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Abstract: A transduction, in  the  sense of this paper, is a n-ary word relation (which may be a function) describable by a finite 
directed  labeled  graph. The notion of n-ary transduction is co-extensive with the Kleenean  closure of finite n-ary relations. 
The 1-ary transductions are exactly the sets  recognizable by finite automata. However, for n > 1 the  relations  recognizable by 
automata constitute a proper subclass  of the n-ary transductions. The 2-ary length-preserving transductions constitute  the equi- 
librium (potential) behavior of 1-dimensional, bilateral iterative networks.  The  immediate  consequence relation of various  primi- 
tive  deductive  (respectively computational) systems,  such  as  Post normal systems  (respectively Turing machines) are examples 
of transductions. Other riches  deductive  systems  have  immediate  consequence  relations  which are not  transductions. The closure 
properties of the class of transductions are studied. The decomposition of transductions  into  simpler  ones is also studied. 

1. Introduction 

The class of finite automata has  correlated with it a class 
of sets of words which enjoys a rich structure. (See, for 
example, [RS].) The class is closed under: 1, Boolean 
operations; 2, monoid (semi-group with identity) homo- 
morphisms and their pre-images; 3, word reversal; 
4, (binary) concatenation; and 5, (unary) concatenation 
closure. The class is describable not only by finite auto- 
mata,  but  also by sequential machines, finite state gram- 
mars, and one-way-motion Turing machines. There are 
simple intrinsic characterizations of the class. In brief, 
this class of sets appears to be “natural” and plays a  role 
in  mathematical  studies  other than  the theory of finite 
automata in which it originated. In particular, it may be 
noted that  the one-sided (left to right)  orientation present 
in the notion “finite automaton” is not reflected in the 
associated class of sets (property 3, above). 

On  the other hand, word relations  (other than  the 
unary ones) definable by finite-automaton-like devices 
have not been widely studied. We consider a class of 
n-ary relations, n > 0, which we call (finite state) trans- 
ductions,  study  its  structure, and show that it encompasses 
a wide class of “immediate consequence” relations of for- 
mal deductive (particularly,  computational) systems [EM]. 
A subclass of the transductions may be seen to be  inti- 
mately related to  the 1-dimensional, 2-way iterative 
systems of networks  in the sense of [FCH]. The case n = 2 
is singled out  for special study. Inasmuch as we will 
identify a  binary  relation R satisfying ”(u, u)  E R A 

(u,  w) E R . + . u - w” with a  function (and we will 
write, as usual, R(u) - u), our considerations will, among 
other things, yield the “closed under  composition” result 
of [MPS]. 

While the class of word-to-word mappings associated 
with sequential machines does possess some nice proper- 
ties, its usefulness in  certain contexts is severely limited by 
(beside the functionality restriction) the following two 
properties : 
(a) the image of a prefix of a word is a prefix of the image 

(b) the length of the image of a word is equal to the length 

Condition (b) has been relaxed in several published 
studies (see,  e.g., [SG]), by permitting a  machine to “print” 
a  word, possibly null, per input letter. In [MPS] and 
[RS], however, both restrictions have been removed (and 
in [RS] the functionality restriction has been removed as 
well). 

The class of transductions we study properly includes 
the class studied  in [MPS] and is the class of relations 
definable by the multi-tape, 1-way automata of [RS] 
modified to be nondeterministic with several initial  states. 
The proof of this result is, however, omitted. 

We assume throughout  that  the alphabets 2 are  all 
non-empty finite subsets of some infinite set given once 
and  for all. A relation is a transduction if it is a transduction 
over Z for some 2. Similarly for other  notions. 

of the word, and 

of the word. 
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2. Definitions and summary of results 

We understand “finite automaton over a finite alphabet 2’’ 
as in [RS]. It is inessential but convenient to extend the 
notion to permit the  automaton to have n 2. 0 “input 
tapes,” each of which has  written on it a word (possibly 
null) in the  alphabet of 2. Each tape is regarded as 
semi-infinite having written on  it, to the right of the word 
over 2,  an infinite succession of blanks. The  automaton 
starts in a prescribed state,  reads simultaneously the first 
symbol of each tape, changes state, reads simultaneously 
the second  symbol of each  tape, changes state, etc., until 
it reads a blank on each  tape. The  automaton then stops 
without  changing state  and accepts the n-tuple of words 
or not, according to whether or not  its final state is a 
member of a pre-designated set of states. The  set of all 
n-tuples of words accepted by the  automaton is the 
(n-ary) relation defined by the automaton. Let Z* be the 
set of all  words over Z including the null (i.e., empty) 
word A. An n-ary relation R,  R s (2*)“, is said to be 
finite automaton definable (FAD) if and only if (iff) there 
exists an  automaton such that u, u E (X*)”, is accepted by 
the  automaton when and only when u E R. The  automaton 
in  question is described by afinite set S of states, a mapping 
v from ( S  X (Z U { 0))”) - (S X { p } ” )  into S ,  an initial 
state  and a subset D of S,  where 0 6 Z and 0 plays the 
role of “blank.” For example, the ternary length-preserving 
relation which holds among u, u, w when w is (assuming 
2 = { 0, 1, , p - 1 1) the p-ary  representation of the 
sum of the p-ary numbers u, v is FAD. 

By a (finite state) nondeterministic sequential machine 
(NDSM) over 2 (with m inputs and p outputs),+ we shall 
mean an ordered  triple (S,  v, sI) where S is a finite non- 
empty  set (of states), sI E S (the  initial state), and v s 
(S X (Z*)m) X ((Z*)” X 5‘) is finite. By a (n-input) 
nondeterministic (finite) automaton over Z (NDA) we shall 
mean an ordered quadruple (S ,  v, sI, D), where S,  sI are 
as above, D S and v C S X (2*)” X S is finite. [The 
notion of NDA as it appears  in [RS] has been broadened 
to permit the definition of n-ary relations.] A NDSM is 
elementary if v G (S X 2”) X (2” X S).  In the sequel  all 
NDSM’S will be assumed elementary with m = I and p = I. 
The sole point in giving a general definition of NDSM is 
to make clear the distinction we are making between 
“machine” and “automaton.” Informally, at  each instant 
of time the machine receives an  input  and yields an 
output while the automaton responds  only  after receiving 
a sequence of inputs by entering or not entering the 
designated set D of states. This  unhappy terminology 
conforms to common usage. Associated with a given 
NDSM is a length-preserving relation p, p E 2* X Z*, 
defined as follows: 

if there is a sequence of states sl, s,, . . , sTcl such that 
s1 = SI and  for all i, 1 2 i 2 r, ((si, (T~), ((T:, siCl)) E V. 
If v is a function,  then (S,  v, sl) is (by definition) a se- 
quential machine and p is a function.* A relation p 

Z* X Z* is a sequential relation (over 2)  if it is the 
associated relation of some NDSM over 2. It may readily be 
verified, if 2: C 2‘ that p is a sequential  relation over 2 
iff it is a sequential  relation over 2‘. Thus, often we 
simply say “sequential relation.” An n-ary word  relation 
R is said to be prefix closed iff (a) R is [ength-preservings 
(LP), i.e., (ul, u2, . . 1 , un) E R + I(ul) = l(u,) = . = 

L(un); and (b) the conjunction of (i) (ul, u,, - , u,) E R,  
and (ii) v i  is an initial segment (prefix) of ui,  1 5 i 5 n, 
and (iii) l(ul) = 40,) = = l(u,) implies that (vl, v2, 

p ,  p E (2” X Z*) is  a sequential relation iff p is  nonempty, 
prefix closed, and FAD. If p, p # +’, is (i) prefix closed, 
(ii) FAD, and (E) functional, then there is  a sequential 
machine whose associated function is p .  The converse 
follows from  the previous sentence (Cf. [CCE], Theorem 
7.1). Thus, a sequential  relation which is functional is 
the associated function of a sequential  machine and we 
may call such a function,  without ambiguity, a sequential 
function. 

If u = alaz . * * crr E Z*, then  the word  reversal func- 
tion pz takes u into (T, . . . c2u1 ; pz is extended to operate 
on n-tuples of words componentwise and then to operate 
on n-ary relations memberwise. We shall, when no con- 
fusion  threatens, drop  the subscript from “pz”.  We will 
show,  in Section 7, Theorem 7.8:’ If p is LP, FAD and 
functional and (A, A) E p ,  then there are sequential functions 
pl, p2 such that p = p 0 p2 o p 0 pl. We use ‘‘0’’ for Pierce 
product*’, also called relative product, which, in the case of 
functions, is simply composition. (If p1 is regarded as 
being effected  by a machine which reads and writes on a 
finite tape in a left-to-right motion,  then p 0 p2  0 p may 
be  regarded as performed by a similar machine which 
reads and writes, however, from right to left.) An analogous 
result holds for sequential  relations, but this is easier to 
demonstrate. On  the  other  hand, if p is the composite of 
an even number  of  word reversals and any finite number 
of sequential relations, then p is FAD. An n-ary NDA Q. has 
associated with it an n-ary relation T(a) defined as follows. 
Let u E (Z*)”. Then u E T(a) iff there exist sequences si, 

* If v is functional  and (S,  V, sI) is not  elementary, it does  not 

0 We  use /(u) or 1, to denote  the  length of a word u. 

... , u,) E R. Again, it may be readily verified that 

follow that p is functional. 

7 4 denotes the empty  set. 

statements  are  assinned  numbers  indicating  the  sections  and 
# Here  and  subsequently,  theorems,  propositions,  and  other 

48 used  In [NC], p. 33. 
t This  notion  is  closely  related to the  notion  “transducer”  as 
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3 W [ ( U ,  W) E Rl A (w, 0) E Rzl. 
** Where R1, RP are binary  relations: (u, u )  E RP o R1 w 



1 5 i 5 m + 1, si E S, and ui, 1 5 i 5 m, ui E (Z*)" 
such that: s, = sI, sm.kl E D, (st, ui, s$+,) E v and u = 
u1u2 . . . u,. Here we use juxtaposition to denote  con- 
catenation, and concatenation of two n-tuples is per- 
formed componentwise. That is, if ui = (u:, uf, . . . , u:) 
and u j  = (u i ,  uf, * . * , u)),  then uiui = (uiui, 1 1  uiui, 2 2  . . . , u,uj)  n n  

An n-ary relation R, R C (Z*)", is said to be a transduction 
iff there exists an n-ary NDA Q. over B such that R = T(Q.). 
An NDA Q. may be graphically described by a labeled, 
directed graph, in which the nodes correspond to elements 
of S, each directed edge is labeled with (the name of) an 
element of (Z*)", and a certain node is distinguished as sI 
and some nodes are distinguished as elements of D. 
To each patht in Q., beginning with sI and terminating 
with an element of D, corresponds an element of (B*)", 
the label of the path, obtained by concatenating the labels 
of the traversed edges in the  order traversed. The set of 
all such elements of (Z*)" is T(Q.). 

If R, S are subsets of (B*)%, RS '!Zf { uu : u E R, u E S } ; 
R* ' !  Ro u R u RR W RRR V ... , where R' = 

{(A,  A, . . , A)} .  We shall show that the class of n-ary 
transductions oL;er B is exactly  the smallest class of subsets 
of (B*)" which contains the finite n-ary relations and is 
closed  under binary union, (binary) concatenation and 
(unary) concatenation closure (i.e., *). This may suggest that 
a relation is a transduction iff it is FAD. This is indeed the 
case for n = 1 ; but  for n > 1, the FAD relations form a 
proper subclass of the transductions. As a matter of fact, 
{ (0,OO) } * is a transduction which is not FAD; this  relation 
is a  homomorphism of F2 = (Z*, . , A), where ''. " denotes 
concatenation and B = { 0 } . All homomorphisms shall be 
understood to be of the free monoid Fz  into itself (where 2 
is an  arbitrary finite set) unless otherwise stated. 

We shall  also  prove Theorem 4.13: The binary trans- 
ductions are closed  under  Pierce product (i.e., relative 
product or composition). As a matter of fact, the class of 
binary transductions is the smallest class of binary relations, 
closed  under composition and conversion, which contains the 
length-preserving ones and the homomorphisms. (The 
conuerse of R is R" Cf { (u ,  u) : (u, u) E R}).  It will be 
shown  later that  the LP transductions are FAD. 

Among the binary transductions, we shall distinguish a 
subclass (locally finite) which contains the functional 
transductions.  A  relation R is locally finite iff for all u, 
the set { u : (u, u) E R } is finite. It is obvious that if R is a 
function, it is locally finite. 

A  relation R is symmetrically locally3nite iff R and R" 
are each locally finite; R is bounded iff for some positive 

fl - 

t Strictly  speaking, by a path in a, we mean a sequence of 
edges (si, u;, siil), 1 5 i 5 m, such that (si, n;, si+J E Y. 
The  path  is  said to begin  with s1 and terminate  with s ~ + ~ ;  the 
path connects s, to s?,,+~. The path is  said to pass through si, 
2 5 i 5 m. A path in a, beginning  with sI and  terminating  with 
an element of D will be called successful. 

integer M ,  the following holds:  for all u, u, if (u, u)  E R ,  
then both [(u) - l(u) 5 M and I(u) - l(u) 5 M. It is 
obvious that if R is bounded, it is symmetrically locally 
finite and  that  the converse is false. Theorem 6.1: The 
intersection of the symmetrically locally finite transductions 
and the FAD ones is  exactly the class of bounded transduc- 
tions. (It is a consequence of this  theorem in one  direction, 
that LP transductions are FAD.) 

An ordered  pair (A, u), u # A is said to be inadmissible. 
A locally finite transduction which fails to contain  in- 
admissible pairs is called an S-transduction. We present in 
Section 5 Theorem 5.1: The S-transductions are exactly 
those of the form h 0 T where T is an LP transduction and 
h is a homomorphism; if the transduction is functional, 
then T may be  chosen functional. 

The accompanying table summarizes the closure 
properties of the subclasses of binary transductions dis- 
cussed above. The fifth column deals with symmetric 
difference and  the seventh with concatenation. 

As counter-example for  the no's of column 4 of Table 1, 
we have homomorphism restrictions cpl = {(O, 0 ) )  * . 

{ (0"1", 037 : n 2 0 } and  the domain of cpl A cpz is not FAD. 

Hence, 'pl A cpz is not a  transduction. 

Column 6- the initial segment relation is FAD, but the 

{(1,00)1*, cpz = {(o,oo)l* . {(l,o>l*. Then cpl A cpz = 

As counter-examples for row 5 ,  we have: 

terminal segment relation is not; 

Table 1 Closure  properties of the subclasses of binary 
transductions. 

~ - _ _ _  

Transductions 
Locally finite 
transductions 

Symmetrically 
locally finite 
transductions 

S-transductions 
FAD transduc- 
tions 

Bounded  trans- 
ductions 

LP transductions 
1-1 functional 
transductions 

Closed under 
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Column 7- { (O”’, 0”) : m, n 2 O }  is FAD, as is {(I”,  I”) : 

Column 8- ( ( 0 , O O ) )  is FAD, but { (0,OO) } * is not. 
Counter-examples for  the other no’s are readily provided. 

Let the expression “relation R of rank m” be synony- 
mous with “m-ary relation R”. The operations or relations 
presented in the preceding table were thus all “rank 
preserving”. Considering  operations on relations that  do, 
in general, change the  rank, we observe that  the class 
of transductions is closed under “generalized composi- 
tion”, “existential quantification”, and “Cartesian  prod- 
uct” while not closed under “identification of variables”. 
(These terms  are defined in Section 8.) 

follows. Let R be a binary  transduction. 

1) R = R l f U  R,, where R l f ,  R ,  are  the “locally finite” and 
“locally infinite” parts of R, respectively (Proposition 
3.7), both RlJ,   R,  are transductions and R l f  A R,  = 

4 ;  
2)  R L  = R ,  V I’, where R ,  is a S-transduction and I’ a 

(finite) set of inadmissible pairs, R ,  A I’ = 4 (Corollary 
3.19,  3.20); 

3) R ,  = h 0 T, where T is an LP transduction and h a 
homomorphism  (Theorem 5.1); 

4) T = p(,u2) 0 pl, where pl, pu2 are sequential  relations; 

p 2 0 } but their  concatenation is not; 

The decomposition results may be  summarized as 

(Proposition 7.4). 
Thus, R = h 0 p(pz) 0 pl u I’ u R,. 

In  the case that R is functional, R, = 4, I’ contains at 
most  one element and pl, p z  may be chosen functional. 

The (potential)  equilibrium behavior of a (one-di- 
mensional) iterative system [FCH] is an LP transduction. 
The  “immediate consequence relations” of combinatorial 
systems in the sense of [MD], (which include the  normal 
systems of Post), are transductions as well as the “atomic 
step  functions” of Turing machines and  Markov algo- 
rithms.  Among  arithmetic  relations  p-ary  addition, p 2 2, 
is a transduction. 

All the preceding relations are FAD and bounded. 
The concatenation  relation serves as  an example of a 
non-FAD transduction. 

Among the examples of relations that  are  not trans- 
ductions,  the multiplication relations, both unary and 
binary, are discussed. These examples appear in Section 9. 

3. The Kleenean closure of finite relations 

It is  well known (see,  e.g., [RS]) that  for n = 1 the prop- 
erties of subsets R of (Z*)“ defined in any of the following 
three ways are coextensive: 

1) R is obtainable from finite subsets of (2*)” by a finite 

2) R = T(Q) for  some NDA (3; 
number of applications of U, + , * ; 

50 3) R = T(Q) for some Q satisfying: for each u E (Z*)“, 
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there is exactly one path in  starting  in sf and with 
label u. It is shown  in  this section that  the equivalence 
between (1) and (2) persists for  arbitrary n, thus 
providing an alternative definition of “transduction”. 

The persistence of equivalence between (1) and (2) 
reflects the  fact  that in  many  arguments the notions 
(1) and (2) are interchangeable. Notion (1) has  the advan- 
tage of being more algebraic and  thus lending itself to 
sharper  proofs, while ( 2 )  has  the advantage of being 
more intuitive.+ 

The equivalence between (2) and (3), however, fails for 
all n > 1 because: if (2) and (3) were equivalent,  then 
the class of sets satisfying (2) would be closed under 
complementation. 

The class of n-ary transductions, n > 1, is not closed 
under  set subtraction;  it is shown  in  Corollary 3.17, 
however, that subtraction of finite sets from transductions 
yields transductions. The main result of this section for 
later use is Corollary 3.20 which is the main tool in the 
proof of the Theorem 5.1. 

Definition 3.1 : Let @ be a family of subsets of (2*)“. 
The Kleenean closure $?(E) of @ is the smallest class of 
subsets of (Z”)” such that @ 2(@) and Q(@) is closed 
under  (binary)  union and concatenation and  the (unary) 
concatenation closure *. @ is referred to as the collection 
of atoms of R(Q). 

Dejinition 3.2: Let A denote, ambiguously, the n-tuple 
A) E (Z*)“ for  any n, depending on context 

to remove the ambiguity. Similarly, let { A )  denote 
( ( A ,   , A ) }  for  any n. L7+ 

(A, e * *  ”7+ 
n 

n 
R(@) may be obtained “from  the inside” as follows. 

Define Q o  ‘g @, and for all i >_ 0 :  

@ti+ l  gf ( R  : I R , ,  R z  E ai 
[R = R1 u Rz V R = R I R z  V R = I?:]{ 

Clearly, ai+, 2 ‘ 3 %  and Q(G) = UT==, Qi. To prove that 
R(@) has some  property p,  one may use the principle of 
mathematical  induction: it is necessary and sufficient to 
prove Q o  has property p and  that given any natural 
number i if Qti has the property p,  then SO does @ti+l. Such 
a proof we subsequently refer to as “by induction”. 

Definition 3.3: In preparation for  the next proposition, 
we introduce the following notion. A NDA (3 = (S ,  u, sI, 0) 
is simple iff: 
(1) D = { s r ]  for some ST E S 

(2) SI P S1’ 

(3) vsvu € (Z*)”[(S, u ,  SI) B VI 
(4) vsvu E ( Z * ) ” [ ( S T ,  u ,  s) CE u] 

t In fact, there  is a valid  analog of Proposition 3.5 in  which 
the system consisting of  n-tuples of words  under concatenation 
is replaced by an  arbitrary  semi-group. 



i.e., D consists of exactly one terminal state sT,  sI # sT 
and all edges “attached” to S I  (resp. s T )  are directed away 
from (resp. toward) it. The nodes s I ,  sT are called “ex- 
tremal” nodes. 

We leave to  the reader to verify the following: 
Lemma 3.4: Given any  transduction R, there exists a 

simple NDA such that R = T(@). 
Proposition 3.5: The class of n-ary transductions over 

Z is precisely Q@), where 8 is the class of all finite 
subsets’ of (2*)”. 

Proof: The class of n-ary transductions over Z is 
closed under (a) union,  (b)  concatenation, and (c) con- 
catenation closure because, given simple automata ai, 
i = 1, 2 :  
(a) Identifying initial and terminal nodes of the two 
automata respectively produces an  automaton Q. such 
that T(@) = T(Ct,) u T(&). 
(b) Identifying the terminal  node of the first automaton 
with the initial  node of the second produces an  automaton 
Q. such that T(a) = T(@,) T(@,). 
(c) Identifying the initial and terminal nodes of Q1 pro- 
duces an  automaton Q. (not simple) such that T(Q) = 
(T(@,))*. Since every F E 8 is a  transduction, every set 
in R(%) is a transduction. 

To show that every transduction is in a(%), we employ 
an induction on the number n of nonextremal nodes of 
a simple automaton  that defines the given transduction. 

Suppose R = T(@), where simple automaton a has 
n > 0 nonextremal  nodes, and  that  for all simple auto- 
mata a’ with fewer nonextremal nodes T(a’) is in +!?(%). 
(It is clear that if n = 0, T(@) E a(%).) Let sAf be a 
state of a different from S I ,  sT. Let: 

P I ,  kf the set of all successful paths in 0 ;  
Pnr = the set of all successful paths in a, which pass 

P G  kf the  set of all successful paths in @, which do not 

Clearly, P I ,  = P M  U P a  and if A(P) is the set of labels 
of pathsq in P, then: 

de f 

through S M  ; 

pass through s M .  

T(@) = A(PI,T) = W M >  u V P d .  

If we delete sM from a and restrict v accordingly, we 
obtain a simple automaton such that T(@G) = A(Pfi) 
and hence, by the inductive assumption, X(Pa)  E a@). 
We now show A(PM) is in Q(8) as well. 

P M  decomposes as follows: P M  = P I ,   P M  , . 
PA{, T ,  where 

* The  generating  set 8 of R(8) may  be  reduced to a finite 
subset S. Consider  binary  transductions  over  the  alphabet 

Then S is  finite  and R(S) = $(SI. 
label of that path. 

(0, 1 I. Let s Cf b ,  { (A,  o)l ,  ( (A,  1)1, ((0, A ) ) ,  ((1, A ) )  I .  
7 x is a function  that  associates with each  path  in a the 

!Zf the set of all paths in @ from sI to sM which 
do not pass through s M ;  
P,w,  %if the set of all paths in a from sM to s M ;  
P.II ,T kf the set of all  paths  in @ from sM to sT,  which 
do not pass through s M .  

Let a,, be the  automaton obtained from Q. by deleting 
sT and all edges of @ “attached” to sT as well as  the edges 
“attached” to sA\r that  are directed away from sM. The 
initial state of a, ,.%r is S I  and its terminal state is sM.  
Then, T(a1, Ar) = X(PI,  M ) .  Inasmuch  as a1 , M  is simple 
with n - 1 nonextremal  nodes, by the inductive assumption 
T ( C t 1 . M )  E Q(8). In a similar way, it is shown that 

Let Af be the  automaton derived from a by deleting 
S I ,  sT and restricting v accordingly and taking sM as 
both  the initial and terminal state of @ M , A r .  Then, 
T(a,, = A(P,, M ) .  Further, let @’ be the  automaton 
derived from a,, by “splitting” the node sM into  the 
two distinct nodes s:, s; (the  initial and terminal nodes of 
a’ respectively) in such a manner that T(aM , M )  = 
(T(a’))*. Then, a’ is simple with n - 1 nonextremal 
nodes and, by the inductive  assumption, T(a’) E R(8). 
Then, T(@Ar, M) = W’M .,VI) E a@>. Since W M )  = 

finally A(P1, T) = T(a) E Q(g), which completes the 
proof. 0 

Corollary 3.6: The class of locally finite (resp. bounded) 
binary  transductions over 2 is precisely the class of rela- 
tions  obtained from 8 by a finite number of applications 
of U, . , * where * is restricted to apply only to relations 
without inadmissible pairs (resp. to LP relations). 

This  corollary may be proved by induction, utilizing 
the following two observations. Given nonempty  binary 
relations S ,  T :  

(a) S U T,  ST are locally finite (resp. bounded) iff both 
S ,  T are locally finite (resp. bounded) 

(b) S* is locally finite (resp. bounded) iff S is locally 
finite and contains no inadmissible pairs (resp. S is LP). 

Proposition 3.7: Given  a  (binary)  relation R C (X*)’. 
Let dom,R be defined as  the set of sequences u such that 
( u :  (u,  u )  E R ]  is infinite. Let R, kf dom,RIR, Rzf  - 
(Z*  - dom,R)IR. Call R,, R z f  the “locally infinite” and 
“locally finite” parts of R respectively (disjoint, possibly 
empty).+ We claim R is a transduction iff R,, Rzf  are 
both transductions. 

Proof: Since R = R ,  U R one need  show only that 
if R is a transduction so are R,, R. It is in  fact sufficient, 
using Corollary 4.10, to show that dom,R  is FAD. Proof is 
by induction. 

VPAr ,T) E R(8). 

V P r  .nr> A(PAf, $1) . V P , ,  T I ,  N P M )  E R<8> and 

dLf 

t 1) If R C A X B, dom R = ( u  : (u,  u )  E R ) ,  ran R = 
(0 : (u, u )  E R 1 

2) Let R A x B, Then, by CIR is  meant the restriction 
of R to C,  i.e., CIR = ((a, b)  : (a, b) E R A a E C I 51 
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If R E Bo = 8, dom,R = 4, thus FAD. Let S ,  T E si 
and consider: 

(a) R = S u T or R = ST. 
Then, dom,R = dom,SU dom,T 
dom,R = dom,S dom T U  dom S dom,T, 
respectively. By induction  assumption, dom,S, dom, T 
are FAD, and  from 8.2 dom S ,  dom T are FAD, hence 
dom,R  is FAD. 

(b) R = S*.  
Distinguish the  two cases : 
(bJ S contains an inadmissible pair (A, u) # A. Then 

(b,) S contains no inadmissible pair. Then, 
dom,R = dom R;  

dom,R = dom S* dom,S dom S*.  

By inductive  assumption  dom,S is FAD and  dom R is 
FAD by  8.2, hence dom,R  is FAD. Thus, given the proposi- 
tion holds for all R E Si it holds for all R E Bi+,, which 
completes the proof. 0 

The "locally finite part" of a binary  transduction R may 
still contain a (finite) set of inadmissible pairs. In  the 
remainder of this section we establish that taking away 
these inadmissible pairs leaves an S-transduction R ,  and, 
more  important, denoting by 8" the collection of finite 
subsets of (Z*), whose members are all admissible pairs, 

To continue, we need to introduce a new concatenation 

Definition 3.8: The (unary) operation t on subsets 

R* E act$?. 
closure t and  the associated Kleenean closure 1. 

R (Z*)" is defined by: 

Ri = R u RR u RRR u . . -  
= RR* = R* - { A I  

If @ is a family of subsets of (Z*)", then $(e) is the 
smallest class of subsets of (Z*)" such that @ C C(@) and 
$(@) is closed under  (binary)  union and concatenation 
and  the (unary)  operation t. 

The collections @:, 0 5 i are defined analogously to 
the case of Kleenean closure and $(@) = u?=?=, @: so that 
proofs  may  be  carried out by induction. 

Definition 3.9: Given a family @ of subsets of (Z*)" and 
a subset B G (Z*)", define the family: 

@ B  'sf { A  - B :  A E @ } .  

In particular, e,*, = { A  - ( A }  : A E @ }  and  for 
compactness, we write @ A  for @ I  A 1. 

The following properties follow immediately from these 
definitions. 

(1) n(R(@>) = a(@ 
2(2(@)> = w.@ 

(2) @ G 5 * a(@) c: a(%) 
A 1(@) C e(% 
A @ A  C 8.1 

(3) e(@> C a(@> 
Lemma 3.10: (R(@))* C a(@.& 
Proof: By induction. If R E @ = Go, then R - { A }  E 

@* = (@A)o. Let R1,  R, E @, and consider the cases: 
(a) R = R1 U R,. Then: 

R - { A ]  = (R, - { A } ) U  (R2- { A } )  
(b) R = R1R2. Then: 

R - { A }  = 

(c) R = (R,)* = (R, - {A})* .  Then: 

By inductive assumption, R, - { A }  E R(6.d for j = 1,2 ;  
hence, R - { A }  E +Q(@*) in  all three cases. Thus, if the 
lemma holds for all R E @,, it holds for all R E & + I ,  

which completes the  proof. 0 

Proof: In general, $(@) R(@) so that ($(@)), C 
(e(@))*. If = @, then (I(@))* = $(@) so that: 

(b) R = R,R2, are dealt with as  in the preceding lemma. 
In  the  third case, 

(c) R = (R,)* = (R, - {A})* .  Then 

R - { A }  = (R, - {A} )+ .  

C. C. ELGOT AND J. E. MEZEI 

By inductive assumption, Rj  - { A }  E $(@) for j = 1,  2; 
hence, R - ( A }  E $(@) for  all  three cases. Thus, if the 



claim holds for  all R E Gi, it holds for all R E 
which completes the proof. 0 

Corollary 3.12: 

(a> (9(@.J)* = I(@*>, 
(b) (a(@)>* C I(@*). 

Proof: Since (@A)a = @.\, the lemma yields (a) directly. 
From the preceding lemma : 

(.Q(@)).\ c (.w@*N.i. 

Using (a), one obtains (b). 0 

Proposition 3.13: If @., C Q(@), then (9(@))., = 

I(@*) c w.3). 

Proof: Note  that: 

@A G 9(@) ==+ Q(@.,) c na(@) = Q(@) 
so that I(@.i) C .f?(@*) C Q(@). 
By virtue of the corollary to the previous lemma, part (b), 
we need to establish only i!(@*) From part (a) 
of that corollary i!(@*) = (9(@a)).i. On the other hand: 

@.\ E n(@) =+ (a(@*)>* C (ea(@->>., = (a(@)>* 
which concludes the  proof. 0 

Proposition 3.14: For all R E I(@), there exist A i ,  
Ai E Q, Ui E I(@), 1 5 i 5 k ,  1 5 j 5 r such that 

R = u A i  u u A i U i  

where one of the finite un ionsv i= ,  Ai, u:=l Ai Uimay be 
vacuous. 

I k 

i = 1  i = l  

Proof: By induction. If R E @ = go, then R = A ,  
which  is  of the given form. Suppose R1, Rz E are of 
the given form,  then simply by the distributivity of con- 
catenation over union R, u RP,  R, Rz and (Rl)+ = R1 ‘J 
R1(Rl)+ are all of the given form.  Thus, if all R E @; is  of 
the given form, then all R E are of the given form, 
which completes the proof. 0 

We  wish to ask whether, given a  transduction R, the 
collection R’ of those n-tuples of R whose lengths exceed 
a nonnegative integer m is a transduction.  (The length of 
an n-tuple is the maximum among the lengths of its 
components.) Further, if this R’ is a  transduction, we ask 
whether it may be specified in terms only of n-tuples whose 
lengths exceed m. The answer to both questions is yes, 
as  a consequence of the following proposition. 

Proposition 3.15: Let 8 denote the collection of finite 
subsets of ( X * ) “ .  Given a nonnegative m, define M E 5, 
8’ C 5 by: 

(u l ,  * u,) E M W Z,,, * , 1, I m 

F E ~ > ~ F E % A F ~ M = ~ .  

Then, 

R E $(%A) ==+ R A E e(5’) 
where a = (2*)” - M .  

Proof: By induction. If R E %A = then R n 
ii? E 8’. Let S ,  T E and consider the cases: 

(a) R = S W T. Then, 
R r \  ii?= ( S A  ( T A  ii?). 
By the inductive assumption S n ii?, T A  ii? E I( %’), 
hence R n ii? E I(%’). 

(b) R = ST. Then, 

R = (s n G)(T  A a) u ( s  A M ) ( T  A a) 
u ( s  n M ) ( T  n M )  w ( s  n M ) ( T  n M I .  

By the inductive assumption, S A ii?, T A &? E I@’) 
so that the  term (S  A ii?) ( T  A ii?) E i!(S’). Consider 
next the term ( S A  M )  ( T A  ii?). Using both  the inductive 
assumption and Proposition 3.14, there exist F,, Fi E 8’ 
and U, E I@’) such that: 

T A  if?= uF,u u F i U i  

and 

k 

i = 1  i= l  

( s  n M ) ( T  A a) 
r k 

= u ( s  n M ) F ?  u u ( s  A M ) F ,  ui. 
i = l  i = l  

Since for any i :  

s A M E 8 A F~ E g> =+ ( S  n M>F, E 8’ 
one concludes ( S  n M) ( T  A &i‘) E I(%’). A symmetric 
proof shows (S  n &i‘) (T n M )  E I(%’). Since 

i!(g’), hence R A ii? E I(%’). We remark that from 
the preceding (a), (b) it is possible to conclude that if R is 
a polynomial in union,  concatenation and sets R1,  R, 
such that for 1 5 j 5 p,  R j  n E I( %’), then R n ii? E 

( s n M ) ( T n w E  %h,(Snw(TnwnmE 

i!(%’>. 
(c) R = S . Then, t 

nm 
“ 

nm+ 1 

R = [ S ’ d  SSW .. .  u ( S  . . .  S ) ] u  ( S  a * *  S)’ 
n m  
__L?d 

n m +  1 

u [ S W  ss u ***u ( S  . . .  S ) ] ( S  * . .  S ) + .  
nm+ 1 

Denote S . . - S by Snn+l. Then, we claim that using the 
inductive assumption : 

Snm+’ A M 

= I$ + (Sn”+l)t E I(%’) * R r\ ii? E .$(%’). 

Indeed, Snm+’ is a polynomial in concatenation and S, 53 
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and by inductive assumption S A R E ?(%'). Hence, 
9"" n 2i;i = g m + l  E e(%') and (Snrn+')+ E ?(%'). 
The expansion of R shows R as a polynomial in union, 
concatenation and sets S, (S""+l)t such that: 

s n R E 2(%>), 
( s ~ ~ + ~ ) ~  n = ( s ~ ~ + ~ ) ~  E e(%>); 
hence, R A ii? E ?(%'). Thus, we have reduced the 
proof to establishing that Snm+' A M = +, i.e., all n-tuples 
of Snn+' exceed rn in length. 

Each s, . . E S""+' is a product of nrn + 1 
factors si E S. Since S E ?(SA), the length of each si is 
at least one: each si contributes to the length of at least 
one of the n components of the product, so that finally 
there will  exist a component of the product of length 
exceeding rn. But then the length of s, - s,,+, exceeds m, 
and Snm+' A M = +. 
obey it, which  completes the proof. 0 

Thus, if all R E (SA)i obey the lemma, all R E 

Corollary 3.16: R E $(%)=+ R A e(%'). 
Proof: Note that SA C %+ (R(%)), = 2(gA), (Prop- 

osition 3.13). Then: 

R E @(%I * R - ( A }  E Q ( % A ) .  

Using the proposition : 

R - ( A )  E ?(%A) * ( R  - ( A ) )  A i@ 
= R n i@ E ?(%>) 

Finally, since (%>).k = %> * $(%') R(%>), (Propo- 
sition 3.13), R r\ ii? E a(%'). 0 
Corollary 3.17: R E F E 8 =+ R - F E a(%). 

Proof: Define rn as  the maximal length of a n-tuple in F :  

m = max ( 1, : (u,, u,) E F A 3 j (u,  = u ) )  

T h e n , F Z M a n d R - F = ( R A M - F ) u R A i i ? .  
Now, R A M - F E 8 and by virtue of the preceding 
corollary, R r\ ii? E @(%') .f?(%). Hence, R - F E 

In what follows, we restrict attention once more to 
binary relations. From the definitions, we know that a 
locally finite transduction R contains a finite number of 
inadmissible pairs, and from the preceding proposition, 
it follows that a locally  finite transduction R is the union 
of a finite set Ri of inadmissible pairs and an S-trans- 
duction R,. We  wish to ask whether the S-transduction R, 
may be  specified in terms only of admissible pairs. The 
answer is yes, as a consequence of the following proposi- 
tion. 

def 

a<%>. 0 

Proposition 3.18: Let 8 denote the collection of finite 
54 subsets of (2*)'. D e h e  I s  ( Z*)2 as  the set of inadmissible 
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pairs and Sa C 8 as  the collection of those finite relations 
which contain only  admissible pairs: 

Z = ( ( A , u )  : u E 2* A u # A } ,  

F E S " W F E E A F A Z = + .  
Then : 

R E ?(ijA)A R is locally finite * R - Z E ?(%:). 

Proof: By induction. For R E SA, = (%a)o, R - 
Z E 8:. Let S, T E (%A)i  and consider the cases: 

(a) R = S u  T,  

(b) R = ST, R nonempty. 

In both cases,  since R is  locally  finite, both S and T are 
locally  finite. In particular, S A Z, T A I E 8. With 
this in mind, using the same proof as in the corresponding 
cases of the preceding proposition, we conclude R - Z E 
2(%3.  
(c) R = St. 

Since St is  locally  finite, S may not contain inadmissibles. 
By the inductive assumption, S - I = S E ?(%;), 
hence R E 2(%;). 

Thus, if all R E ( % A ) i  obey the proposition, all R E 
(%,k)i+l  obey it, which  completes the induction. 0 

Corollary 3.19: R E $(%)A R is locally  finite * R - 
I E a(%.>. 

Proof: Analogous to  that of Corollary 3.16. 

Corollary 3.20: The class of S-transductions is  precisely 
the class A?(%"). 

Proof: If R E %", then R is an S-transduction by 
definition, and  the class of S-transductions is closed 
under union, concatenation, and concatenation closure * . 
Thus, a(%") is contained in the class of S-transductions. 
On the other hand, any S-transduction is a member  of 

according to  the preceding corollary. Hence, the 
claim  follows. 

4. Closure of the class of transductions under 
Pierce-product 

It is straightforward to prove that the class of binary 
relations over Z that are  both LP and FAD is closed under 
the Pierce product (Proposition 4.11). 

To extend this closure result to the larger class of all 
binary transductions over 2, we first show that any 
transduction over Z may  be obtained from a LP FAD 

relation over the alphabet Z u { p ) , p @ 2, (Propositions 
4.8, 4.4). With some added construction, proof of the 
closure for the larger class  may then be reduced to  that 
for the smaller. 



Dejinition 4.1: A nondeterministic automaton @ = 
(S, v, sI, D) is elementary iff v S X 2;" X S, i.e., the 
label of each edge  is in 2". 

Dejinition 4.2: Given a relation R C (Z*)", we define 
the length-preserving relation R, (2;,*)% by: 

( u l p m - l u l ,  . . . u,pm-2." ) E R, * ( ~ 1 2  . . .  un) E R 

A m = max { l u i )  where 0" means P . . . P 
15i<n ii. 

That is, R ,  is obtained by taking n-tuples (u,, . . . , u,) of 
R and concatenating the least number of P's to the right 
hand ends of each ut ,  1 5 i n so as to make the resulting 
n-tuple (u,, . . . , un) LP. 

Definition 4.3: A relation R (Z*)" is FAD iff there 
exists an elementary n-input NDA ouer Z, such that 
T(a) = R,. 

Making use of Theorem 11 of [RS], one may show that 
R is a relation defined by an elementary NDA iff there 
exists a multi-input finite state  automaton  that accepts R. 
Thus, the above definition of an FAD relation is equivalent 
to the one given in Section 2. 

Proposition 4.4: Given an elementary (n-input) NDA a 
over 2, T(a) is LP and FAD. Conversely, if R 5 (Z*)" is 
FAD and length preserving, there exists an elementary 
NDA 63 over Z that defines R. 

Proof: Given the NDA a over 2, consider it as defined 
over 2 0 .  Since T(a) is length preserving, T(a) = T(a),. 
Thus, T(a) is FAD. 

If R is FAD, there exists an elementary NDA 03' over 2, 
such that T(@') = R,. Since R is length preserving, 
R ,  = R ,  and 03' defines R .  Delete from 03' the edges with 
labels in which /3 occurs, to obtain elementary NDA 03 
over Z. Then, R = T(63) as was desired to show. 0 

Definition 4.5: Consider the "augmented" alphabet 

Z 8 ~ . * * * , f l k  = {PI, * .  ' > P k ] ,  

PI Z 0 2  Z P k ,  P i  2, 1 i j 5 k .  

The deletion mapping do,, ... , ok is the homomorphism that 
carries (Z,,,...,Ok)* into Z* determined by the  requirement: 

dp l,....pk(Pi) = A ,  1 I j I k 

da ,,..., 0 l b )  = fJ E 2 .  

Where ambiguity is no problem, the subscripts will  be 
suppressed. Since d is a function, we observe that  the 
relation d" 0 d over 2% is an equivalence relation and  that 

( u ,  u) E d" 0 d W d(u) = d(u) E 2*.  

Each equivalence class [u] of d" 0 d contains  a uniquely 
distinguished member u E Z*. 

Definition 4.6: The deletion mapping is extended to 
n-tuples (ul, . . . , un) E (2%)": 

+l, * * * , u,> = (d(u,), * * * , d(u,)), 

and to relations R (2;)": 

d(R)  = (d(u1, * * * , un) : (u1, . . .  , un) E R } .  

Remark 4.7: It may be verified that for  a  binary relation 
R,  R 5 (Z%)2: d(R) = d o R o d" where the d (resp. d") 
on the right is a subset of 2% X Z* (resp. Z* X 2%). 

Proposition 4.8: Given the relation R C (E*)", R is a 
transduction iff there exists an elementary nondeterministic 
n-input automaton a over Zp such that: 

R = d(T(a)) .  

ProoJ 6: Given a, obtain the NDA a' by "replacing in 
the labels of all occurrences of P by A". Then, 

T(a') = d(T(@))  

which is a  transduction. 
Proof *: Given a transduction R, let a be the NDA that 

defines R. Construct a' from a by replacing each edge 
labeled (uI1 1 .  . ulmx, - .  . an1 u,,,,) by a sequence 
of edges respectively labeled: 

(all, P ,  . . .  P)  . . .  (Utrnl, P. * . *  , PI 
"--, 

n- 1 

(P ,  u21, p,  *; P,) . . . (P ,  U2rnI, 0, . . . PI 
lA--2 

(0. . . .  P ,  and (P. . . .  P ,  unm.). 
L/ 

n- 1 

Increment the collection of states  appropriately, leaving, 
however, sI, D unchanged. Then: 

R = T(a) = d(T(a')) ,  

where a' is an elementary NDA over ZB. 

Corollary 4.9: If R E ( Z * ) " ~ ~ F A D ,  then Ris atransduction. 

Proof: From  the definition, there exists an elementary 
NDA over Z, such that T(@) = R,. Then, R = d(T(a)) 
and R is a  transduction. 0 

Corollary 4.10: If R C (Z*)z is a  transduction and 
U is an FAD set, then the restriction UIR is a  transduction. 

Proof: Let a be the elementary NDA over Z0 such that 
R = d(T(a)), then T(a) is FAD and length preserving. 
On the other hand, let 63' be the finite-state automaton 
that defines U. 

Modify a3' as follows. Each edge (s, u, s') of 63' is to 
be replaced by a collection of edges { (s, u, u', s') : u' E E, ] 
and for all s, the set of edges { (s, 0, u', s) : u' E E0 } added. 55 
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Denote the elementary NDA thus obtained by 63. T(o3) is 
FAD and LP. It may be verified that: 

d(T(a )  n T(a3)) = U 1 R .  

But the intersection of LP FAD transductions is FAD and LP 

so that  the relation T(a) r\ T(a3) is defined by an ele- 
mentary NDA over Z, (Proposition 4.4). It follows that 
UIR is a transduction. 0 

Proposition 4.11: The class of (binary) FAD relations 
in (X*)' is closed under Pierce product. 

Proof: Follows as an immediate consequence of The- 
orem 10. 

Definition 4.12: Define the partial ordering I of 2% by: 

u I U H  3 u,, e . .  u, E Z?; no, , n, 2 0 
[U = ~1 . . - U, A u = p""ulp"'U, . . . urnfin"'] 

i.e., u 5 u iff one may obtain u by deleting some p's from u. 
Note  that: 

d(u) = d(u) * 3 w[u 5 w A u w ] .  

Theorem 4.13: The class of binary transductions is 
closed under Pierce product. 

Proof: Consider transductions R,, R2 c (Z*)'. By 
Proposition 4.8, there exist elementary NDA'S a:, over 
2, such that: 

R i  = d(T(a$) )  i = 1, 2. 

Modify these automata  as follows: to  the collection of 
edges of ai, i = 1, 2 add  the set ((s, p ,  0, s) : s E Si), 
i.e., "loops of unit lengths" labeled (p, p). Call  the modified 
automata ai, and let Li '!Zf T(a i ) ,  then: 

d(L,) = R i  i = 1, 2, 

and,  further, Li, i = 1, 2, satisfy 

(u, U) E Li  A u I Y* 3 x [ ~  I X A (X, Y )  E L,I (1) 

(u,  u) E Li  A 5 x * 3 Y[U I Y A (x, Y )  E Lil (2) 

Recall Ri = d 0 Li 0 d",  i = 1, 2 and consider: 

R z o R l = d o L 2 0 d c o d o L 1 0 d "  

= d(Lz  0 de 0 d 0 L,). 

But, (s, t )  E dc  o d+ d(s) = d(t)=+ 3 w [s 5 w A t w ]  
and using properties (l), (2): 

( u ,  s) E L1 A s I w * 3 x [ u  I x A (x, w) E LlI 

( t ,  0) E Lz A t 5 w =+ 3 Y [ U  I Y A ( w ,  Y )  E LzI 

Thus : 

( u ,  u) E L,  0 d" 0 d 0 L1  

* 3x3 Y [ U  I X A 0 I Y A (X, Y )  E Lz 0 LI]  

* 3 X, Y[(x .  Y )  E Lz 0 LI A d(u ,  u) d(x, Y ) ]  

and d(L, o d" o d o L,) 2 d(L, o Ll). Hence, d(L, 0 d" 0 
d o L,) = d(Lz 0 L,). Finally, since Rz o R, = d(Lz 0 d" 0 
d 0 L A  

R ,  0 R1 = d(Lz  0 L,). 

Now, Li are LP FAD relations since they are defined by 
the elementary NDA'S ai over Z,, i = 1,2 (Proposition 4.4). 
The composite L,  0 L,  is then an FAD relation (Proposition 
4.11) that is LP so that there exists (Proposition 4.4) an 
elementary NDA a3 over 2, that defines L2 0 L,. Since 
R, o R, = d(T(a3)), we conclude R, 0 R, is a  transduction 
(Proposition 4.8). 0 

Corollary 4.14: Let Xz denote  the class of all binary 
transductions over 2. 

Let QZ denote the smallest class of binary relations 
over Z closed under Pierce product and conversion which 
are  that or, contains the LP transductions and  the 
homomorphisms. Then: 

6 2 ,  2 sz: 3, Q ,  

Proof: Since homomorphism is a (1-state) transduction, 
and  the class of binary transductions is closed under 
conversion and, by virtue of this  theorem, Pierce product : 

s, 2 0, 
The other inclusion follows by Proposition 4.8 and 
Remark 4.7. 0 

Corollary 4.15: The following subclasses of binary 
transductions are closed under Pierce product: (a) locally 
finite transductions and symmetrically locally finite 
transductions;  (b)  S-transductions; (c) bounded  trans- 
ductions; (d) LP transductions; and (e) 1 : 1 functional 
transductions. 

We now show that d(Lz o d" o d o L,) = d(L2 o L,). 
Since d" 0 d contains the diagonal of (Z?)', L,  0 L1 C: 
L,  0 d" 0 d 0 L,, and, consequently, d(Lz 0 L,) c d(L, 0 
dc  o d o L1). Take (u, u )  E L2 o d" o d o L,. Then,  there 
exist s, t E Z$ such that: 

Proof: The defining properties of these classes (other 
than being collections of transductions) are preserved 
under the Pierce product. Since transductions are closed 
under the Pierce product,  the corollary follows. 

5. Decomposition of S-transductions 

In this section we show that  an S-transduction over 2 
may  be expressed as  a Pierce product of simpler trans- 

(u ,  s> E L1 

(s, t )  E dc 0 d 

56 ( t ,  u) E L2. ductions over an augmented alphabet 2'. 



Theorem 5.1: The class of S-transductions ouer Z is 
precisely the class of transductions R = h 0 T, where T is  
u LP transduction and h is a homomorphism, and both 
relations T,  h are over some Z’ 2 2. Further, if R is 
functional, then T may be chosen functional. 

Proof: Consider the first assertion of the theorem. 
Since LP transductions and homomorphisms are S-trans- 
ductions and the class of S-transductions is closed under 
Pierce product,  transductions h 0 T are S-transductions. 

Let R be an S-transduction.  Denoting by 5“ the collec- 
tion  of those finite relations in (2*)’ which contain only 
admissible pairs, we have previously established (Corollary 
3.20) that R E $?(r). This implies that there exists an 
NDA over Z such that R = T(Q) and  that all edges of a 
are labeled by admissible pairs. 

Let { (u, ,  u,), . . . , (un, un)}  be the set of labels that 
appear on the edges of Q. Construct an NDA a’ over Z U 
{ 0, I, . . , n ) by changing the labels of the edges of Q as 
follows. Edges labeled (ui, vi), I 5 i 5 n in Q will  be 
relabeled: 

(ui, ioLui-’) if (ui, vi) # A 

(09 0) if (us ,  vi) = A 
The procedure is proper since the labels of Q. are ad- 
missible pairs. Since the resulting labels of Q’ are all LP, 

T(Q.‘) is necessarily LP. 

Define the homomorphism h : { 0, 1, . * * n } -+ Z* by 
the requirement: 

h(0) = A 

h ( i )  = u i ,  1 5 i 5 n .  

It is then immediate that R = h 0 T(Q’). Now let 2’ = 
Z V { 0, 1, . . . , n } and extend h so that it is included 
in (Z’)* X (E)*. Taking T !2f T(Q’) completes proof 
of the first assertion. 

To show the second assertion, we observe that since all 
edges  of a’ had LP labels, one may construct, by “ap- 
propriately subdividing edges of Q’ ”, an elementary 
NDA a’‘ such that T = T(Q’) = T(Q”). Then, T is FAD 

(Proposition 4.4). 
Now let R be functional. T may not be functional, 

but it is FAD and we invoke the following result (Lemma 
6.5, [CCE]) : 

If T is a binary relation that is FAD, then  there exists 
an FAD function T’ such that T’ T and  dom T‘ = dom T .  

Consider h o T’. Since T’ E T ,  h o T‘ s R. On the 
other  hand, R _C h 0 T’. To see this, take any (u, u )  E R. 
Then there exists w such that (u, w) E T and, since dom 
T’ = dom T ,  there exists w’ such that (u, w’) E T’. Then, 
(u, h(w’)) E h 0 T’ R. But R is functional, hence h(w’) = 
u and (u, u) E h 0 T‘. In the resulting decomposition 
R = h 0 T’, T’ is a transduction (Corollary 4.9) and 
since T’ 5 T ,  T’ is LP. 0 

Corollary 5.2: For all homomorphisms ha, LP trans- 
ductions Lo over 2 there exist homomorphism h, LP 

transduction L over 2‘ 2 2 such that: 

L o o h o = h o L .  

Proof: Lo, ha are  S-transductions over 2 and so is 
Lo 0 ha. From  the theorem  the corollary follows. 

Remark 5.3: The converse claim to the corollary above 
is not true. That is, there exist homomorphism h, LP 

transduction L such that for  all homomorphisms h,,, 
LP transductions Lo : 

h 0 L # Lo o h o .  

The reason for  this is that  all sets { u  : (u, u) E Lo 0 ha, 
u E Z* 1 have the property that they do  not contain 
sequences of unequal lengths; whereas, in general, a 
set { u : (u, u )  E h 0 L, u E Z* } may contain sequences 
of different lengths. 

Proposition 5.4: Given an FAD relation R C (X*)’, 
D C dom R: 
(a) the maximal subdomain D such that D1R is LP is FAD; 

(b) the maximal subdomain D such that D 1 R is functional 

(c) the maximal subdomain D such that D 1R is the identity 
iS FAD; 

mapping is FAD. 

Proof: These contentions follow from Theorem 10. 

Remark 5.5: The preceding proposition does not hold 
for  the class of S-transductions. 

Consider homomorphisms h, = {(O, 00), (1, A)] *, 
h, = ((0,  A), (1,OO)) *. For the S-transduction h, U h2, 
the maximal subdomains D of (a), (b) in the above  prop- 
osition are equal to dorn (h, A h2). This set is the collection 
of those sequences u for which the number of occurrences 
of 0’s and 1’s in u are equal, hence not FAD. 

Similarly, consider the S-transduction R = { (0,  00) ] * 
{ (0, 1) ] * { (1, A) } * . The maximal subdomain on which R is 
the identity is the set {029”  : n 2 0) which is not FAD. 

6. Subclasses of transductions; 
bounded  transductions 

The  diagram of Figure 1 shows how the various sub- 
classes  of binary transductions are related under (set 
theoretic) inclusion. In this diagram the small unlabeled 
circles are meant to emphasize that we have not named 
certain unions and intersections of  classes. All the dia- 
grammed relations can be established either by definition 
or  from simple counterexamples, except for  the claim 
that FAD relations are transductions (Corollary 4.9) and 
the claim that is the concern of this section, given in the 
following theorem. 57 

GENERALIZED FINITE AUTOMATA 



TRANSDUCTIONS 

Figure 1 Subclasses of transductions 

Theorem 6.1: The intersection of the class of “sym- 
metrically locally finite” transductions and the class of FAD 

relations is exactly the class of bounded transductions. 

Proof (Part I ) :  For the first  part of the proof, we  use 
the following  lemma. 

Lemma 6.2: :Given a relation R 5 (2*)’: R is 
FAD and locally  finite 3 3 mV(u, u) [(u, u) E R * 
I ,  - I,, < ml. 

Proof: Let (7. be the elementary NDA over Z p  that 
defines R,, and let n be the number of states of a. 
Assume, to the contrary, that V m  3 (u, u) E R[I, - 
I, 2 m] and, in particular, 3 (u, u) E R[1, - I, > nl; 
that is, 3 (up’, u) E R,  : p > n. Write (up’, u) = 
(u, x )  (p’, y )  where both factors? are LP. Since the 
length of (o’, y )  exceeds the number of states of Q, if 
a path labeled (p’, y )  connects so, sp and passes through 
s,, - . sP-,, then there will  exist  some state repeated  in 
the sequence So, sl, . s,. 

From this remark we  may  immediately  conclude 
the following: If a path in Ca. labeled (u, x )  (p’, y )  con- 
nects states s, s’, then for an arbitrary integer q there 
will  exist r > q, y’ E 8* such that a path in a labeled 
(u, x )  (pr, y’) connects s, s’. Thus, a defines an infinity 
of pairs of the form (u,  x) (or, y’)  and R = d(T(a))  is not 
locally  finite,  producing a contradiction. This  proves 
the lemma. 
The first  part of the proof of the theorem  may  now  be 

t Given U, v E [ Z*)-, we  say v is a factor of u iff  there  exist 
58 x, y E (X*)” such  that u = x . u . y .  
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completed as follows.  Since R is FAD, so is R“ and using 
the lemma: 

R is FAD and locally  finite =+ 3 m, v(u, u) [(u,  u) E 
R * I ,  - I,, < m,]; 

R‘ is FAD and locally  finite =+ 3 m2 V(u, u)   [ (u,  u) E 
R I, - 1, < m2]. 

Finally, (u, D) E R * I ,  - I,, < max (rill, m,) A I, - 
I, < max (m,, m,) so that R is bounded. 

Proof (Part 2): In general, if R is  bounded, both R,  R e  
are locally  finite. We assume R is a bounded transduction 
and show R is FAD. Since R is a transduction, R E R(8) 
(Proposition 3.5). Proof is by induction, and we use  the 
following  observation.  Given  nonempty  relations S, 
T G (X*)’: 
S is bounded A T is bounded HS V T is bounded wST 
is bounded. 

For R E &, R is a finite relation and necessarily FAD. 

Let S, T E Bi and consider the cases: 

(a) R = S V T. Since S u T is bounded, both S, T are 
bounded. By the inductive  assumption, both S, T 
are FAD. Hence, R is FAD. 

(b) R = S*. Since S* is bounded, S is LP and, by the 
inductive  assumption, S is FAD. That R = S* is 
FAD (and, incidentally, LP) is then a consequence of 
the following  lemma. 
Lemma 6.3: The class of  n-ary relations  over Z that 
are both FAD and LP is  precisely K( 8”’) where 8” 
is the class of finite, LP relations. 
Proof: It follows from Definition 4.3 of an FAD 

relation (see  discussion  following that definition) that 
this lemma  is  essentially  equivalent to Theorem 14 
of [RS]. 

(c) R = ST. Since ST is bounded, both S, Tare bounded 
(assuming ST # 4). By the inductive assumption, 
both S, T are FAD. That R = ST is FAD is a con- 
sequence of the following  lemma. 
Lemma 6.4: Given  relations S, T E (X*)’ .  If S is 
FAD and bounded and T is FAD, then ST is FAD. 

Proof: Since S, T are FAD, so are the LP relations 
S,, To, and S,T,. From Theorem lo,+ it follows that 
if a relation R E (2%)” is FAD, then the relation R’, 
obtained by truncating in each  n-tuple of R the 
final string of p’s from all components of the n-tuple, 
is FAD. In particular, S,T is FAD. It is then  sufficient 
to show, due to the boundedness of S, that (Sar)‘ is 
FAD, where (S,, T)’ is  obtained by deleting  in the 
first components of all pairs of SOT the leftmost 
occurrence of a /3 (if no such /3 occurs, the pair is 
taken unchanged). 

-f See  Appendix,  Section 10. In this use of the  theorem we 
let Zg play  the  role of L: and  introduce a new letter to play 
that (3. 



By virtue of Theorem 10, there exists a formula F 
of L such that (u, v) E S,T w flu, VI. Consider the 
following formula F’[u‘, v] of L :  

F’[u’, VI = 3 u[F[u, VI A ([I] V [21)1 

where : 

[l] = 3 t[u(t) = 0 A Vt’ [ t ’  < t * U(t) # a] 
A Vt’[t’  < t ~ ’ ( t ’ )  = ~ ( t ’ ) ]  

A Vf’[t’ 2 t 3 u(t’ + 1) = ~’(t’)]] 

[2 ]  = Vt[u(t) # 0 A U’(t) = ~ ( t ) ]  

Clearly, (u’, u)  E (SOT)‘ w F’[u’, v] and, thus, (SBT)’ 
is FAD. This completes proof of the lemma. 

We  may conclude that if the theorem holds for  all 
R E si, it holds for all R E f j i b l ,  which completes the 
induction. 0 

Corollary 6.5: Given a relation R C (Z*)’. If R* is 
FAD and symmetrically locally finite, then R* (and R) is LP. 

Proof: Under the assumptions of the corollary, we 
may conclude from the theorem that R* is bounded, 
and  the conclusion follows. 

Corollary 6.6: Given a transduction R. If R is LP, then 
R is FAD. 

Proof: Since R is LP, it is certainly bounded, and the 
conclusion follows by the theorem. 

The preceding theorem holds for n-ary relations under 
the following  definitions. 

Definition 6.7: Given R C (Z*)” define the relations 
Rr’ , . . . Rp’ for  all u E Z* by: 

(ul, 1 . -  u,) E RI”’ * ( u ~ ,  . . .  u,) E R A ui = u 

1 5 i 5 n. 

A relation R G (Z*)” is symmetrically  locally finite iff 

A relation R C (Z*)” is bounded iff there exists an m 
VuV;i[R:”’ is finite]. 

such that: 

(ut ,  * . u,) E R * Vyi, j [ L ,  - Iu i  < m ] .  

Proposition 6.8: Given a homomorphism h and  the 
subset X C Z*, let pref (X )  denote the smallest set that 
contains X and is  prefix-closed. Then: X is FAD A X l h  is 
bounded =+ pref (X)lh is bounded. 

Proof: We  use the following observations: 

1) Given sets Y ,  Z Z* : 

pref ( Y  U Z )  = pref ( Y )  U pref (Z)  

pref ( Y * )  = Y*pref ( Y )  

pref ( Y Z )  = pref ( Y )  U Y pref (Z)  

2 )  Given a relation R (Z*)z and sets Y ,  Z C Z* : 

( Y U Z ) ] R =   Y I R u Z l R ;  

if, further, R is a homomorphism of F z  : 

( Y Z )  1 R = ( Y 1   R ) ( Z I  R). 
Since X is FAD, X E a(5) and the proof proceeds by 
induction. If X E 5, pref X is  finite and pref Xlh  neces- 
sarily bounded. 

Let Y ,  Z E 8% and consider the cases: 

(a) X = Y u 2. Since Xlh  = Y l h  u Z l h  is bounded, 
so are Ylh, Zlh. By the inductive assumption, 
pref Ylh,  pref Z l h  are bounded. Since: pref Y l h  U 
pref z l h  = (pref Y U  pref Z)lh = pref ( Y U  Z)l/z, 
pref Xlh is bounded. 

(b) X = YZ.  Since h is a homomorphism, Xlh  = 
(Ylh)(Zlh),  and since Xlh  is bounded, so are Ylh,  
Zlh.  By the inductive assumption pref Ylh, pref Z l h  
are bounded. Using the fact that h is a homo- 
morphism: 
pref ~ l h  U (Ylh)(pref Zlh )  = pref Ylh  U YprefZlh 
(pref Y U  Y pref Z)lh = pref (YZ)Ih. 
Hence, pref Xlh  is bounded. 

(c) X = Y*. Since Y* Ih is assumed bounded, and Y _C 
Y*,   Y lh  is bounded and, by the inductive assumption, 
pref Y l h  is bounded. Since h is a homomorphism 
(Y*lh)(pref Ylh)  = (Y* pref Y)lh = pref ( ~ * ) l h ;  
hence,  pref Xlh  is bounded. 

Thus, if the proposition holds for Si,  it holds for 
which completes the induction. 0 

Given X G Z*, define suff (X )  as the smallest set Y 
such that p(Y)  is  prefix-closed and X C Y. Observe: 

(a) suff = p 0 pref 0 p 
(b) suff 0 pref = pref 0 suff 
(c) given X E Z*, suff 0 pref (X)  is the set of all factors 

of all members of X. 

The preceding proposition holds when  pref ( X )  is replaced 
by suff (X), and  one concludes: 

Proposition 6.9: Given a homomorphism h of FZqand 
X C Z*, let Y be the set of all factors of members of X. 
Then: X is FAD A Xlh is bounded * Ylh  is bounded. 

Proposition 6.10: If a homomorphism h is FAD, then 
either h is LP or ran h = A. 

Proof: Observe that for any u E Z, h(u) E Z or h(a) = 
A. For, assume to the contrary that there exists some u0 
such that h(ao) = u A I(u) 2 2.  Then, consider the restric- 
tion { ao)* lh  = {(uo, u ) ) *  which is both FAD and sym- 
metrically locally finite. By Corollary 6.5, (ao, u) must 
be LP, and l(u) = 1 producing a contradiction. 

Next, assume that there exist ao, al, E Z such that 59 
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h(uo) = u E Z and h ( q )  = A. Then, ( (uoul))* Ih = 
( (uoul, u) ] * is again both FAD and symmetrically locally 
finite, and  as before, Corollary 6.5  yields a contradiction. 
Thus,  there remain the cases: 

1) For all u, h(u) E Z and h is LP; 

2) For all u, h(u) = A and ran h = A .  

7. Decomposition of Lp transductions 

Thus far we know that  the class of LP transductions is 
precisely the class of LP FAD relations (6.6) and  that it is 
closed under  all the operations on relations given in 
Table 1. (See 4.11, 6.3, and 6.6.) In this section we show 
that  in a manner  analogous to  the decomposition of 
S-transductions, LP transductions over Z may be  ex- 
pressed as the Pierce product of simpler transductions 
over an augmented alphabet 2’. 

We first characterize sequential relations and then show 
that every LP FAD relation (resp. function) is a composite 
of a sequential relation (resp. function) and  the reversal 
of a sequential relation (resp. function). The argument 
for the parenthetical statement (Theorem 7.8) is sub- 
stantially more involved than  that for the other  two 
statements (Propositions 7.1, 7.4). 

Proposition 7.1: Let p C Z* X Z* be a LP relation. 
1) If p is a sequential relation, then p is nonempty, 

2) Conversely, if p is nonempty, prefix-closed and FAD, 

3) If, in addition, p is functional,  then p is the associated 

prefix-closed and FAD. 

then p is a sequential relation. 

function of a sequential machine. 

Proof: 
1) If p is a sequential relation,  then  it is the associated 
relation of some NDSM 311 = ( S ,  v, sl), v ( S  x 2) x 
(Z X S).  It is immediate from the definition of NDSM 

that p is nonempty and prefix-closed. 
Consider the elementary NDA a = ( S ,  v, sI, D), 

D = S where v of a is v of 311 regarded as a subset of 
S X (Z X 2)  X S .  [We identify elements of Z with 
the elements of Z* of unit length. Thus, S X (Z X Z) X 
S C S X (Z* X Z*) X S.] Then, p = T(@) and  thus 
is FAD (4.4 or 6.6). 
2) Suppose p # 4, FAD and prefix-closed. There exists 
an elementary NDA a = ( S ,  v, SI ,  D )  such that p = 
T(Q), (4.4). Further, v may be chosen functional with 
domain S X ( 2  X Z). Let @’ = (D,  v’, SI, D )  where 
V’ = v n (D X ( 2  X 2)  X 0 ) .  We claim T(W) = T(@). 
Note, that since p # q5 and prefix-closed, A E p and 
sI E D. Suppose u E T(a),  then there is a successful 
path p in a with label u. Now,  for any LP u’ E Z* X 
2* there exists a unique path p‘ in a, labeled u’ and 
beginning in sI. Thus, if u‘ is a prefix of u, p’ is a prefix 

60 of p .  Since p is  prefix-closed, u’ E T(a) and p’ terminates 

in a state s E D. Thus, every state through which p 
passes in a is a state in D, hence p is also a path in @’ 
and p E T(@’), which justifies the claim. 

Reversing the procedure of (l), the desired NDSM is 
311 = (D,  v’, sr) with v’ treated as a subset of ( D  X Z) X 
(Z X 0). It is immediate that  the sequential relation 
associated with 311 is T(a’) = T(a)  = p, which concludes 
the proof. 
3) It may be assumed about a, a’ of (2) that every 
state is accessible from sI. Then, if p is functional, 
v‘ regarded as a subset of ( D  X Z) X (Z X D )  is 
functional. For suppose ((s, a), (ul, sl)) E V’ and 
((s, a), (a2, s2)) E v’. If u E Z* X Z* is the label of a 
path (which exists by the accessibility assumption) that 
begins  with SI and terminates with s, then u E p, 

u * (u, u,) E p and u (u, uz) E p. Since p is functional, 
a, = a,. Since v‘ E ( D  X ( 2  X 2)) X D is functional, 
s, = s,. Hence, v’ C ( D  X 2) X ( 2  X D )  is func- 
tional. 0 

Definition 7.2: For purposes of this section, it is con- 
venient to extend the notion of NDA to allow for several, 
rather than  just one, initial states. Thus, an NDA will  be 
the ordered quadruple a = (S ,  v, DI,  DF) where Dl,  DF E 
S.  A successful path will  be one  that begins with an 
element of DI and ends with an element of D p .  It may 
readily be uerified that the class of transductions is not 
thereby increased. When the notion NDSM is similarly 
changed to 311 = (S ,  v, Dl) ,  the class of sequential relations 
is not increased. 

Definition 7.3: Given an NDA a = (S,  v, D I ,  DF), the 
dual aD of a is the NDA C t D  = (S,  v , DF, DI) where: D 

6 ,  u ,  3’) E vD - (s’, P ( U > ,  s> E v 
for u E (E*)*. Then, the reversal of a (successful) path 
in a is a (successful) path in a” and vice  versa.  See Theo- 
rem 12 in [RS]. 

Proposition 7.4: Let R C Z* X 2* be an LP relation. 
Then, R is FAD iff there exist sequential relations pl, p2 
over an augmented alphabet 2‘ 2 Z such that R = 
P O P2 O P O P1 (= P(P2) O Pl). 

Proof: If pl ,  p2 are sequential relations, they are FAD (7.1) 
and p(p2) is FAD, as well as  the composite p(p2) o p, (4.11). 

Assume the LP relation R is FAD so that there exists 
the elementary NDA = (S,  v, sly D )  such that R = 
T(@) (4.4). Derive the NDSM’S 3ni = (S ,  v, sr), 3 n L  = 
(S ,  v , D) associated with sequential relations p:, p: 
respectively (with v treated as a subset of ( S  X 2) X 
(Z X S)). Clearly, R = p(p;) n p;. We now modify 
311{, 311; so as  to obtain NDSM’S 3nl, 3 n 2  with the associated 
relations p,, p2 such that: 

D 

(u ,  (u ,  .>> E p1 - ( u ,  .> E p;,  

( (u,  u>, .> E P2 * (u ,  4 E p;; 
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that is, 

( (u,  4 9  0) E P ( ! d  * (u, 0)  E P(&. 

(u, .> E P ( P J  0 Pl 

Then, 

* 3 w [ ( u ,  w )  E PI A ( w ,  u) E P ( P Z ) ~  

* ( ~ 5  (U, 0)) E f i t  A ((u, u),  u) E P ( P J  

CJ (u,  0) E d A ( u ,  u) E P(P~) 
* (u, E R 0 

Note that  the relation p2  is functional, thus a sequential 
mapping (7.1). 

In  the summarizing section, after NDSM’S were defined, 
they were restricted to be elementary. If this restriction is 
removed, i.e., v permitted to be a subset of (S X Z*) X 
(Z* X S), the preceding argument can be employed to 
establish the following proposition. 

Proposition 7.5: Let R E* X 8* be a (binary) 
transduction.  There exist sequential relations pl, p2  
(associated, in general, with nonelementary NDSM’S) over 
an augmented alphabet 2‘ such that: 

R = P ( f i 2 )  O P1. 

In preparation for Theorem 7.8,  we make  the following 
definitions. 

Definition 7.6: Given NDA a = (S,  V, sI, D), Pa is the 
converse to the relation obtained by restricting X (Footnote 
to Proposition 3.5) to the set of successful paths in a: 
Pakf ( ( u , p )  : u = X(p) A p is a successful  path  in a ) .  

Definition 7.7: Given an elementary NDA a = ( S ,  V, 
DI,   DF) where v C S X 2 X S,  the associated elementary 
NDA a‘ is  defined as a‘ = (q(S), v‘, D I ,  ’p(S)) where 
p(S) is the class of all subsets of S and vr  is defined by: 

(Sl, u, SZ) E vT * sz = (s’ : 3 s E S , [ ( S ,  fT, s’) E V I )  
for S,, S, G S.  

We remark that V‘ is a function with domain g(S) X 8 
and  that T(@’) is prefix-closed. In addition, we will 
employ the following property of a’. If (Sl, nl, S,) . . 
(S,,,, urn, S,,,) is a path in a‘ and s , , ~  any member of 
Sm+lr then there exist si E Si, 1 _< i _< m such that ( S ~ , ~ ~ , S , )  

- - - (sm, urn, s,+~) is a path in ti. 

Theorem 7.8: Given F _C Z* X Z*, FAD, LP, and func- 
tional. There exist sequential mappings (functions) F,, F2 
ouer  an augmented alphabet 2’ 2 2 such that: 

F = P 0 Fz 0 p 0 Fl(=p(FJ 0 F J .  

Proof: 
1) Since F is FAD and LP, there exists an elementary 

NDA (2’ = (S,  v’, sI, D )  such that F - T(a’), and 
V I  5 ( S  X 2) X s is functional. 
Without loss of generality, assume every edge in v’ is 

part of a successful path in a’, i.e.,  given any (s, r, u’, st )  E 
v’ there exists a successful path (sl, ol, a:, s2) . . (s,, (T,,,, 
a:, s,+d and an i ,  1 i i I m such that (si, ci, u:, si+J = 
(s, u, ff’, SI). 

Let  the elementary NDA a = (S ,  v, SI, D) be the ele- 
mentary NDA derived from a’ by deleting output symbols 
from  the edges,  i.e., such that v S X 2 X S is defined by: 

(s, ff, s’) E v e=, 3 u’[(s, u, u’, s’) E v’]. 
It is a consequence of assuming that every edge in V’ is 

part of a successful path in a’ and of the  fact that F is 
functional that: 

(s, r, ul, s’) E v’ A (s, u, n,, s’) E v’ =+ r1 = o2 

and  that, therefore,  two functions #, 0 may be  defined, 
# : v ”-f VI, 0 : v --f 2 as follows: 

#(s, ff, s’) = (s, ff ,  a’, s’) * (s, ff ,  ff’, s’) E v’ 
e(s, ff, s t )  = w f f ,  f f r ,  s’) E v’. 

We extend 0 to a LP homomorphism carrying v* into Z* 
to obtain in a  straightforward manner: 

F =  B o p , .  

Now # is a one-to-one correspondence between  edges 
in v, v’ respectively, and if # is extended to v*, it yields, 
in particular, a one-to-one correspondence between 
successful paths in a, a’ respectively. With the aid of J., 
we show that although v 5 (S X 2) X S is not in general 
functional, Pa is a function. 

Consider successful paths pl ,   p ,  in a with common 
label I(. Then, $(p,),  #(p2) are successful paths in 8’ 
labeled (u, ul), (u, vz) respectively.  Since (u, ul), (u, v2) are 
then in F and F is functional, v1 = v2 = u. On the other 
hand, a’ is elementary and v’ E (S  X 8’) X S is functional 
so that  the successful path in a‘ labeled (u, u)  is unique: 
#(pl) = 11.(p2). Since # is one-to-one, p1 = p2, and we have 
that a successful path  in labeled u is unique: Pa is 
functional. Clearly, Pa is a  transduction  for any NDA a 
and for an elementary NDA it is LP so that P, is FAD (6.6). 

It now suffices to verify the  theorem for  the LP FAD 

function Pa.  Indeed, if Pa = p(P,)  0 Pl where Pl, Pz are 
sequential mappings : 

F = e o p(pZ> 0 p1 = P(e 0 PJ o p1 

since 0 is a homomorphism. Since 0 is LP as well, if Pz is 
a sequential mapping, then so is 0 0 P,. Then, taking 
F 1 -  *f 4 ,  F2 kf 0 0 P2, the theorem follows. 
2)  Consider the elementary NDA a‘ as defined in 7.7. 
Given a path (Sl, cl, S,) * .  . (Sn, un, S,+,) in a‘, Sl = {SI} 

and  any element s E &+,, there exists a  path in a, begin- 
ning in sr and terminating with s labeled g1 * .  . us. In 



particular, if s E S,,, n D, the  path in Q. is successful. 
3) Let aD7 !Zf (a”)‘ be the elementary NDA obtained by 
taking the dual  automaton of Q (7.3) and finding its 
associated NDA as  in 7.7. If (SI, a,, S,) - (&, a,, S,,,) is 
the reoersal of a  path  in a”‘, S,,, = D, then for  any 
element s E S, there exists a path in Q. beginning in s and 
terminating  in an element of D labeled al . . a,. In 
particular, if s = sI, the  path in a is successful. 
4) Consider P,(u) = (s,, al, s2) . . (sn, an, s,+~), the unique 
successful path in a, s1 = $1, sa+, E D labeled u = a, * . . a,. 
If PaT(u) = (SI, q ,  S,) . (&, an, S,,,) is the (unique 
successful) path determined by u in a‘, then Sl = { S I  ] and 
s , E S i , l ~ i < n + l . I f p o P a n I o p ( u ) = ( S ~ , a l , S ~ ) . . .  
(SA, an, S;,,) is the reversal of the (unique successful) 
path determined by p(u) in a”‘, then S:, ,  = D and 
s, E S:, 1 5 i 5 n + 1. In conclusion, si E Si n Si, 
1 5 i 5 n + 1. Moreover, these intersections contain a 
unique state, i.e., v s:[s: E Si A S{ + s: = si], 1 5 i 2 
n + 1. To show this, suppose, to the contrary, that sl  E 
Si n S:  A s: # si. Then, i > 1 and, by (2) ,  there is a 
path in a from SI to si with label a, . . as-]. By (3), there 
is a path in (2 from s: to  an element of D labeled ai . * a, 
(if i = n + 1, then s: E D and this path is null). Con- 
catenating the two paths produces  a path in @, labeled 
u = a, * - a, distinct from  the originally given P,(u), 
which is a contradiction. 

We have, then, given u E dom Pa, a means of recovering 
P,(u) from Pa&), p o P , D ,  o p(u)  by “edgewise inter- 
sections’’. + Next, we obtain  the desired sequential  functions 
using a‘, a”’ respectively. 
5) Let 0,”‘ be aD‘ = ((PCS), vDr, D, ’136)) on 2, where 
v D r  !Zf (v”)‘. Define the sequential machine m2 = (p(S), 
v2, D )  on  the  alphabet vr V v, for which: 

( S I ,  (S2,  Q, sa), (x, a, s’), s4) E JJ2 

( S I ,  a, s,) E J J  
Di 

A (s2, a, S,) E JJ‘ 
A S, n S3 = {s’} 

A Sz S ,  = (SI 
A (s, a, s’) E v 

Informally, the operation of m2 can  be described as 
follows. The  input symbols of 3 K 2  are edges of a‘. The 
“tentative state transition’’ of m2, i.e., the fragment 
(S, ,  (S2, a, S3),  S,) of an edge of WZ, is contingent  only 
on  the  “2-part” of the  input symbol and is determined 
as  an edge of aD‘. This  “tentative state transition”, 
jointly with the  input symbol, determines first, whether a 
transition actually takes place (edge is actually defined) 

tions  made  in [FCH] for checking a (one:dimensional, com- 
t The  steps (2)-(4) of this proof are related to the computa- 
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in 311, and second, what the  output symbol, itself an 
edge of a, will be. 

In  the definition of v2, the last term  on  the righthand 
side is actually superfluous since the conjunction of the 
other  terms implies it.  Indeed: 

(S1,ar S J E J J ” ‘ A ~ E S , *  3soESl[(so,a,s)EvDI 

==+ 3 so E S J S ,  a, so> E V I  

s E Sa A (s, a ,  so) E v A (Sz, a, S,) E v7* SO E Ss 

S” = s, n s s  *so = s’ ==+ [(s, a, s’) E V I .  

If we denote, by R2, the sequential  mapping associated 
with 3K2, it follows from (4), (5) that: 

Pa = p ( P 2 )  0 Pa7. 

Finally, a‘ is an elementary NDA such that vr _C @(S) X 
2) X (P(5‘) is functional and  all  states of 6‘ are distin- 
guished as  terminal, hence P a ,  is a sequential  mapping. 
Taking PI sf Pa., the proof is complete. 0 

Note  that  the  domain of the sequential  mapping Pl is Z* . 
Corollary 7.9: Given F as in the theorem,  there exist 

sequential  mappings F,, F2 such that: 

F = F2 0 p 0 F1 0 p(=  F2 0 p(F1)) .  

Proof: Apply the theorem to  the LP  FAD function 
p o F o p to obtain: 

P o F o ~ = ~ o F ~ o P o F ~  

where F,, Fz are sequential mappings. Since p” is the 
identity : 

F = p o ( p o F o p ) o p  

- ~ O ( ~ O F ~ O ~ O F , ) O ~ =  - F 2 o ( p o F I o p )  

as desired. 

We remark that, given a  functional  S-transduction 
F C: 2* X Z*, we may write by virtue of Theorems 5.1 
and 7.8: 

F = h 0 p ( F a )  0 F1, 

where F,, Fz are sequential mappings and 11 is a homo- 
morphism. Then : 

F = p ( h  0 F2) 0 F1, 

and h 0 F2 may be  interpreted as  the mapping associated 
with a  sequential machine whose input states are letters 
in 2’ and whose output  states  are words in (2’)*. 

Returning to Theorem 7.8, we may  interpret it as 
follows. Visualize u E dom F as a finite tape with symbols 
from I: written on it. The LP FAD function F is performed 
by two  sequential machines as follows : Machine 3 1 1  starts 
on  the left end of the  tape  and advances, without stops 
or reversals, toward  the right end printing,  after erasing, 
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on the  tape symbols from an augmented alphabet 2’ as 
it moves, thus performing sequential mapping Fl. Next, 
machine starts  on  the right  end of the  tape (which 
now has symbols from 2‘ on  it) and advances, without 
stops  or reversals, in the opposite direction (toward the 
left end) printing symbols from 2 as it moves, thus 
performing p(F,), where F2 is the sequential mapping 
associated with 3 n 2 .  The  resultant tape is F(u). 

8. Further  closure properties of transductions 

8. I : Generalized  composition. 

Given an n-ary relation R, and  an m-ary relation Rz 
(over Z), the composite Rz * R, is  defined as the following 
( n  + m - 2)-ary relation: 

( 4 ,  . . . , ~ ~ - 1 ,  CY. ’ . . , u,) E Rz * R l  

* 3 ~ [ ( u l ,  a * .  , W - I ,  W )  E R ,  

A ( W , , Z Z ,  . r u m )  E R J .  

We observe that given an LP relation L C ( Zk)* it may be 
interpreted as  an LP binary relation L S (2:”’)* X ( B k 2 ) *  
(over different alphabets) for any k,, 1 5 k, 5 k - 1, 
k ,  + k2 = k. With this in mind, the argument of Theorem 
4.13 may  be extended to show that if R1, R2 are transduc- 
tions, then R, * R1 is a transduction. 

As a special case, given functions f : (Z*)“ + 2*, 
g : (Z*)” + E*, the composite h : (2*)n+’”1 -+ 2* is 
defined by: 

h ( x l , . . * x m - l , ~ ~ l ,  * * . ~ n ) = f ( x l ,  . . . ~ , - 1 , g ( ~ l , * * * ~ n ) )  

where x ] ,  . . , x,-,, y , ,  e . . y ,  E Z*. I f f ,  g are transduc- 
tions, then so is h. 

As a further consequence, we have that given an m-ary 
transduction R over 2 and  the m FAD subsets Dl,  . . D,  
of 2*, the relation R’ defined by: 

(u,, . . .  u,) E R ’ W  ( ~ 1 ,  - e -  u,) E R 

A ~1 E Dl A * ’ *  A U, E D,, 

is a transduction. 
One  should  note, however, that  the class of transductions 

is not closed under a more general kind of composition. 
Let R, 5 (Z*)” X (2*)”, R2 E (Z*)“ X (E*)”. We cannot 
conclude that R2 o R, is a transduction. In particular, 
let Ri,  Ri be two binary transductions and define Rl = 

Then R, o R, = RL n R{ is, in general, not a transduction, 
I ( u , ( u , ~ ’ ) ) : ( u , v ) E R : } , R z =  { ( ( u , v ) , v ) : ( u , v ) E R ~ } .  

(cf. p. 9). 

8.2: Existential quantijication or projection 

Given the m-ary relation R ,  the ( m  - 1)-ary relation R’ 
defined  by 

( ~ ( 1 ,  . . . urn-,) E R’ * 3 u[ (u , ,  . . . u, , , -I ,  .> E R ]  

is said to have been obtained from R by existential quanti- 
fication. Clearly, if R is a transduction, so is R’, for given 
an NDA Ci that defines R ,  an NDA a’ that defines R’ may 
be obtained by replacing all labels (vl, * * v,) in C t  by 
(01, . * * Um-1) .  

8.3: Cartesian  product 

Given an n-ary relation R, and  an m-ary relation Rz 
over 2,  their  Cartesian  product R2 X R, is defined by: 

( U l ,  * * *  , urn+,) E R2 X R1 @ ( ~ 1 ,  * * UJ E R1 

A (u,+I, * + * u R + J  E Rz.  

Clearly, if R1,  Rz are transductions, so is R2 X R1. Let 
NDA’S a: define the Ri ,  i = 1, 2, respectively. Replace each 
label (v,, . . v,) of ai by (vl, . vn, A, . * * A) to yield a, 

and replace each label (vl, v,) of (2; by (A,  A, 

L_r_d 

m 

_y_ 
R 

v,, . . - v,) to yield a2. Then, Rz X R1 is  precisely T(@,) 
T(Ql) and hence a transduction  (Proposition 3.5). 

8.4: ZdentiJication of variables 

Given a binary  relation R, the set R’ defined  by 

u E R’ e ( u ,  u) E R 

is said to have been obtained from R by “identification 
of variables”. Remark 5.5 exhibits a transduction R for 
which R’ is not  an FAD set. 

Note  that since R’ may also be obtained by existential 
quantification from R n D, where D is the diagonal 
of 2* X 2*, the class of transductions is not closed 
under intersection with the  diagonal D. 

9. Examples and counterexamples 

In this section, we present examples of relations, some of 
which are transductions and some of which are not. In 
particular, examples below show that  the immediate 
consequence relations of Post normal systems are trans- 
ductions, as well as  the atomic  step functions of Turing 
machines and Markov algorithms. 

9.1 : The ‘potential behavior’ of iterative logical systems. 

An “iterative system” has been defined as  the collection 
of all finite iterative logical circuits (nets) that  share a 
common cell and boundary  conditions ([FCH], pages 3-7.) 
We consider the one-dimensional systems ([FCH], Fig. 5.8, 
page 91). Let X ,  S, U, W ,  Z be  the finite sets of input, 
cell state, right carry, left carry and  output signals respec- 
tively. 

Associated with the ‘typical cell’  of the system S are the 
functions : 

S r : X X S X  u x  w”ts 63 
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U r : X X S X  u x  w + u  
W r :  x x  s x  u x  w+ w 
Z r :  x x  s x  u x  w+z. 

Consider the circuit of length k in S and let x1 1 xk, 
sl -.. s,, u1 u,, w, w,, z1 . z, denote its input, 
cell state,  right carry, left carry and  output ‘arrays’ 
respectively. Typically, xi is intended to represent the 
input signal to the ith cell, 1 5 i 5 k. (The word ‘array’ is 
intended to emphasize the spatial character of these 
sequences in this interpretation.)  Let the relation E _C 
( X  X S X U X W X Z)’ be  defined by: 

( (x ,  s, u ,  w ,  z), (x’, s’, u‘ ,  w’, z’)) E E 

* s Sr(x, s, u ,  w )  A z = Zr(x,  s, u ,  W )  A 

s’ = Sr(x’, s f ,  u ’ ,  w’) A z’ = Z&’, s’, u’, w’) A 

u‘ = U<(x, s, u, w) A w = Wr(x’, s f ,  u‘, w’). 

Let the  quinary LP relation E, be defined by: 

(x1 * * . X,, ~1 . . . sk, ~1 * * . ~ k ,  ~1 . * wk, ~1 . . . E E,  

* u(0) = i u ,  A 3 t ’ [Vt[ t  > t’ * 
X(t) = S(t) = U ( t )  = W(t)  = Z ( t )  = pj A 

V t b  < t’ ==+ ( M t ) ,  d t ) ,  u(t), w(r), z ( t ) ) ,  

(X(t + l ) , s ( t  + 1) ,U( t  + 1) ,W(t  + I ) ,  z( t  + 1))) E E ]  

A w ( t ’ )  = w o ] ,  

where uo, wo are the ‘boundary conditions’. The relation 
E, is the ‘equilibrium relation’ associated with the system S, 
and has the following interpretation: If one ‘applies and 
holds’ the input  array x1 * xk,  the circuit will operate as 
an ‘autonomous’ logical net [BW]. Ultimately, it will 
enter either a state cycle  (of length > 1) or one of several 
equilibrium states  (state cycles of length 1). The arrays 
sl - - sk, u1 * Uk, wl . * w, jointly represent an equi- 
librium state under x, . . . xk and z1 . . zk is then  the 
output array  produced in this equilibrium state. 

The (potential) equilibrium behavior of S is the LP 

relation R,: 

(x1 . . . xg, Z I  . . . z,) E Rr 3 S I  . . . sli, 111 * * * u):, 

w1 . . . w,,[(x, . . . XlC ,  S1 . . . s,, U 1  . . ’ u g ,  

~1 . . wlC, Z ,  . . * zli) E E{] .  

Clearly, both E, and its projection Rr are FAD and, thus, 
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transductions. Note  that  the ‘behavior’ R r  is ‘potential‘ in 
the following sense: one may choose for  a circuit of S an 
input  array and  an initial cell state array in such a fashion 
that when in ‘autonomous  operation  under the input 
array’, the circuit ultimately cycles and never exhibits its 
(equilibrium) behavior. 

9.2: The ‘immediate consequence relation’ of a com- 
binatorial systemf 

A “production”*  or “rewriting rule” is an expression 
([MDI), page 82: 

fXg Ylz -+ p X q  Y r ,  

where f ,  g ,  h, p ,  q, r are sequences in Z* and X, Y are 
variables over 2*. With such a production,  one associates 
the following (binary) “immediate consequence relation” 
R E 2” X 2* :  

( I ( ,  u) E R * 3 xy E 2 * [ u  = fxgyh A u = pxqyr] .  

Let DE denote  the  diagonal of ( X * ) ’ ,  then R is precisely 
(f, p )  D2 * ( g ,  q) DE (h, I )  and hence a  transduction. 
Clearly, R is symmetrically locally finite. 

Since (u, u) E R =+ I ,  - Z,, = (I, + I,  -k Z,) - (Zf f 
1, + I,,) = C,  c constant, R is bounded. Hence, R is FAD 

(Theorem 6.1). If f = g = h = A + p = q = r = A, 
then R is an S-transduction. 

Given a finite collection of such productions, the 
associated immediate consequence relation is the union 
of the immediate consequence relations associated with 
each rule  and,  thus, FAD and bounded. 

One  then defines R t ,  the transitive closure of R, as  the 
smallest relation that contains R and is closed under the 
Pierce product.  One may write: 

m 

i-1 

where 

R’ = R O R  o R 
--.r- * 

i 

In these terms, a  combinatorial system is a finite collec- 
tion of productions and a sequence uo E 8* called the 
“axiom”. The “theorems” of the system are members 
of { u  : (uo, u) E R t  1. 

In what follows the following subset R“ of the transitive 
closure Rt  of R is found useful: 

( u ,  0) E R“ w ( 2 1 ,  u) E R‘ A u @ dom R’ .  

t In  the sense of [MD], p. 84. 
* “Production” has been used by E. L. Post, who originated 

the term, in a wider sense. 



9.3: Post’s normal systems. 

A ‘normal system’ [ELP] consists of an axiom uo E S* 
and a finite collection of productions: 

jZ + Zr 

where f ,  r E Z* and Z is a variable over Z*. Since such 
productions are special cases of those  in 9.2, namely with 
g = h = A and p = q = A, we may conclude that  the 
immediate consequence relation  in  such a system is FAD 

and bounded. 

9.4: The ‘atomic step function’ of u Turing machine. 

Consider the Turing  machine [MD] 3 = (Q, 3, { R, L 1,  Z )  
where Q is a finite set of internal configurations or states, 
s is a finite set of tape symbols, and Z a finite set of 
quadruples of the  form: (q, S, S’, q’) or (q, S, R, q’) or 
(9, S, L, 4’). (The symbols R, L are interpreted as ‘move 
right’, ‘move left’ respectively.) An ‘instantaneous descrip- 
tion’ (i.d.) of the  Turing machine is a sequence: 

s, si-lq si - * e  s, 
in S*QSS*, interpreted to mean that 5 is in the  state q 
reading Si on  the  tape SI . . S,. The  atomic step  function 
f of 3 is the mapping that takes the ‘ith i.d.’ into  the 
‘i + 1’‘ i.d.’ of 5. 

We may use the results of 9.2 to show f is a transduction. 
Indeed,  consider the following finite set of productions 
on  the  alphabet s V Q: 

1) XqSS’Y + XSq’S’Y for all (q, S ,  R ,  q’) E Z 

2) XS‘qS Y + Xq‘S’S Y for all (4 ,  S, L ,  4’) E z 
3) X q S  Y + Xq’S’ Y for all (q, S ,  S’, q’) E Z 

4) X YqS -+ XYSq’O for all  ( q ,  S ,  R ,  4’) E z 
5 )  q S X Y  + q’OSXY for all  (q, S ,  L ,  q’) E z 
where 0 is a special symbol  in s. The productions (1) and 
(2), which ‘yield the right and left motions’ of 3 when it 
is not reading  end symbols, and  the productions (3), 
which  ‘yield the writing action’ of 3, are of the kind 
described in 9.2 with f = h = p = r = A. The productions 
(4) and (5), which ‘yield the right (resp. left) motion’ of 3 
when it is reading an end symbol, are of the kind described 
in 9.2 with f = g = p = q = A (resp. g = h = q = r = A). 

If R is the immediate consequence relation associated 
with these productions, from 9.2 we have that R is a 
bounded  transduction. Since f is the restriction of R to 
the FAD set s*QSs*, f is a (functional) S-transduction 
(Corollary 4.10). 

For  the  atomic step  function f of a Turing machine, 
the above conclusion may be reached more directly 
as follows. Consider the following subsets of ((3 V e)*)’: 
M = f(qSs’, Sq’S’) : ( q ,  S ,  R ,  (7’) E Z }  
- d*f 

lG !zi { ( S ’ q S ,  (I’S’S) : ( q ,  S ,  L ,  4’) E z] 
w %%‘ ( ( q S ,  4’s’) : (q, S ,  S’ ,q’ )  E z} 

%f f(qS, 4’0s) : (4, s,  L ,  4’) E zl 
E ‘gi f ( q S ,  Sq’O) : (q, S ,  R ,  4’) E Z }  

D ‘ k f  diagonal of s X 3.  
Then, f = D*(G V M V W)D* V D*E V BD* is a 
transduction  (Proposition 3.5). Since all finite relations 
involved contain only admissible pairs, f is an S-trans- 
duction  (Corollary 3.20). 

According to this notation,  the computation  Resz of 3 
[MD, page 71 is precisely f ” .  

9.5 : The atornic step function of a Markoti normal algorithm 

A Markov  normal algorithm is a pair (8, S)  where 2 is 
a finite alphabet and 6: a finite ordered  set of k ‘rules’ of 
the forms: 

g - + q  or g + . q  

where g ,  q E 8* and the dot following the  arrow dis- 
tinguishes among  the ‘rules’ a subset of ‘stopping rules’. 
With each rule is associated an atomic  step  function m 
defined by: 

( u ,  u) E nz 3x, Y E Z * [ u  = XSY 

A Vx’[u = x’gy * jz 5 I;] A u = x ~ Y ] ;  

that is, u is obtained by replacing the leftrnost occurrence 
of factor g in u by q. 

Consider the following formula F[u, t i ]  of the language L:  

3 t[u(O) . . . U(t - 1 )  = v(0) . . . V(t - I )  

A U ( t )  . . . U(t + I ,  - 1 )  = g 

A Vt’[u(t’) . * . U(t’ + I ,  - 1 )  = g =+ t’ 2 t]  

A v ( t )  . . . V(t + I ,  - 1 )  = q 

A Vt”[t” 2 t + I ,  * u(t”) = V ( t ”  + I, - lg)]]. 

Since (u, a) E m w F[u, ti], rn is FAD by Theorem 10. 
Further, m is bounded and if g = h ==+ q = A, then rn is 
an S-transduction. 

With a Markov  algorithm  there is associated a function 
M C Z* X Z* which may be informally described as 
follows. Let (ml, . . - m k )  be the ordered  set of atomic 
step functions associated with the k rules of the algorithm. 
Given u E Z*, we say ‘rule j is applicable to u’ iff mj(u)  
is defined while m,(u), . * , mi-l(u) are all undefined 
(for 1 5 j 5 k ) ,  is., the only rule ‘applicable to u’ is the 
first rule j for which mf(u)  is defined. To  obtain M(u), 
one determines a finite sequence of words u o ,  u l ,  . . . , u,; 
n > 0 that obey: 

1) 111, = u 65 
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2) ui+l = ml(ui) where rule j is applicable to u , ,  
O < i < n -  1 

3) either un = rni(u,,-]) and rule j is a stopping rule, or no 
rule is applicable to u,. 

If there exists an infinite sequence uo, u,, . . . u,, . . . that 
obeys (1) and (2), M(u) is not defined; otherwise M(u) = 11,. 

Formally, we construct M from ( r q ,  . . . m k )  in two 
steps. First, define: 

dom ini i =  1 

dom mi - 0 dom l n j  i > 1 

E ;  ‘&f Di 1 m i  l < i < k  

i - 1  

i = 1  

that is, ti is the  atomic  step function associated with rule i, 
but restricted to the  domain of those sequences to which 
rule i is  ‘applicable’. In particular, the l< are disjoint. 
Next, define: 

y ‘g diagonal of 2: u dom m i  . 

Then, one obtains: 

( ,*, Y 
M = ( p u r )  O a r n u  ( b u y ) .  

9.6: The concatenation relation 

The (ternary) relation R over B defined by (14 ,  u, w) E R 
e=, uu = w is an example of a transduction that is not 
FAD. Let L be the LP transduction L = F*G* where 
F e r  ((a, p, u) : u E Z )  and C = ( (p,  a, u) : u E 2) .  
Since R = d(L), invoking Proposition 4.8, we conclude 
that R is a transduction. 

Assume R is FAD so that by virtue of Theorem 10 there 
exists a formula F[u, u, w] of L such that (u, u, w) E R 
w f lu,  u, w]. Let the binary relation R’ be  defined by: 

(u ,  w) E R’ 3 u [ F [ u ,  u,  w] A Vt [u ( t )  = u ( t ) ] ] .  

Then R’ is FAD, by virtue of the same theorem. However, 
R’ = {(u, w)) which is symmetrically locally finite yet 
unbounded, producing a contradiction (Theorem 6.1). 
Hence, R is not FAD. 

Note  that ‘unary addition’ is concatenation for Z = { 1 } , 
and thus a transduction,  but not FAD. (The ‘p-ary addition’ 
is an FAD relation.) 

Examples 9.8-9.11 give relations that  are  not  trans- 
ductions. 

9.7: Modus  ponens 

Inasmuch as  modus ponens is the immediate consequence 
relation of many deductive systems, it is natural  to ask 
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however, ambiguous depending upon exactly how one 
understands modus ponens. For example, let the alphabet 
be {pl, p2, a - , p,., t) , and let a well-formed formula be 
of the prefixed operator type so thatp,, 4p1p2, + +plp2p3, 
+p1 + pzp3, etc., are well-formed formulas. If one  under- 
stands, by modus ponens, the set of all  ordered triples 
( A ,  +AB, B) where A ,  B are well-formed formulas, then 
modus  ponens is not a transduction since the set of all 
well-formed formulas is not recognizable by a finite 
automaton. On the other  hand, if A ,  B above are allowed 
to vary over arbitrary strings, then  the resulting relation, 
say R, is a slight variant of concatenation and may be 
shown in a similar way to be transduction.  The justification 
for understanding modus  ponens in the wider sense lies 
in the fact that when it is applied to a pair of well-formed 
formulas (A,  -+ AB), the result B is a well-formed formula. 

9.8: The reversal function p 

For  an alphabet Z of more than one symbol, let the 
reversal p be  defined by: 

def 
p = { (a1 . am, a, * .  . a,) : 6 1  . . * am E Z*)  

and T be the FAD function T k‘ {(ao, a,)) *(a,, ad- 
((ao, a”) ] * for some pair a. # al ; ao, u1 E Z. Then, 
PA T = { (a,,, G ~ ) * ( U ~ ,  aJ(ao, uo)* : n 2 0 ) .  Since p A T is 
not FAD, neither is p. But p is LP and, using Corollary 6.6, 
we conclude p is not a transduction. 

9.9: Multiplication, unary and binary 

Consider first the ‘unary multiplication relation’ R over 
B = (1 ) defined by: 

R kf { ( lm,  l”,  Imn) : m, n 2 0 ) .  

If R is a transduction,  then  the relation R’ defined as: 

(u ,  w) E R’ 3 u[(u, u,  w) E R1 

must be a transduction as well. 
Next, consider the ‘binary multiplication relation’ 

S over Z = (0 ,  1 1, defined as follows: (u, u, w) E S iff w 
is a binary representation of the product of the numbers 
whose binary representations are u, u. For purposes of 
this definition, a string in Z* will be a binary number with 
its rightmost digit least significant. [We could restrict the 
relation to strings in 1.Z*, i.e., binary numbers whose 
most significant digit is 1 without changing the discussion 
to follow.] Thus, for example, both (11, 0110, lOOlO), 

If S is a transduction, then  the relation S’ defined as: 
(0011,  110,  010010) E S .  

(v, w) E S’ e 3 u[(u,  u ,  w) E S]  A u, w E { 1) * 
must be a transduction as well (8.1, 8.2). 

It is, however, readily verified that  both R’, S‘ are 
identical to the following relation K C { 1 1 * X { 1 1 * : 
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( u , c )  E K w v  E { u ) * .  

l t  thus remains to establish that K is not a transduction. 
(Remark:  the question whether the diadic multiplication 
relation is a transduction may also  be reduced to the 
question whether K is.) 

Assume, to the contrary, that K is defined by some 
NDA a. Clearly, one  may  assume that all labels in a are 
of lengths 5 1, i.e., of the forms (A, A), (A, l), (1, A), (1, 1). 
Call  a path  in a a 'simple inadmissible loop' iff (1) there 
exists a state s in Q. such that  the  path connects s to 
itself without passing through s, and (2)  the label of the 
path is inadmissible. Let the number of states of a be n. 
Since (1, lZn+') E K ,  there exists a subpath of a successful 
path  in Q. of length at least n whose label is inadmissible 
and hence an  SI (simple inadmissible) loop. Now the 
number of SI loops  in Q. is  finite. Let M 2 2 be the smallest 
integer that exceeds the length of any label of a SI loop in a. 
Consider the pair (l'", lZM"). Since this pair is in K,  it is 
the label of a successful path in a. 

This path contains only M edges with labels (I, u) and 
hence at least  one subpath of length at least n with an 
inadmissible label. Consequently, the  path contains  a SI 

loop as a subpath. Let the label of this SI loop be (A, lw'). 
Then, (l', lzl"n+m) is in K ;  that is, M divides 2Mn f m. 
Finally, M divides m, which, since In < M, is a contradic- 
tion. We have, then, that K is not a  transduction and 
hence neither are  the multiplication relations R, S. 

Y.10: u E {MI* 

It has been shown  above that K is not a  transduction. 
As a  corollary, by 8.1, the relation R = { (u, u )  : v E { u 1 * 1 
over an  arbitrary  alphabet 8 is not a  transduction. 

9.11: The  hornomorphism yo of Frvxr onto the representa- 
tices of the free group on Z U 8' 

Let 2, Z' be disjoint finite alphabets  in  a 1 : 1 corre- 
spondence with one  another, i.e., u' is the 'formal inverse' 
of u for each u' E 2'. Define A kf { (uu', A) : u E Z 1 ,  
B sf { (u'u, A) : u E 2 ) and D cf diagonal of ( 2  U 2')z ; 
and let: 

7 ' k f  D * ( A  u B ) D * .  

Then, yo = T -  u { A ) .  
Consider the set yG(A). A sequence in ( 2 ;  u 8')* is 

in y&i) iff it may be 'reduced to A by repeated cancella- 
tions of inverse pairs uu', u'u.' Given  some u E 2, 
?;(A) n {u} * ( a ' )  * = (u"(u')" : n 2 0}  is not FAD and 
hence neither is yG(A). Thus, yo is not a transduction. 

10. Appendix: the language 1 

Let 0 be a  symbol 62 and N stand for the  set of non- 
negative integers. We shall use u, v as variables that  take 
on values in (Z U { p} ) " ,  i.e., infinite sequences over z ~ ,  

with the property P: 3 mvt  2 m [u(t) = PI. The  mapping 
u "-f u which takes u into u(O)u(l) . u(m, - l), where 
m, is the smallest m for which V t  2 m [u(t) = 03, is a 
1 : 1 correspondence between infinite sequences over 2 8  

with the property P and strings  in (2,)* which do  not 
terminate with 0. Call  this  set T. We note  that if Vt[u(t) = 
01, then u = A 

Z* c TI = ( 2 $ * Z u { A ] ) .  

Consider the following class L, of interpreted  formulae. 
The constants are ul, * - u" E 8, 0, and  the numerals 
0, 1, e . .  . The individual variables, ranging over N, are 
t l ,  t 2 ,  etc. The function variables ul, up,  etc. range over 
elements of (Zs)" with the property P. The following are 
atomic formulae: 

1) ui(tj + m) = uk or ui(t, + m) = p [Note  that u(tl + 
2) u(ti + m) = v(ti + P )  
3) t ,  + m 5 ti + p or ti + IZ < ti + p ,  where m, p are 

f 2 )  is not a formula of the system.] 

numerals. 

The language L,, is constructed from such atomic 
formulae  by  means of truth functional connectives 
( A ,  V , -, etc.) and quantification of both  the individual 
and  the function variables. Thus, 3 t ,  V t ,  3 u, VU are 
permitted. 
Theorem 10: If R (T)" is FAD, then there exists a for- 
mula F of L with no free individual variables such that 
ul, . . u,) E R * F[u,, . qz] is  valid.  Conversely, if 
R is defined by the above equivalence, then R ,  R 2 (T)" 
iS FAD. 

In describing the language L, we have not  attempted to 
use only a minimal set of primitives but  rather have chosen 
merely a convenient set. For example, the atomic  formula 
"tl  < fp" is dispensable in the sense of being definable in 
terms of the other primitives. On the other hand, we have 
not included all atomic formulas which we actually use in 
the examples as  atomic formulas of L, leaving it to the 
reader to see that  the  actual formula  written may be 
replaced by a semantically equivalent one  in L. In  order 
to avoid  confusion, we explain two such cases. 

1) u(t)u(t + 1 )  . u(t + 1, - 1) = g, where g = 
soul ut and I, is a numeral, is equivalent to 

1') u(t) = uo A u(t + 1) = U, A . * ~ ( t  + I, - 1) = 

uz (0)-1 

2) u(0) . . . u(t - 1) = v(0)  v(t  - 1) is equivalent to 
2') (VX)  ( X  < r t u(x) = v(x)).  
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