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A survey of machines which are more powerful than finite
avtomata and less powerful than general Turing machines is
presented. It is felt that the machines in this category are as
closely related to digital computers as either the finite automata
or the unrestricted Turing machines.

Intermediate machines can be created by adjoining an
infinite-state memory to a finite-state machine and then per-
forming any or all of the following: (1) restrict the manner in
which the unbounded portion of the memory can be accessed,
(2) bound the number of steps allowed for a computation by
some increasing recursive function of the length of the input,
(3) restrict the total amount of memory available in the same
manner. Examples from all three classes and their properties
are discussed.

1. Introduction

In recent years there has been incrcased interest in ab-
stract machines with more computing power than finite-
state one-tape machines but with less potential complexity
than Turing machines. Although a computer without
auxiliary storage can be viewed as a finite-state deviee, and
a computer with unlimited auxiliary storage can be re-
garded as a Turing machine (c¢f. Wang [65]), neither ap-
proach yields as much insight into the nature of computa-
tion as would be hoped.

To the computability theorist the regular sets of Kleene
{36], which can be recognized by finite-state one-tape
automata, are a very small subset of the recursive sets.
The Iatter can be recognized by Turing machines [64] but,
in general, not by machines of lesser computing ability. In
belween the regular sets and the recursive sets are un-
countably many classes of sets of non-negative integers.!

This paper was presented as an invited talk at the 1964 Inter-
national Colloquium on Algebraic Linguistics and Automats
Theory, Jerusalem, Israel. Preparation of the manuscript was
supported by National Science Foundation Grant GP-2880.

1 One may often wish to work strings of symbols rather than
non-negative integers. The usual procedure will be to associate
with an integer the string representing its n-ary expression for

some base n, generally n = 2.
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Some such classes are the deterministic pushdown lan-
guages [26], context-free languages [8)], context-sensitive
languages [8], elementary sets [28], primitive recursive sets
[35], provably recursive sets [20] and many others.

Any one of the above intermediate classes may turn out
to be more closely related to real computing than the
regular sets or the recursive sets. Thus, machines with
intermediate computing power may prove to be better
models for real-world digital computers, at least for many
purposes, than the better known finite-state and Turing
machines.

In this paper an attempt is made to provide a census of
nonprobabilistic intermediate machines. Discussion of
finite-state machines and of unrestricted Turing machines
is excluded, but familiarity with [51] and Part 1 of [13] is
assumed. The terms machine and automaton are used
interchangeably to mean any well-defined discrete system
which defines a class of sets between the regular and recur-
sive sets. The terms acceplor, generalor and transducer
designate respectively machines which have no output
except “accept’” or “reject,” machines which have no input
except a single starting pulse, and machines which have
both inputs and outputs.

2. Multi-Tape Finite-State Automata

The simplest generalization of one-tape finite-state
machines is the n-tape one-way acceptors introduced by
Rabin and Scott. These devices recognize sets of n-tuples
of strings via computations in which at each step one of the
n input tapes is advanced one square and a new machine
state is entered. The tape advanced depends upon the
present state of the machine, and an n-tuple is accepted or
rejected depending on whether the machine is in a final or
nonfinal state after reading all of the input on all » tapes.
Special end-of-tape symbols are permitted.

The deterministic and nondeterministic versions of these
machines generate, for each n, classes of sets of n-tuples
denoted by D, and N, , respectively. For n > 1, D, is
closed under set complementation, but Rabin and. Scott
showed it is not closed under union or intersection [51].
Rosenberg has shown that D, is not closed under input
reversal, concatenation or the closure (star) operator of
Kleene [54].2

Unlike the case when n = 1, for n > 1, it does make a

2 The reversal of string o102 ++- ¢aaios 18 the string oue,; ---
001 where the o; are each single symbols in the input alphabet.
Reversal of an n-tuple is componentwise.
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nondeterministic. An example by Rosenberg of a set in
Ny--D,is the set of all pairs of strings in which the second
meniber of the pair is equal to a terminal segment of the
first member (i.e., of the form (xy, ¥)). Blgot and Mezei
found that N, is closed under union, concatenation, star
and input reversal {15]. Since N, is in fact the smallest
class which contains all finite sets of n-tuples and is closed
under union, concatenation and star, an n-dimensional
analogue of Kleene’s theorem of regular events holds for
N, . However, for n > 1, N, is not closed under comple-
mentation or intersection.

In addition to being closed under fewer operations, the
clagses D, and N, ave more complex than D, = N, (the
regular sets) in several ways. Questions which are decidable
for Dy are often undecidable for D,, (n > 1). One such ques-
tlon is the intersection problem: to determine whether or
not. the intersection of two members of a class of sets is
nonempty (cf. Rabin and Scott [51]). A question which is
golvable for D, but open for D, is 10 determine whether or
not two machines in a class accept the same set of n-tuples
of strings. The class Dy containg properly the class of all
relations definable by the “generalized sequential ma-
chines” of Ginsburg {25].

Ginsburg and Spanier have regarded multi-tape finite-
state transducers as extended as generalized sequential
machines [27). For finite-state machines with two input
tapes and one output tape they show that if the languages
permitted on two of the three tapes are regular, then so is
the third; if one is regular and one is context-free, the
other is context-free; but if two are context-free, the third
is not necessarily context-free. A generalization of this is
given by Fischer and Rosenberg: for n-tape acceptors,
if all but two of the n tapes are restricted to regular lan-
guages and one to context-free, then the language on the
last tape will be context-free, ete. [24].

Llgot and Rutledge considered deterministic n-tape
automata with tapes that are blank except for a single end
symbol {17]. Unlike the general D, case, the intersection
question for the class of sets defined by these machines is
solvable. This follows from the existence of an effective
mapping of such sets into Presburger formulas (of the first
order theory of addition of non-negative integers), for
which the satisfiability question is solvable. If one permits
more than one read head per tape, then one gets all of the
Presburger relations. Also investigated were properties of
the machines when one or more of the tapes are loops,
rather than straight tapes. The question of whether a
machine with two loop tapes (or one loop tape with two
heads) accepts a nonempty set is unsolvable. For machines
with one loop tape (with one head) and n straight tapes
the intersection problem is open. It is solvable if Hilbert’s
Tenth Problem is.

3. Storage-Access Restricted Machines

Turning now to infinite-state devices, it is clear that in
general one will have the computing power of a Turing
machine. One can, however, obtain intermediate classes by
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Imposing restrictions on the way a deviee can access its
storage (i.c., on its state transitions) and/or by disallowing
computations in which a given measure of complexity
(e.g., the number of “steps”) exceeds some constraing
(usually a function of the input). The first of these ap-
proaches is discussed in this section.

The best known example of a storage-access restriction is
the pushdown store, in which only the last item of informa-
tion placed in the store is lmmediately accessible to the
control unit of the computing device. (Pushdown stores
are sometimes called LITO stacks because of this last-in-
first-out nature.) One-tape Turing machines in which the
tape is used only as a pushdown store arve called pushdown.-
store machines. Such machines are of interest to both
automata theorists and mathematical linguists because of
the important connection between the two areas given by
Chomsky: a language is context-free if and only if it is
recognizable by some nondeterministic pushdown-store
acceptor [9]. Thus, results from linguistics can be used to
prove theorems about pushdown-store automata, and
conversely.

Another example of storage-access restriction is the
counter. The value of a counter is any non-negative integer,
and on a single machine step a counter’s value can be in-
creased by one, decreased by one, or tested for zero.3 A
counter can also be regarded as a pushdown store with a
one-symbol alphabet.

Evey {18] and Fischer [21] investigated both deter-
ministic and nondeterministic machines with one or more
pushdown stores and/or counters. Relationships among
acceptors, generators and transducers were explored and
it was shown that a set which was accepted by a nondeter-
ministic version of one of the machines under consideration
could also be defined as the output of a deterministic trans-
ducer of the same type, and conversely. For example, the
class of all sets which are the output of a deterministic one-
counter machine, the class of all sets which are the output
of a nondeterministic one-counter machine, and the class
of all sets which are the domain (input) of a nondeter-
ministic one-counter machine are all the class ¢’ men-
tioned below.

By a result of Minsky (44], two-counter machines (and
therefore two-pushdown-store machines) are already as
powerful as Turing machines. Thus, the approach of Evey
and Fischer yields exactly four distinet intermediate
classes, which can be expressed as those sets recognizable
by deterministic and nondeterministic one-counter accep-
tors (€' and C’) and those sets recognizable by deter-
ministic and nondeterministic pushdown-store acceptors
(P and P’). P is, of course, the class of context-free
languages and is closed under union, concatenation and
star, but not under complementation or intersection (cf.
Scheinberg [55] and Bar-Hillel, Perles and Shamir [5]). P
is an interesting proper subclass of P’ and is closed under

3 The capabilities of the machines are unchanged if the counters
are permitted to take on all integral values.
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complementation, buf not under union or intersection.
The classes ¢ and €7 are not as interesting linguistically
and have not received as much attention.

Tarly work with pushdown-store machines is described
by Qettinger [47]. In [60] Schutzenberger exhibits a rather
complicated algebraic definition of deterministic push-
down-store machines and proves some basic properties,
from which the closure of P under complementation follows
trivially. Recently, Ginsburg and Greibach have investi-
gated P. With the exception of [26], most of their results
have not yet been made publiec. P and P’ and the asso-
ciated machines have also recently been studied by Haines
[29]. The fact that languages in P are always unambiguous
is independently given in both |26] and [29].

Other kinds of storage-access-limited automata have
been discussed in several papers by Schutzenberger. In
156] he deals with a class of finite-state transducers which
are more powerful than generalized sequential machines
and less powerful than nondeterministic, finite-state, one-
input-one-output transducers. As in the other two cases,
regular sets are preserved under such transductions.

In [57] acceptors with integer-valued counters are
introduced. Unlike the counter machines previously
mentioned, the state of the (inite-memory part (control
unit) of the machine is not permitted to depend upon the
contents of the counters. (Thus, machines with two or
more counters do not have the computing power of Turing
machines.) For each combination of control unit state
and input symbol, a machine performs a transformation on
its counter space in such a way that the new value of each
counter could be computed by a finife computer program
(having sufficient temporary storage to handle inter-
mediate results) using only the following kinds of opera-
tions: (1) addition or subtraction of two integers, (2)
multiplication of an integer by a (bounded) integral
constant, (3) reduction of an integer modulo a (bounded)
integral constant. A machine accepts an input tape if the
n-tuple representing the values of the counters after all
input has been processed is not in a given subspace of the
n-dimensional vector space over the integers, where the
subspace selected depends upon the final state of the
control unit of the machine.

Schutzenberger shows that his machines could be de-
fined in terms of finite sets of integral nX n matrices, n
depending on the machine. A machine is the homorphic
representation of the monoid of inputs in the ring of
matrices such that an input word is accepted if and only
if the upper-right-hand entry in the matrix associated with
the word is nonzero. Having demonstrated the equiv-
alence, he shows by algebraic methods that the class de-
fined by the entire family of his machines is closed under
union, intersection, concatenation and star, but not under
complementation. An analogue to Kleene’s theorem is not
produced, however, because the appropriate basis (which
for the regular events is the class of finite sets) for the
nduetion is unknown.

In [58] the above machines are further restricted by
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requiring that the ratio of the amount of information
stored in the memory of the machine to the amount in the
input tends to zero with the length of the input word. A
smaller class results, which is elosed under union, inter-
section and concatenation, but not under complementa-
tion or star. Results in [59] and [10] (with Chomsky) relate
decision problems of several kinds of storage-access re-
stricted automata, including pushdown-store machines,
and of generative linguistic grammars (o the appropriate
algebraic structures. The notion of a formal power series is
central to this development

4. Time Restricted Turing Machines

Some machines necessarily have their computation time
bounded by a recursive {unction of the length of the input.
For the finite automata of [51] the identity function
suffices. On the other hand, for Turing machines there is,
in general, no effective a priori bound on computation
time, else the halting problem for Turing machines would
be solvable.

The first person to consider time-restricted Turing
machine computations was Yamada [66, 67]. Yamada
was especially interested in a class of strietly increasing
functions from the non-negative integers into the non-
negative integers which were, in his terminology, real-lime
countable. Let the characteristic sequence of a set 4 of non-
negative integers be the binary sequence o = apion. . .
such that «, = 1if and only if n € A. Then a monotonic
function f is real-time countable if some multi-tape Turing
machine can generate the characteristic sequence of the
range of f in real time, i.e., o, can be generated by time n.
The class of real-time countable functions was shown to be
closed under addition, multiplication, composition, ex-
ponentiation and to contain all polynomials in one varia-
ble. Siegel found that there are real-time countable func-
tions that are not primitive recursive, and monotonically
increasing primitive recursive functions that are not real-
time countable [62].

Hartmanis and Stearns studied time restrictions on
Turing machines in a more general setting [31]. For any
monotonically increasing function 7', let Sy denote the set
of all infinite binary sequences e = auuae. . . such that
there exists a multi-tape Turing machine which generates
oy by time T'(n) for all n. Such an Sy is called a complexity
class. It is easy to show that for all monotone recursive
functions, T, the complexity class Sy is a recursively
enumerable set. Since every computable sequence is in Sy
for some recursive U, it follows immediately that there are
infinitely many complexity classes and that the class of all
complexity classes cannot be effectively enumerated. The
“real-time” case S, (i.e., Sy where T'(n) = n) is the minimal
class.

Hartmanis and Stearns showed that multiplication of a
timing function by a constant does not alter the com-
plexity class, ie., S..¢ = Sr for all monotone functions T
and constants ¢. Complexity classes are also unchanged if
more than one read-write head per tape is permitted. If
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« €Sy then there is a one-lape Turing machine which can
generate a, by time (T'(n))?, for all n. The same “square
law’ applies if one passes {rom multidimensional tapes to
linear tapes.

Hennie and Stearns recently were able to show that the
partial ordering of complexity classes has dense suborder-
ings [34]. They first showed that if «€Syr and 7 is real-
time countable, then there is a two-tape Turing machine
which can generated o, by time T(n)-log(T(n)). This
permits the use of a diagonal method to show that if T is
real-time countable and

m = ~*
then Sy properly contains Sy Since n and [n'"] satisfy
the conditions of the theorem, it follows that there are
suborderings with the order type of the rationals.

Hennie also worked with time-limited recognition
problems. In [33] he assumed that the input was placed on
one of the working tapes of a Turing machine (where it
could later be written over if desired). For this model he
was able to show that the “square law” given above can-
not be improved. For one-tape machines he also showed
that if 2 > p > ¢ > 1 then S,» properly containg S,
Although Hennie’s “offline” acceptor is superfically only
glightly different from the “online” version, where the in-
put is placed on a special one-way tape which is not counted
as one of the working tapes of the machine, the two models
appear to have quite different properties.

The work of Hartmanis, Hennie and Stearns has raised
many interesting questions. Is it true that if

. T{n)

lim ——= = 0,

now U(0)
then Sy 5 Sp? The binary sequence representing +/2 is in
S,z Is it in any smaller class? Can one get relationships
analogous to those in [I18] and [21] covering generators,
acceptors and transducers on the one hand, and online and
offline machines on the other? I'or recognition, rather than
generation, of sequences the equation S; = S.r 18 re-
placed by Sray = Secrty—-n+= sinee reading of the input
cannot be sped up. How does the special case T(n) = n
relate to the case T'(n) > (1+en for e > 0?

Rabin answered a question raised in MeNaughton’s
19€1 survey of automata theory [42]: Can two-lape Turing
machines do more in real time than one-ltape machines?
For the online acceptors, he showed that two tapes are
better than one by requiring a machine to store two binary
sequences and to retrieve either one of them upon demand,
without delay [50]. One noteworthy aspect of this problem
is that a proposition which at first appears to be quite
simple requires a rather careful and involved proof.
Furthermore, no one has yet heen able to demonstrate for
the same model that three tapes are better than two.

Blum has developed an abstract approach to computa-
tional complexity [7]. All he requires of a measure of
complexity is that it be defined whenever the partial
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recursive funetion with which it s associated is defined
and that one be able to tell effectively when a given com-
plexity bound has already been exceeded by a computation
(which may or may nol subsequently terminate). lxamples
of acceptable measures are the number of steps in a Turing
machine computation, the number of tape squares used in
a computation, the maximum number of consecutive ones
appearing on a tape during a computation, and so forth,

Blum shows that for any measure of computational com-
plexity satisfying the above requirements and for any re-
cursive function ¢g(x) there exists a recursive characteristic
funetion f(x), the computations of which can be “sped up”’
in the following sense. For any method of computing f(a)
there exists another method of computing f(z) so that if
F(z) denotes the complexity measure of the first method
and F'(z) that of the second method, then F(x) > g(F'(x))
for all but a finite number of inputs 2. (On the other hand,
from the work of [31] and [34] it can be shown that there
also exist functions which have complexity measure F(zx)
but which cannot be “sped up” by ¢(x) = att<)

5. Tape-Restricted Turing Machines

The best known example of a tape-restricted machine is
the lincar-bounded automaton of Myhill [46]. A linear-
bounded automaton 1s a one-tape Turing machine which
is given only enough tape to hold the input string. Since
the machine’s alphabet may be larger than the input al-
phabet, this is equivalent to saying that the amount of
Information storage permitted is a lincar function of the
length of the input.

Kuroda has shown that the context-sensitive (Type 1)
languages of Chomsky are exactly those sets which can be
recognized by a nondeterministic linear-bounded autom-
aton [39]. On the other hand, sets recognizable by
deterministic linear-bounded automata are a Boolean
algebra {39, 40]. Whether or not the deterministic and
nondeterministic versions of linear-bounded automata de-
fine the same class of sets is still open. If the answer is yes,
then the context-sensitive languages arc obviously closed
under complementation.

R. W. Ritchie discusses a hierarchy of functions based
on tape-restricted computations [53]. He defines Fy as the
class of all functions computable by finite-state trans-
ducers. For each 7 > 0, I, is then defined as the class of all
functions which can be computed by a Turing machine
where the amount of tape used is bounded by some func-
tion in F—1. A hierarchy of order-type w is produced, and
the union of all the F; yields the elementary functions of
Kalmar. The F; are not closed under composition, but are
closed under certain limited operations. If one begins with
the linear-bounded automata instead of finite automata, a
similar hierarchy is created, which interlaces with the first
one and again yields the elementary functions.

In [37] the approach of [53] is relativized using func-
tionals with tape-limited computations. In [38] Kreider
and R. W. Ritchie consider the subclass of three-symbol
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automata. The subelass
closed under

linear-bounded
“universal” machine but is not
substitution or identification of varisbles.

Very recently, Hartmanis, Lewis and Stearns have been
working on tape-restricted compuiations [30]. The offline
model of Hetnie is modified to consist of o Turing machine
with a two-way nonwriting input tape and a working tape.
The amount of working tape used determines the com-
plexity  elassification. Online machines are also being
studied, and in either case the working tapes may or may
not be restricted to pushdown-store operation. Hierarchies
analogous to the one for time-limited complexity classes
are given.

Despite the wording of the title of {30], ns far as the
writer knows, no one has vet explored in detail the inter-
action between tape and time restrictions. Tt would be nice
if a reasonable trade-off of time for tape, and vice versa,
existed so that a reasure of computational complexity
could take both into account in a meaningful manner.

deterministie
contains o

6. Real-Time Iterative Arrvays

A n-dimensional iterative array of finite-state machines
consists of identical finite auhmwm indexed by n-tuples
over the non-negative integers (321 Two mac hmm are
considered neighbors if their indices are identical in all but
one component and differ by one in that position. Inputs
and outputs for the array are connected to the machine
indexed by (0,0,. . .,0). Exeept for the machine at the
origin, the state ()f any machine in the array at time -1
depends only upon the states of it and its neighbors at time
1, and its state at time 0 i8 a particular quiescent state

It ean be shown that certain variations in the definition
of an iterative array do net alter its properties. The origin
machine may be allowed 1o be different from all the rest;
the definition of neighbor may be relaxed somewhat; the
initial states of the machines need not be quiescent so long
15 they are initially all the same.

It is easy to see that a one-dimensional array can
simulate o Turing mae hmc. since such an array can simu-
late any finite number of pushdown stores. Thus, other
restrictions must be placed on iterative arrays to obtain
recognition of intermediate classes of sets of strings,
General time restrictions on iterative arrays, analogoug to
those of Hartmanis and Stearns for Turing maachines, have
not yet been investigated. However, the special case of
real-time computation by deterministic iferative arrays of
finite-state machines has been studied by several persons.
The most comprehensive treatment is due to Cole [12].

One-dimensional iterative arrays can do many surprising
things. Cole has shown that they can recognize in real time
the set of all palindromes and the set of all strings of the
form zz. The former set i3, from a pushdown-store ap-
proach, inherently nondeterministic, and the latter set is
not even context free. Fischer has shown that one-di-
mensional arrays ean generate the characteristic sequence
of the set of all prime numbers, i.e., the machine will put
out a 1 at time { when ¢ is a prime and a 0 at fime ¢ other-
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wise [22]. Atrubin showed that one-dimensional arrays ean
multiply in real time if the inputs ave written in binary
notation and fed in from right to left {11,

Cole showed that the class of sets recoguizable by n-
dimensional arrays is a Boolean algebrn but is not closed
under input reversal or coneatenation. The ~<<‘~t‘ of all
strings having a nonempty terminal segment of the form
xx is shown not to be recognizable by any n-dimensional
array. This set, however, is the concatenntion of the uni-
versal set and the set of all wa, which are both aceeptable
by one-dimensional arrays. Furthermore, the reversal of
this set is again recognizable by a one-dimensional array.

Cole’s method can also be applied to the set of all strings
having # ferminal segment which is a nontrivial palin-
drome. This language is context-free but not acceptable by
any n-dimensional array. Furthermore, for each n there
exists a context-free langnage which is recognizable in real
time by some (n-+1)-dimensional array but not by any n-
dimensional areay, Thus, real-time ierative arrays and
context-free languages are incomparable in a very strong

sense,

7. Miscellany

Other work re %i‘(‘»d to computational complexity s
mentioned here briefly. Perles, Rabin and Shamir [49],
Eggan [14] and Papert am MeNaughton [48] have studied
subclasses of the regular sets and the relationships between
their linguistic and machine properties.

Lee [41] and Fiseber (23] considered minimal sets of Ture-
ing machine operations angd showed whether or not various
restricted Turing machines could be universsl. 8hepherd-
gon and Sturgis [61] and Elgot and Robinson [16] explored
computations by machines having in place of tapes a
finite nuraber of registers, each of which can hold an
arbitrary integer. Given the ability to make conditional
transfers of control and to perform addition of two integers,
such machines are equivalent to Turing machines.

Axt studied s hierarchy of recursive functions built up by
beginning with the primitive recurgive functions and ereat-
ing new classes by uniform diagonal methods 2], Related
work by Fabian is given in [19]. Other work of Axt [3],
Cleave [11], Mever [43}) and DD, Ritehie {52] shows that
several different methods of classifying the primitive
recursive functions all produce higrarchies strongly re-
lated to that of Grzegoresyk [28].

An interesting survey paper by Bedévaf may soon be
available [6]. He gives a classification of the many wodels
of computing devices used in investigations of computsa-
tional complexity and offers some philisophical comment
on the tenuousness of the relationship of some of them to
“real” computing. Russian work in cormputational com-
plexity, particularly that of Trahtenbrot [63], is well cov-
ered.

Finally, the author would like to mention that second-
order bibliographical references will yield papers not cited
above which are relevant to the area surveyed here,
especially i the areas of mathematical linguistics and
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decision problems for automata. The bibliographies in |4,
6, 9, 10, 13, 35, 42, 45] are recommended to the reader seck-
ing additional references.
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LETTERS—continued from page 788

and Garwick [Re-Views of IFIP Congress 65. Comm. ACM 8
(July 1965), 471}.
First, I do not agree that the conference arrangements were

i beyond criticism. Regarding the ordering of the sessions, there
- were several unfortunate clashes, e.g., parallel sessions on pro-

gramming (F2 and ¥'3), parallel sessions on time-sharing systems

- (H3 and HA4), parallel sessions on numerical analysis (H7 and

H9). This is due to failure to find out beforehand any indication
of what interested potential Congress members, as was done
before the Munich Congress (IFIP 62). This lack of knowledge
was also evident in the allocation of the rooms: I left a crowded
meeting, packed into a smallish room, and went into a parallel
session, with few people lost in a vast ballroom. Physical arrange-
ments were also somewhat slapdash: blackboards were, in gen-
eral, too small and all too often rooms with several pillars were
used for sessions involving projection of slides. The folders that
were supplied were useful and welcome, but why were they de-

. signed so that it was impossible to put one’s name on them?

Some note paper would have been invaluable.
I agree with Buxton’s comments about the reading of papers

| whose full texts have been distributed. But why did we have the

. full texts and summaries (in four languages) of the invited lec-
tures but no guidance about the contents of the submitted
papers? Such abstracts would have helped us to get more out of

* the meetings—other congresses (including IFIP 62) manage to
produce such abstracts, or even preprints.

Ancillary services: It is not their presence that is important
hut also when they are available. Certainly, there was a Post
Office, which was closed for hall the day and in fact was open
mainly during afternoon sessions. An information counter (not
official IFIP!) that was open only during sessions, with meal
hreaks coinciding with the breaks between sessions, and even
then giving ineorrect information (as I subsequently discovered),
is of doubtful value.

Personally I was not perturbed by the shortcomings of the
social program. I only remark that it is not impossible to find
out beforehand how many people can be accommodated at the

s UN (and restrict the acceptances accordingly), nor is it impos-
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sible to find out several months ahead whether there is a concert
or other performance on a particular night.

I enjoyed what I saw and heard at IFIP. However, I have the
feeling that a little more attention to detail by the organizers
would have made IFIP 65 a much more valuable experience for
all participants.

Paur A. SameT
Computation Laboratory
The University
Southampton, England

Remarks on Computers and Aid to the Handicapped

Dear Editor:

1 would like to offer a correction of Mr. Glaser's remarks: “On
Computers and Aid to the Handicapped” [Comm. ACM &, News
(Oct. 1965), 638]. T am concerned here only with his comments
about activities at New York University.

M. Glaser defines aphasic patients as . . . those who have for
one reason or another lost the power of speech.” This definition is
a misleading popularization. Aphasia is characterized by a reduc-
tion in vocabulary which is usually specific to particular word
classes and with an associated reduced control of syntax. Aphasia
is to be distinguished from other types of verbal impairment, in
particular from verbal apraxia and dysarthria.

New York University has indeed embarked upon a program to
augment patient treatment in aphasia using computer assisted
therapy. However, actual patient-machine sessions are not sched-
uled to begin until sometime shortly after November 1, 1965.

We have had some experience in treating a single anarthric
patient for a period of about six months. This was a cooperative
exploration of our facilities and techniques conducted by our-
selves and a technically trained patient of exceptional intelligence
and broad experience. Regrettably, the patient was not ‘helped.”’
On the contrary, it was found that the patient’s needs were far in
excess of our current capabilities. This project made clear the
necessity for confining our present research in this area to clinical
situations that fall within the scope of current sophistication.

G. Rose
Section on Communication Sciences
New York University, New York

805

Communications of the ACM



