=3 # Number o f h i d de n l a y e r s

o r i g =1 # o r i g i s 1 i f t h e o r i g i n a l d a t a i s

# b e i n g used . Otherwise , t h a t i s , i f t h e d a t a
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# a r e no rm a l i zed , o r i g =0

########################################################################

f o r (AA i n 1 : 1 ){
t s =1

i f ( t s ==1){
x1 = r e a d . csv ( f i l e = ” A i r P a s s e n g e r s . c sv ” )

i n i =40

ArimaPD = r e a d . csv ( f i l e =” a r imaAIRor ig . csv ” )

i f ( o r i g ==0){
ArimaPD = r e a d . csv ( f i l e =”AirPassARIMA . csv ” )

}
ArimaPD=ArimaPD [ , 1 ]

x1=x1 [ , 1 ]

f a c t o r =0 .7

v a l =36

}
i f ( t s ==2){
x1 = r e a d . csv ( f i l e = ” lynx . csv ” )

i n i =77

ArimaPD = r e a d . csv ( f i l e =” arimaLYNXorig . csv ” )

i f ( o r i g ==0){
ArimaPD = r e a d . csv ( f i l e =”lynxARIMA . csv ” )

}
ArimaPD=ArimaPD [ , 1 ]

x1=x1 [ , 1 ]

f a c t o r =0 .7

v a l =13

}

i f ( t s ==3){
x1 = r e a d . csv ( f i l e = ”IBOV . csv ” )

i n i =200

ArimaPD = r e a d . csv ( f i l e =” ar imaIBOVorig . csv ” )

i f ( o r i g ==0){
ArimaPD = r e a d . csv ( f i l e =”IBOVARIMA . csv ” )

}
ArimaPD=ArimaPD [ , 1 ]

x1=x1 [ , 1 ]
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f a c t o r =0 .5

v a l =50

}

i f ( t s ==4){
x1 = r e a d . csv ( f i l e = ” nhtemp . csv ” )

i n i =10

ArimaPD = r e a d . csv ( f i l e =” arimaNHTorig . csv ” )

i f ( o r i g ==0){
ArimaPD = r e a d . csv ( f i l e =”nhtempARIMA . csv ” )

}
ArimaPD=ArimaPD [ , 1 ]

x1=x1 [ , 1 ]

f a c t o r =0 .8

v a l =20

}
i f ( t s ==5){
x1 = r e a d . csv ( f i l e = ”RBTS . csv ” )

i n i =30

ArimaPD = r e a d . csv ( f i l e =” ar imaRBTSorig . csv ” )

i f ( o r i g ==0){
ArimaPD = r e a d . csv ( f i l e =”RBTSARIMA . csv ” )

}
ArimaPD=ArimaPD [ , 1 ]

x1=x1 [ , 1 ]

f a c t o r =0 .75

v a l =4

}
}
########################################################################

X=x1

i f ( o r i g ==0){
M=max ( x1 )

m=min ( x1 )

X=( x1−m ) / (M−m)

}
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n= l e n g t h ( x1 )

w= i n i

months =1: l e n g t h ( x1 )

D= m a t r i x ( r e p ( 0 ,w*( n−w) ) , n c o l =w)

f o r ( u i n 1 : ( n−w) ) {
f o r ( v i n 1 :w ){
D[ u , v ]=X[ u+v −1]

}
}

t r a i = c e i l i n g ( f a c t o r * ( n−w) ) # S i z e o f t h e t r a i n i n g s e t

p r ed =n −(w+ t r a i ) # S i z e o f t h e t e s t s e t

mae= f u n c t i o n ( y , y h a t ){
r e t u r n ( sum ( ( y− y h a t ) ˆ 2 ) )

}

########################################

Arima=ArimaPD # The ARIMA f o r e c a s t s were

# a l r e a d y c a l c u l a t e d from

# t h e Dynamic ARIMA method

### Arima −ANN Kashei − B i j a r i s Method ###

f o r ( q i n 1 : 1 ){
r e a l =X[ (w+ 1 ) : n ]

e r roAr ima = r e a l −Arima

yArANNKB=c ( )

s e t . s eed ( 2 )
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f o r ( u i n 1 : ( t r a i − 1 ) ){
### S t a r t s w i t h yAr (w+1) t o g e t yArAnnKB (w+2)

x t r a i n = t ( c ( Arima [ u ] , e r roAr ima [ 1 : u ] ,X[ u : ( u+w− 1 ) ] ) )

# E s t i m a t e yArANNKB(w+2)

x t e s t e = t ( c ( Arima [ ( u + 1 ) ] , e r roAr ima [ 2 : ( u + 1 ) ] ,X[ ( u + 1 ) : ( u+w ) ] ) )

y t r a i n =X[ ( u+w) ]

np es os =( u+1+w+1)* h +( h +1) # Number o f w e i g h t s

p e s o s = r u n i f ( npesos , − 0 . 1 , 0 . 1 )

f i t = ann ( x t r a i n , y t r a i n , s i z e =h , a c t h i d = ” t a n h ” ,

a c t o u t = ” l i n e a r ” , Wts= pesos , o b j f n = mae )

yArANNKB[ u ] = p r e d i c t ( f i t , x t e s t e )

p r i n t ( u )

}

r e a l K B t =X[ (w+ 2 ) : (w+ t r a i − v a l ) ]

e r roKBt =yArANNKB [ 1 : ( t r a i − va l −1)] − r e a l K B t

MAEKBt=mean ( abs ( e r roKBt ) )

MAPEKBt=mean ( abs ( e r roKBt ) / r e a l K B t )*100

RMSEHKBt= s q r t ( mean ( e r roKBt ˆ 2 ) )

p r i n t ( c ( ’***************************************** ’) )

p r i n t ( c ( ’ T r a i n n i n g S e t E r r o r s : ’ ) )

RESULTSHAAA KB = c b i n d ( ( MAEKBt ) , ( MAPEKBt ) , ( RMSEHKBt ) )

co lnames (RESULTSHAAA KB) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTSHAAA KB) = c ( ” Arima ANN−KB” )

p r i n t (RESULTSHAAA KB)

p r i n t ( c (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’))

r e a l K B v a l =X[ (w+ t r a i − v a l + 1 ) : (w+ t r a i ) ]

e r roKBva l =yArANNKB [ ( t r a i − v a l ) : ( t r a i −1)] − r e a l K B v a l

MAEKBval=mean ( abs ( e r roKBva l ) )
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MAPEKBval=mean ( abs ( e r roKBva l ) / r e a l K B v a l )*100

RMSEHKBval= s q r t ( mean ( e r roKBva l ˆ 2 ) )

p r i n t ( c ( ’ V a l i d a t i o n S e t E r r o r s : ’ ) )

RESULTSHAAA KB = c b i n d ( ( MAEKBval ) , ( MAPEKBval ) , ( RMSEHKBval ) )

co lnames (RESULTSHAAA KB) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTSHAAA KB) = c ( ” Arima ANN−KB” )

p r i n t (RESULTSHAAA KB)

p r i n t ( c(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’))

}

f o r ( q i n 1 : 1 ){
yArANNKB=c ( )

f o r ( u i n 1 : ( p r ed ) ) {
np es os =( u+ t r a i +w+1)* h +( h +1) # Number o f w e i g h t s

p e s o s = r u n i f ( npesos , − 0 . 1 , 0 . 1 )

### S t a r t s w i t h yAr (w+1) t o g e t yArAnnKB (w+2)

x t r a i n = t ( c ( Arima [ u+ t r a i −1 ] , e r roAr ima [ 1 : ( u+ t r a i − 1 ) ] ,

X[ ( u+ t r a i − 1 ) : ( u+w+ t r a i − 2 ) ] ) )

# E s t i m a t e yArANNKB(w+2)

x t e s t e = t ( c ( Arima [ ( u+ t r a i ) ] , e r roAr ima [ 2 : ( u+ t r a i ) ] ,

X[ ( u+ t r a i ) : ( u+w+ t r a i − 1 ) ] ) )

y t r a i n =X[ ( u+w+ t r a i − 1 ) ]

f i t = ann ( x t r a i n , y t r a i n , s i z e =h , a c t h i d = ” t a n h ” ,

a c t o u t = ” l i n e a r ” , Wts= pesos , o b j f n = mae )

yArANNKB[ u ] = p r e d i c t ( f i t , x t e s t e )

p r i n t ( u )

}
ArANNKB=yArANNKB

r e a l K B f o r =X[ (w+ t r a i + 1 ) : n ]

e r roKBfor = rea lKBfo r −ArANNKB

ArANNKBfor=ArANNKB
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e r roKBfor = rea lKBfo r −ArANNKBfor

MAEKBfor=mean ( abs ( e r roKBfor ) )

MAPEKBfor=mean ( abs ( e r roKBfo r ) / r e a l K B f o r )*100

RMSEKBfor= s q r t ( mean ( e r roKBfor ˆ 2 ) )

p r i n t ( c ( ’HAAAKB − F o r e c a s t i n g : ’ , MAEKBfor , MAPEKBfor , RMSEKBfor ) )

p r i n t ( c ( ’ E r r o s de T e s t e : ’ ) )

RESULTSHAAA KB = c b i n d ( ( MAEKBfor ) , ( MAPEKBfor ) , ( RMSEKBfor ) )

co lnames (RESULTSHAAA KB) = c ( ”MAE” , ”MAPE” , ”RMSE” )

rownames (RESULTSHAAA KB) = c ( ” Arima ANN−KB” )

p r i n t (RESULTSHAAA KB)

p r i n t ( c ( ’************************************************** ’) )

# p l o t t i n g t h e r e s u l t s

y l im = c ( min (ArANNKB, r e a l K B f o r ) − 0 . 0 5 , max (ArANNKB, r e a l K B f o r ) + 0 . 0 5 )

x l im = c ( 1 , l e n g t h ( r e a l K B f o r ) )

p l o t ( r ea lKBfo r , c o l =” b l u e ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s ( r ea lKBfor , t y p e = ’o ’ , pch =20 , cex = 0 . 9 , c o l = ’ b lue ’ )

p a r ( new=TRUE)

p l o t (ArANNKB, c o l =” g r e e n ” , y l im =ylim , x l im =xlim , t y p e = ’ l ’ )

p o i n t s (ArANNKB, t y p e = ’o ’ , pch =20 , cex = 0 . 9 , c o l = ’ green ’ )

}

}
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