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Diagnosis of Automata  Failures: 
A Calculus  and a Method 

Abstract: The  problem  considered is the  diagnosis of failures of automata,  specifically,  failures that manifest  themselves as 
logical  malfunctions. A review of previous  methods and results  is  first  given. A method  termed  the  “calculus  of  &cubes”  is  then 
introduced,  which  allows  one  to  describe and compute the behavior of failing  acyclic  automata,  both  internally  and  externally. 
An algorithm,  called  the  D-algorithm,  is then developed which utilizes  this  calculus to compute  tests to detect  failures.  First 
a manual  method  is  presented,  by  means  of  an  example.  Thence,  the  D-algorithm  is  precisely  described by means of a program 
written  in  Iverson  notation.  Finally,  it  is  shown  for  the  acyclic  case  in  which  the  automaton  is  constructed  from AND’S,  NAND’S, 
OR’S and NOR’S that if a test  exists, the D-algorithm  will  compute  such a test. 

Introduction 

This paper describes a notation and calculus for represent- 
ing the behavior of failing  acyclic automata,* and gives 
an algorithm-the  D-algorithm-for the computation 
of tests for failures. It is  established for acyclic automata 
(i.e.,  without  feedback) constructed from AND’S, OR’S, 

NAND’S and NOR’S that if a test for any given logical  failure 
exists, the D-algorithm  will  compute  such a test. It is 
estimated that the algorithm will  be about as efficient as 
the best of previously  known  techniques,  which  could not, 
however, guarantee that a test  would  be  computed even 
if one  existed. 

Section 1 begins the treatment by providing a resume of 
the various  methods,  including that of the D-algorithm. 
Section 2 advances the notion and calculus of D - C U ~ ~ S ,  

which are used to describe failure phenomena  in  circuits. 
Section 3 describes,  via  example, a manual procedure for 
executing the D-algorithm,  while  Section 4 presents a 
program,  written  in the Iverson notation, for the principal 
procedure of the algorithm and, as  well, a verbal  elucida- 
tion of that program.  Section 5 gives a proof of the princi- 
pal contention that if a test for failure exists, the 
D-algorithm  will  find  such a test. 

We approach the discussion  by  defining four terms that 
will  be  frequently  used: 
A failure In a logical  circuit  (strictly, a Boolean 

graph, Refs. 2, 3) any transforma- 
tion of hardware that changes the 
logical character of the function 
realized by the hardware. 
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such methods to circuits with feedback. 

A primary input In a logical  circuit, a line that is not 
fed  by  any other line in that circuit. 

A primary output In a logical  circuit, a line  whose  signal 
output is accessible to  the exterior 
of the circuit. 

A test  (for a failure) A pattern of signals on primary 
inputs such that  the value  of the 
signal on some  primary output will 
differ according to  the presence or 
absence of that failure. Also, test 
will  often  be  extended to mean the 
total pattern of signals on all lines 
of the circuit. 

1. Review of methods 

The truth-table  method. 

In this method and others, let G denote the function de- 
scribed by the circuit. If it is a multiple output circuit, G 
might  be thought of as several  Boolean  functions, one 
for each output. Let F denote the function  described  by 
the circuit  with a given failure. To find a test to determine 
whether or not this particular failure has occurred, it is 
“merely”  necessary to compare the truth-tables for these 
two  functions.  This, of course,  requires that the truth 
tables for each  function actually be constructed and then 
compared to ascertain those inputs for which the output 
differed.  Presumably,  this  process  would  be  necessary for 
every failure of interest. Then, to determine a subset of 
these  tests to ascertain  whether or not any failure occurs, 
one  might  go through some sort of covering procedure 
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(e.g., the extraction algorithm, Ref. 4). Clearly,  this  method 
would  be  effective  only for small  problems,  certainly not 
for problems  in 100 variables. 

The method by complements 

Suppose that we compute the function G, which  is  defined 
by the good  circuit and G, the complement of G (the set 
of complements, if there are many  outputs).  This computa- 
tion may  be done, e.g., by the a*-algorithm (Ref. 5). This 
computation gives, for each output, a normal form expres- 
sion for the function and its inverse.  Then to determine the 
set of all tests to detect the given failure,  where F again 
denotes the function of the failing  circuit, it would  be 
necessary  only to form the intersections G n F and G n F. 
This method is  superior to the truth-table method  in that 
it works  with normal form expressions rather than with 
canonical terms.  However, the formation of the inter- 
section  can  be a formidable problem; for instance, if F 
and G each  were  expressed  by a thousand terms  (a thou- 
sand cubes),  then a million intersections  would  be  required. 
Notwithstanding, the method is in many  cases a sub- 
stantial improvement  over the truth-table method. A 
procedure  similar to  that for the truth-table method  might 
be  used to find a set of tests to detect  whether a failure 
has  occurred and a second set of tests to ascertain, know- 
ing that a failure has  occurred, just which it is. 

Pruning 

This  method  is  described  in  Reference 5. Its basic  innova- 
tion is that in one step it accomplishes the process of 
computing F: F, G and G and forming their intersections, 
as described  above, in roughly the same amount of compu- 
tation as to form F alone. The method amounts to the 
following:  At the point in the circuit  where the failure 
would  occur, it is “cut” and the a*  procedure is used to 
compute the output in  terms of the standard inputs and the 
“pseudo-input” at the point of cut. That is to say, the 
circuit is replaced  by another which has the point of cut 
as an input (the branch  above the point of cut is  discarded). 
The branch  remaining after “pruning” is  then substituted, 
in the arrays produced, for the pseudo-input, to obtain 
a set of all tests to detect the given failure.  Pruning is con- 
siderably  more efficient than the method by complements, 
yet it frequently  shares  with the latter a need for a large 
memory and, possibly, a very large amount of computing 
time, for the so-called owarrays and owarrays generated 
can be  very  large. The program of a considerably  refined 
version of this  algorithm,  written by  P. N. Sholtz, J. L. 
Sanborn, and J. M. Galey,  has seen interesting  use  in IBM. 

The effective computability of the pruning algorithm is 
limited chiefly  by the size of its storage  requirements for 
problems  with a large  number of inputs. For example, it 
was calculated that one problem  in 115 variables  would 
require 10’ reels of IBM  magnetic tape to record a mini- 

mum normal form  expression for the complement of the 
function, yet the circuit  itself  comprised  only 65 logical 
blocks. 

Tracing 

This method has been  developed and brought to a high 
point of  efficiency  by C. B. Stieglitz.* A failure at a given 
point in the circuit  is  assumed.  Then  one  computes the 
signals that are necessary at  that point for the failure to be 
detected on the output of the block to which the point  is 
immediately  connected. The signals are “traced” to an 
output assigning  “as-you-go,” on lines  feeding  each  block 
encountered,  signals that  are required for transmitting 
information  concerning the alleged failure through the 
block.  This  tracing  proceeds  systematically,  with  backing 
up taking place  whenever  “conflicts”  occur  between  sig- 
nals  required to appear on any  given  line, and continues 
until an output is found that is  sensitive to changes in the 
signal of the failing  line. When one  such output is found, 
the tracing proceeds  backwards from the point of failure 
to the inputs, in hope of finding a set of inputs which  will 
bring up a set of signals on the failing  line and on other 
lines interior to the circuit  in order to effect this  test.  This 
procedure  is  continued until such a set of inputs is obtained 
or a specified running  time  is exceeded. Thus, this process 
computes a hypothetical  test for each  failure, after which 
it is  necessary to employ  “simulation” to determine 
whether or not the hypothetical  test  is a true test for that 
failure. If not, then computation and simulation  must  con- 
tinue. The advantage of the tracing method is that more 
often than not it is  fast. The disadvantage,  as  simple ex- 
amples  show, is that there is no guarantee that in fact a 
test will be computed, even though a test  may  exist. 

The tracing method was improved and adapted for FLT 

(Fault Location Technology) by K. Maling, F. N.  Evans, 
M. W. Evans, and W. C. Carter (Ref. la) and R. J. Preiss 
and embodied in an IBM 7094 program.  This  program, 
joined with the SCAN concept  (Ref. lb) has been  massively 
used for the computation of diagnostic  tests for IBM 
System/360. 

The D-algorifhrn 

The D-algorithm we are to describe  proposes a new  calculus 
of complexes  in  which the internal line structure of a 
circuit  is  utilized to describe the function and its failures. 
(The notation it employs  was alluded to in Reference. 7.) 
The method  has the advantage that the number of “terms” 
(more  precisely,  cubes) that are required to describe the 
function of a circuit and its  failures  is  directly and solely 
proportional to the number of logical  blocks  in the circuit. 
It will  be  seen that if a test  exists for a given failure, the 
algorithm will  find  such a test. In a particularly  simple 
manner, the theory  is  extended to include the detection of 

A paper describing  this method is in preparation. See  Ref. 6. 279 
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Figure 1 An AND circuit, its  singular  cover  and, within dashed 
lines,  two  D-cubes. 

short circuits between  logically distant lines  as  well as any 
logical  failures  associated with the logical  block. 

Although  explicit  comparisons of methods  must  await 
results  from  programs  soon to be  run  (on an experimental 
Iverson  time-sharing interpreter at the IBM  Research 
Center), it can  be  supposed that the running  time of the 
D-algorithm  will not be  greater than that of the tracing 
method.  Indeed, it should usually  be  considerably less, for 
the reason that computation of a true test  with the D- 

algorithm requires about the same  running  time  as  does 
the computation of a single  hypothetical  test via the tracing 
method.  Memory  requirements for the D-algorithm are 
expected to be  comparable to those for the tracing  method. 

2. Calculus  of  D-cubes 

To describe  D-cubes and their properties  can  best  be  done 
by presenting a few  examples:  Figure 1 consists of a single 
AND block  with inputs 1 and 2, and with output 4. At the 
right  is a kind of truth table, the first  row  specifying that 
the output is 1 when both inputs are 1, the second and 
third, that the output is 0 when either input is 0. This is 
termed the singular cover of the function  (Ref. 2). Now, 1 
and 2 are the input coordinates and 4 is the output coordinate 
of the logical  block. The cubes that make up this singular 
cover  may  also  be  written  with x’s in lieu  of  blanks,  which 
would  be a form  closer to the author’s  earlier notation. 
Employing x’s we have 

2 41 

1 1 1  
o x o  
x 0 0. 

The cube 0 x 0 stands for the two vertices 

2 41 and - 1 1  2 41 

0 0 0  0 1 0  

or, in a notation imposed by typography, the two vertices 
0 0 0 and ‘0 ’1 40. In any  program of the method, the 1 2 4  
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blanks or, equivalently, the x’s, will of necessity  be repre- 
sented  in the coding of symbols. 

Now,  Figure 1 also gives  two  so-called  D-cubes, 

1 1  2 41 1 1  2 41 and ~ 

D I D  1 D D  

or, in the alternative notation, D 1 D and ’1 ‘D 4 ~ .  These 
have the following interpretation: The letter D may  assume 
just two  values, 0 and 1, so that D 1 D stands for the two 
states ‘1 ‘1 4l and ‘0 ’1 40; it specifies that, when the logic 
block  is  working  properly, the value of the signal on the 
output line 4 must  be the same as that of the input on 
line 1, provided that line 2 is kept at 1. 

Recalling the definition for a test, we  see that, for exam- 
ple, the cube ‘D ’1 4~ contains  two  embryonic* tests: The 
input signal 1 1 1 (obtained by setting D = 1) constitutes 
a test for line 1 stuck-at-0 and line 4 stuck-at-0; the input 
signal 0 1 0 (for D = 0) is a test for each of these  lines 
stuck-at-1. A similar interpretation holds for D-cube 
1 D D. In order to be quite clear to the reader  interested  in 
making  comparisons  with the author’s  previous notation, 
we consider another example. First, however, we remark 
that a vertex  in the 6-dimensional  “space” of coordinates 
1, 2, 3, 4, 5 ,  6 is  simply a vector of six binary  digits, for 
example, 

1 2 4  

11 2 3 4 5 61 

1 0 0 1 0 1 .  
- ” 

In the three-dimensional  cube ‘1 ‘x 3x 4l 5O ‘x, each x is 
able to take on, independently of any other x, two  values; 
thus this  cube  “covers” 23 vertices formed by  allowing 
each x to assume  values 1 or 0. Likewise, the cube 
‘D ’1 3~ 40 5~ ‘D represents  only two vertices,  since all 
D’S are to be thought of as all having the same  values 
together. We shall be  dealing  with  “mixed”  cubes,  con- 
sisting of cubes  containing both D’S and x’s (or, equiv- 
alently,  blank  spaces rather than x’s). 

For example, if  we hook up three logic  blocks as in 
Figure 2, the behavior  of the block  with output 4 of Figure 
1 is  given  by the first three cubes of the cover.  (The  cube 
1 1 1 may also  be  written ‘1 ’1 3x 4l 5x ‘x, and 

similarly for the other cubes.) The next three cubes  specify 
the input-output relationship  of  block 5 ,  and the next 
three specify that of block 6. These  nine  cubes are termed 
the singular cover of the Boolean  function of line 6, the 
output signal, in terms of its primary input signals. Internal 
lines are utilized in making  explicit  this  relationship and 
in general,  particularly for large  circuits, this mode of 
expression  is  phenomenally  more  concise than an ordinary 
cubical cover (normal form). Furthermore, as we shall 
see, it is  particularly well suited for computing  tests for 
failures of the circuit. 

1 2 3 4 5 6  

refers  only to the  inputs  and  outputs of the block itself. 
* W e  use  the  term “embryonic” to emphasize  that  the  test  pattern 
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Figure 2 A simple  circuit 
in dashed lines, D-cubes. 

1 2 3 4 5 6  

with its singular cover and, with- 

Below this singular cover are listed the “primitive” 
D-cubes for the circuit.  Each of these contain two embry- 
onic tests for specific failures on each  block.  These 
embryonic tests are in  terms of signals on the immediate 
outputs of each block. For example, the cube 4D ’0 6~ 

contains two tests, 4l 5O 61 and 4O 5O 60;  these are tests for 
failures of line 4 in  terms of the output on line 6. The 
seven  D-cubes listed constitute all the D-cubes necessary 
to compute tests for the entire circuit. (This  reflects the 
general case in that such a body of primitive D-cubes  of 
logical  blocks, together with the primitive D-cubes  of the 
failures (see  page 282), and together with the “multiple 
D-cubes”  which are computed on a demand basis, are 
sufficient to compute tests for all failures.) 

Now let us see  how  we can combine these D-cubes to 
compute tests for lines in terms of  signals  imposed  on 
primary inputs. For example, the D-cube ’ D ~ ~ ~ D  contains 
tests for line 1 in  terms  of  line 4; the D-cube 4~ ’ 0  6~ con- 
tains tests for 4 in terms of 6. When  these are combined or 
“intersected” they  yield 

1 1  2 4 5 6 ,  

D I D O D ,  

and we now  have  tests for 1 and 4 in terms of 6. Now, the 
D-cube above has this interpretation: When  line 2 has 

signal 1 and line 5 has signal 0, lines 1, 4, and 6 will have 
the same signal D, with D equal to 0 or 1. Thus, for ex- 
ample, to test for whether  line 4 is stuck-at-1 (Cf. Ref- 
erence 5 )  it would  be  sufficient to have  signals 1 and 0 on 
lines 2 and 5, respectively, and  to have 0 on line 1 ; then if 4 
is stuck-at-1, 6 will  be 1, but otherwise 6 will be 0. 

If we let some circuit have n lines, then a D-cube  of that 
circuit is an n-tuple of symbols  consisting of l’s, O’s, D’S, 

D’s, x’s, or blanks. The D - C U ~  is termed  complete if no 
coordinate is x or blank. The interpretation of a complete 
D-cube  is fairly simple:  each 1 or 0 represents a signal on 
the corresponding line; each D indicates a possible pair 
of  signals, either 1 or 0 but  both being the same for all lines 
corresponding to coordinates having the value D; con- 
versely, all lines  having coordinates i5 have the same value 
but one that is opposite to  that of the lines  having coordi- 
nates D. If a D-cube  is not complete, then it has coordinates 
which are not specified;  i.e., are blank. Let there be r of 
these.  Then this D-cube represents 2’+‘ possible  configura- 
tions of  signals on the circuit. As indicated above, these 
blanks may be changed to x’s as for the  standard cubes that 
have  been treated by the author. Thus in Figure 2, the in- 
complete D-cube ‘D ’1 D 0 6~ may  be written 

The vertices of a D-cube having r x’s are obtained by 
setting each x to a 0 or 1, each D to a 1, and each b to a 0 
(or vice versa,  each D to a 0, and each B to a 1) to define 
2“’ such  vertices.  We say D-cube A D-contains  D-cube B 
if the set of  vertices  of  D-cube A contains all those of 
D-cube B. For example, A= 1 x 0 x D ii must D-contain 
1 1 0 x 0 1 and 1 x 0 1 0 1, as well as six others. 

Construction of c(T, F) 
Let T be a test and F be a logical failure in a circuit. Then 
each test T and failure F define a D-cube, c(T, F), in the 
following manner: If, for any coordinate, the signal as 
induced by the test input in  line i is the same, say 1,  whether 
or  not a failure exists, then the D-cube has this signal, say 1 ,  
as its i th coordinate. If the perfect  circuit has a 1 on a given 
line in response to the given  test and  the circuit with the 
given failure has a 0, then assign to the corresponding 
coordinate a D. If the reverse,  assign a 6. 

Observe that this construction is  possible only if the 
logic circuit is a Boolean graph, i.e., has no feedback (for 
if not,  the signals on lines  in the failing  circuit are not 
unique). Note also that c(T, F) conversely  defines T, being 
the values of c(T, F) on  the primary inputs pi. 

Lemma 1 : If a given  test T detects a given logical failure F, 
then the coordinates expressed by the corresponding 
D-cube, c = c(T, F), defined by T and F, contain a con- 
nected chain of coordinates having values D or B, linking 
the  output line of the failing block to a primary output. 

Prooj: By definition,  some primary output is a function 

3 4 5  

1 2 3 4  
D 1 x D 506D. 
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of the failure in the sense that its value  changes  depending 
upon the presence or absence of the failure. This depen- 
dence  must  be through some  chain  connecting the failing 
block to the primary output. For if there were no connected 
chain of coordinates having the value D or b linking  these 
two, then, along  every path between the failing  block and 
the sensitive  primary output, the chain of D’S would termi- 
nate; the “next” block in the chain  would  have a fixed 
output value  whether or  not the failure had occurred. 
Thus, along each path from failing  block to  output, 
eventually there would  be no change  due to the failure. 
Consequently, the primary output would also not change. 

Q.E.D. 

The general  objective  is  now to combine or “intersect” 
the “primitive” D-cubes constructed  from  each  block 
to achieve a test for a corresponding set of failures. 

Intersection of cubes 

Let the coordinates (al, , an) and the coordinates 
( bl, - , bn) specify  cubes a and by where ai  and b are 0 
or 1 or x. Cubes a and b will  intersect in an empty cube 4, 
if, for some i, ai = 1 and bi = 0, or ai = 0 and bi = 1. 
If this condition does not occur their intersection  is  speci- 
fied  by coordinates ( cl, e e - , cn), where  each ci  = ai  n bi 
is  formed  according to the rules  below  (Cf.  Ref. 8): 

o n o = o n x = x n o = o ;  

~ n l = ~ n x = x n ~ = ~ ;  

x n x = x .  

For example, 0 x x 1 x x intersects  in the empty  cube 4, 
but 

o ~ x x ~ n o x l x l = o ~ ~ x ~  

and 

x x x m l x o x =  1x01. 

Primitive D-cubes of a failure. 

Consider a logical  block  with a given singular  cover 
specifying al, the totality of conditions under which the 
output of the block is 1 (these are specified  by all those 
cubes  whose output coordinate is 1) and a0, the totality 
of conditions under which the output is 0 (these are speci- 
fied  by all those  cubes for which the output is 0). Now let 
F be a failure of the logical  block that changes the logical 
function which it performs. Let the singular  cubes for 
which the output of the  failing  block  is 1 be denoted by Pl 
and those for which the output is 0, by PO. For example, 
suppose the logical  block  is an AND which  under a given 
failure is transformed into an OR, as shown below,  with 

282 1, 2 as input coordinates and 4 as output coordinate. 

11 2 41 

1 1 1)al 

O x Oi,O 
x 0 oi 

x 1/01 
x 1 1  

0 0 0)po 

Then the totality of input conditions for which the outputs 
disagree,  depending on whether or not there is a failure, 
is obtained by: (1) changing the output coordinate of all 
cubes of a1 and intersecting them with 00 and (2) changing 
the output coordinate of all cubes of a0 and intersecting 
them  with Pl. Those  cubes in the first  class we shall denote 
by assigning a D to their output coordinate and those of the 
second, by a 6. 

In the example, we thus generate the D-cubes 

2 41 

O l B  
l o b .  

These  cubes  now  have the following interpretation: When 
the inputs 0, 1 are applied  respectively to lines 1 and 2, 
the output will  be 0 if the circuit is perfect, or 1 if it has 
changed to an OR output. Similarly for the input 1, 0. 
In the case  of a multiple output block  such as we shall 

meet for the diagnosis of shorts between  lines, the pro- 
cedure for generating the D-cubes  is  exactly  similar. For 
example,  let 1,2,3,4 be input coordinates and 5, 6 output 
coordinates.  Suppose that the singular cover for the perfect 
circuit contains the cube ‘1 ‘x 4x 5l 60, and the failing 
circuit  contains ‘x ’1 3x 4l 5O 61. Then the construction 
yields the D-cube ‘1 ’1 3l  4l 5~ ‘13. 

Primitive D-cubes of a logical block. 

For purposes of computing tests for failures which can 
be  detected by primary outputs of the circuit, we introduce 
another type of  D-cube,  one  which  essentially  specifies the 
signals on all inputs to a block but one (or more) under 
which a change of signal  in  this input (inputs)  induces a 
change on the output of the block. The example of Figure 
1 depicts  these  D-cubes. 

We shall first  give the construction for change on a 
single input coordinate i. For each  cube in the singular 
cover for which the ith coordinate is not x, change  its 
value and change the value of  the output coordinate. 
Intersect this cube  with  each other cube in the singular 
cover; for each  such cube in the intersection,  assign the 
value D to the i th coordinate; if the value  of the output in 
the original cube  is the same as that of the ith coordinate, 
assign to  it the value D; otherwise, b. 

J. PAUL ROTH 



Basically, we need two kinds of primitive D-cubes: 
D-cubes  with  only  one input coordinate equal to D or 6, 
and multiple input D-cubes,  which  have  more. In construct- 
ing the multiple input D-cubes, it is  expedient to deal with 
canonical  covers, i.e., covers of cubes  containing no x’s. 
Otherwise, the procedure  for  changes  in r input coordinates 
is  exactly  analogous to that for  one. 

For example, if the singular cover contained the cubes 

11 2 3 4 5 61 

1 0 1 0 x 1  
0 1 x 0 1 0 ,  

with 1,2,3,4, and 5 the input coordinates and 6 the output 
coordinate, and with 1 and 2 the particular  coordinates, the 
D-cube 

would  be  constructed. This has the interpretation that, 
when input lines 3, 4, and 5 have  values 1 , 0, and 1 , then 
when 1 and 2 change  respectively from 10 to 01 the output 
on  line 6 changes  from 1 to 0 and vice  versa. 

Lemma 2. The totality of all input configurations,  such that 
an  inversion in the value of each r particular input lines 
effects a change  in the output, is obtained by the above 
construction and each  such input configuration is con- 
tained in  one of these  primitive D-cubes. 

Proof: This lemma  follows  directly from the construction 
of these  primitive D-cubes: For each  cube  in the cover, 
examine the particular r coordinates in question. In canon- 
ical  terms, every possible input configuration  is  repre- 
sented.  Suppose there was a multiple input D-cube for 
which there are r input D-coordinates. Then, setting D = 1, 
we are yielded  one  term  which  must appear as a canonical 
term in the cover;  similarly the cube obtained by setting 
D = 0 also  must  be in the cover and must by construction 
be obtained from the first  by  inversion  of the particular r 
input coordinates.  Hence, this D-cube  would  be obtained 
by construction from the canonical  cover. Q.E.D. 

D-infersection. 

First we define the coordinate D-intersection of the sym- 
bols 0 , l  , x, D, and B. This  requires the introduction of four 
new symbols: 4, meaning  empty  D-intersection; #, mean- 
ing that D-intersection  is not defined; and X and p, signify- 
ing a more  complicated subroutine for the definition  shown 
in the table  immediately  below: 

n O l X D 6  
- 
0 0 4 0 # #  

1 4 1 l l l . I c .  

X o 1 X D 6  

D # $ ’ D p X  

B # # B X p  

Thus, if for  any coordinate, the coordinate D-intersection 
is 4, then the D-intersection  is said to be the empty  cube. 
If any coordinate intersection  is # then the D-intersection 
is  undefined. 

Assume  now  in  what  follows that  no coordinate D- 

intersection 4 or # occurs.  Then if bofh X and 1.1 occur, the 
coordinate D-intersection  is not defined. If only 1.1 occurs, 
then for these  coordinates  let D n D = D, 6 n 6 = I3 and 
let the D-intersection be the set of coordinate intersections. 
If only X occurs,  then in the second factor change all 
coordinates which are D to 6, and which are B to D. Then 
using the rules for coordinate D-intersection of D n D = D, 

B r\ 6 = 6, the D-intersection  is the set of these coordinate 
D-intersections. It is  seen,  by  comparing the intersection 
table  in  Reference 8 with that above, that when  cubes a 
and b are ordinary (nonsingular)  cubes, i.e.,  with no 
coordinates equal to D or 6, that intersection and D-inter- 
section  coincide. 

Lemma 3: Where products are defined,  D-intersection  is 
commutative and associative. 

In the algorithm to follow, we will  use the restricted 
D-intersection  which  insists that there be at least  one  co- 
ordinate for which both cubes  have the value D or 13; that 
is, their D’S must  “interact.” We shall say that D-cube 
a D-contains  D-cube c if for each coordinate i, ai = ci 
or x. It follows from this definition that if a D-contains c, 
then the set of all vertices of a contains the set of all vertices 
of c, so that a also  contains c. If a D-contains c we shall 
write a 2 c. 

Lemma 4. Let T be a test for a failure F of logic  block 3. 
and again let c(T, F) be the D - C U ~  defined  by  this  test 
and failure.  Then c(T, F) is D-contained  in a primitive 
D - C U ~  of failure F. 

Proof: The coordinate(s) of the output of 31 in c(T, F )  
must  clearly  be D or 6 since  otherwise no primary output 
would  be  capable of distinguishing the existence or non- 
existence of failure F, by the above lemma. Thus consider 
the D-cube  defined  by  having the same  values as c(T, F) 
for the immediate inputs to 31, the same  value D (or B) 
which c(T, F) has for the output of 31 and, for all other 
coordinates,  its  value  is x: this is  clearly a primitive D- 283 
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cube of the failure F and it clearly  D-contains c(T, F ) .  
Q.E.D. 

Lemma 5 :  If D-cubes a and b each  D-contain D - C U ~  

c # 4, then their D-intersection  is  defined and it D-contains 
C. 

Proof: By hypothesis, for each coordinate, ai = c i  or x 
and bi = ci or x, so that ai A bi = c,  or x or p. Now 
if the coordinate D-intersection  is p, then c i  must be D 

or b and, according to the rule for D-intersection,  this 
coordinate is  changed to D or b. It follows for this case 
that ai A bi = c,. Hence in general, the coordinate D- 

intersection ai A bi = ci or X so that a (3 b by definition 
D-contains c. Q. E. D.  

Lemma 6: Let T be a test for a failure F of a given  Boolean 
graph (a logical  circuit  without  feedback).  Let c(T, F )  
denote the D-cube defined, as described  above, by T and F. 
Let h be a logic  block, not  the site of the failure F, for 
which the output coordinate of 3. in c(T, F) is D (or Is). 
Then c(T, F) is  D-contained in a primitive D-cube of a. 

Proof: If an output coordinate of block a of c(T, F) con- 
sists of a D or b, then at least  one input coordinate to the 
block  of c(T, F )  must  also  be D or b, for if all the input 
coordinates had values 1 or 0, i.e.,  did not change  whether 
or not failure F existed,  then the output also  obviously 
could not change. 

Let - , a i ( r ) ,  bicl,, - , bits) be thecoordinates 
of c(T, F) for logic  block 31, with the a's input coordinates 
and the b's the output coordinates. Assigning to D the 
value 1 and to D the value 0, we define a cube  which  is 
"covered" by the singular  cover of h; i.e.,  each of its 
vertices  is  contained  in  some  cube  of the singular  cover. 
Similarly a cube  is  defined for the opposite  assignment: 
D = 0 and ij = 1. On the other hand, these  two  cubes 
(they are vertices of the cover of a), when  combined  by 
the method above,  go  together to form a primitive D - C U ~  

pdc of the block a. Now, to be  explicit, if pdc is  extended 
over all coordinates of the Boolean  graph by assigning the 

jT$+ 
I I 

L""l 

Figure 3 Shorts between lines: an illustrative circuit. I 

contain all tests to detect  these  failures are 
l a  - b a* b", 

1 0 1  I3 
O l b  1. 

I 

These  cubes  may  therefore  be  inserted into the algorithm 
for the generation of tests of Section 3 or 4, to obtain tests 
in  terms of primary inputs for this failure. 

3. Manual procedure for D-algorithm 

The D-algorithm  will  be  described in two forms: First by 
means of a manual procedure in this section, in which the 
set of primitive D-cubes  will be  priorly  computed and 
stored, and second, by  means of a program  written in 
Iverson notation in  Section 4. In both cases the underlying 
steps are quite simple: First, having  selected a primitive 
D-cube  of a given failure,  this  cube  is successively  D-inter- 
sected  with  primitive  D-cubes  in an attempt to form a 
connected  chain  of  D-coordinates to a primary output; 

value x to those  as yet  unassigned,  then it is  clear that second, having  generated  such a D-cube,  we attempt to 
pdc D-contains c(T, F ) .  Q.E.D. "complete" it by  means  of  D-intersecting it with the sin- 

* Detection of short circuits. 
gular  cover S. This will  be called the CONSISTENCY opera- 
tion. 

We next  consider shorts between  lines  of the circuit. Con- We shall describe the manual procedure by means  of the 
sider the typical case as shown  in  Fig. 3, consisting of example  shown in Figure 4. The  figure on the left is des- 
logical  blocks A and B whose output lines a and b cross.  cribed  analytically  by the singular  cover S on the right, 
If the lines short at the point of crossing we shall assume  consisting of rows a through r. The primitive  D-cubes  of 
that the short behaves as a so-called dot-OR function. The the logic  blocks (the single-output  variety) are represented 
treatment is  exactly  analogous in case the short behaves  as by the rows A through M. 
an AND. We assume,  therefore, the existence of a pseudo- The first step in the algorithm is to select at the  site  of 
block C with inputs a and b and outputs a* and b*. When the failure a primitive D-cube  of the failure.  Consider  first 
no short occurs a* = a and b* = b. Under  failure,  how- the case of a failure in line 1 (we treat the failures  stuck- 
ever, a* and b* become the OR of a and b:  a* = b* = at-1 and stuck-at-0  simultaneously): Thus the initial test 

284 a V b. It is  easy to show  therefore that the D-cubes  which cube fco = 'D. We form the following  chain  of  D-inter- 
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Figure 4 The circuit, singular  cover, and primitive  o-cubes for the  D-algorithm of 

sections: (The order  for D-interSeCtiOn should  be lexi- 
cographical; it  turns  out, in this example, that  the first 
such intersection that "works" is the  one shown.) 

t C 2  = tc' n L  

Section 3.  

Now for each D-cube fc we define the activity vector a 
consisting of the set of all coordinate  numbers j of tc for 
which: (1) the coordinate fci = D or D; and (2) this co- 
ordinate j is a primary output of the subgraph of the 
circuit defined by those  coordinates of tc not equal  to x. 
In the example above a' of fc' is { 1, 8 )  ; for fc2, a' = { 10). 

In Section 4, the notion of the D-fanout of a, fa, figures 
prominently. It keeps track of the number of successors 
of each element of a which are potential extenders of the 
D-chain to primary outputs, i.e., are on the "frontiers" 
of fc; if a line is a  primary output, then 1 is added to this 285 
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number (see step 3 of Fig. 5.). In  this  examplefa’ = (‘1,  ‘1). 
Thus,  returning to the description of the algorithm, 

when the D’S have been  driven forward as far as possible 
and primary outputs Po have been encountered, the CON- 

SISTENCY operation, moving  back to the primary inputs, 
via  D-intersecting  with S,  is  begun. Thus, in the example, 
since the activity  vector a’ of tc’ consists  only of the pri- 
mary output 10, the first part of the algorithm is  finished. 

The next step is the CONSISTENCY operation. The purpose 
of this operation is to “fill in” the remaining coordinates 
and  to ensure that they are “consistent”  with the singular 
cover. In general, it is  necessary to have  “prime”  cubes 
(prime  implicants)  as a singular  cover for this operation. 
This  time we shall, for the sake of convenience,  write 
down all the singular  cubes  in tabular fashion and then 
intersect  them all simultaneously  with tc2. 

The fourth coordinate is  blank (or x); this  means that it 
may  be  given an arbitrary value. Thus tc5 describes four 
tests, the primary inputs for which are: 

, 1  2 3 4, 

1 0 0 0  
1 0 0 1  
0 0 0 0  
0 0 0 1 .  

The first  two of the four tests are for  line 1 being  stuck-at-0, 
the last two, for line 1 stuck-at-1. 

Another path in the algorithm  also  applied to the D-cube 
‘D of the failure  line 1 stuck-at-1 (or stuck-at-0)  is the 

286 following,  shown up to tc3: 

At  this point, the vector a of active coordinates consists 
of 1,6, and 7. Now the block  with output 8 has both 1 and 6 
as inputs and, therefore, the need for a “double” D-cube 
is  indicated.  Let us go through this  computation. 

The first  cube in the singular  cover for block  with output 
8 is ’1 6O ‘1. In accordance  with the method for generating 
multiple D-cubes  (Section 2), change the input coordinates 
affected, 1 and 6, and its output, 8, to obtain ’0 61 ‘0 and 
D-intersect it with the remaining  cubes ‘1  ‘1 ‘0 and ‘0 ‘0 ‘0. 
They do not D-intersect so that a double D-cube  does not 
exist and the generation of the test cube tc3 is  abandoned. 

It is instructive to compute a test for line 2. The table 
below  shows the result tc5 of the first  five  effective D- 

intersections, up to but not including  D-intersection  with 
the primitive D-cubes  of the block  with output 10. 

The vector a of active  coordinates  consists of lines 8 and 9, 
both of  which are inputs to block 10. This fact indicates 
a need for a “double” D-cube, and this  is  generated by the 
following  procedure. 

Cube ‘1  ’1 “0 has its input coordinates 8 and 9 changed 
and also its output coordinate to yield the cube ‘0 ’0 “1. 
This  cube  is  tested to ascertain  whether or not  it lies  in the 
singular  cover: it does,  because  cube q is ‘0 1 or 9 10 
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8 9 10 0 x 1, whose intersection with '0 '0 "1 is indeedso '0 "1. 

We  now return to the subroutine for generating the test 
This then defines the double D-cube N = 'D 'D "13. 

cube IC' = tc5 nlv, 
, 1 2 3 4 5 6 7 8 9 1 0 ,  

t c5 1 D o o D D i j i j l i  

N D D D  

i C 5 T \ N  1 D O O D D f i n l i D  

Now the vector a of active coordinates consists  solely  of 
line 10,  which  is a primary output Po, a C Po. 

The next step is the CONSISTENCY operation. In this case, 
the set g of coordinates of tc5 which have the values 1 or 0 
consist solely  of primary inputs pi, g C pi, so that the 
CONSISTENCY operation need not be performed. This com- 
pletes the computation for the test cube fc'. This cube 
determines the tests '1  '1 3O 4O for line 2 stuck-at-0, and 

A method has been  developed  using  D-notation for 
identifying all failures that a test detects; that method 
will be described in a subsequent paper. 

1 2 3  1 0 0 4O for line 2 stuck-at-1. 

4. Programming the D-algorithm 

A program is given here for the central part of the D-algo- 
rithm. It is written, as Fig. 5 [the foldout] reveals,  using a 
quite restricted subset  of the Iverson notation. Sections 
1.2 through 1.5 of Reference 9 will  be found to cover all 
that is used  here.  An alternative reference  is Falkoff, 
Iverson, and Sussenguth, Ref. 10,  pp. 198-202. Further, 
the present  section also gives a step-by-step description 
of the program itself. 

In contradistinction to the manual procedure of  Section 
3, the program here is restricted to logic  circuits composed 
of AND'S, OR'S, NAND'S and NOR'S (the transistor-type of 
logic  used almost universally  in  today's  technology). This 
restriction would be easy to remove,  however,  involving 
as it does only a few instructions. It is also assumed that 
the logic  blocks or lines  of the circuits are labelled  with 
integers  in  such a way that the number assigned to any 
block  exceeds that of all  the lines that feed it; a very simple 
method is  sufficient for such an assignment. 

In Table 1 we provide a list of the symbols used  in the 
program, together with their meaning, given in the order 
of their appearance in the discussion  below. 

There are two parts to the algorithm. In the first, a 
primitive D - C U ~ ~  f c  of the failure is  recursively intersected 
with  primitive  D-cubes  of  logic  blocks  seeking to form a 
D - C U ~  tc which  provides a "connected  chain" of D-CO- 

ordinates to some primary output Po (Steps 1 through 
38). The second part, the CONSISTENCY operation (Steps 
39 to SS), consists of intersecting this D-cube f c  with the 
singular cover S. This amounts to "driving backward"; 

i.e., amounts to successively  assigning  values to the uncom- 
mitted coordinates (those equal to x) in a way consistent 
with the singular cover, if this is  possible. 

Step 1 is to set initial parameters rn and h, to 0. Step 2 
is to load tc, the test cube, with a primitive D-cube  of a 
given failure. Step 3 defines the "activity"  vector a, con- 
sisting of all coordinates j whose  value is equal to D or I3; 
the values of a are integers, belonging to the set 1 of all 
integers. Referring to Step 4, dk consists of the set of  logic 
blocks  driven by  block k,  vdk means the number or cardinal- 
ity of this set, and vd" is to denote the vector  whose kth 
component is this number. To complete the initialization 
of fa, the quantity is added to vd" in order to record 
the fact that any particular ai is a Po. 

Step 4 unconditionally branches to Step 9 (we shall 
return to Steps 5 through 8). Now j is the index on  the 
coordinate number of the activity vector a;  it runs, there- 
fore, from 0 to ua, the dimension of a. Thus Step 9 sets j 
to 0. Step 10 compares j with vu; if j # vu, then Step 11 
follows,  which increments j by 1, j + j f 1. (On the first 
time in reaching Step 10, j would  be 0 and thus in general 
less than vu. Thus we proceed first with the chain of in- 
structions following the branch j f vu.) 

In Step 12, k is the index on the set (or vector) d"' of 
logic  blocks  driven by ai. Thus k ranges from 0 to the 
number ud"' of elements  in d"'. Step 12 sets k to the initial 
value of 0 and Step 12.1  defines the final  value of kf. 

Step 13 compares the magnitude of k with vdUi. If in 
Step 13 k = kf, then we return to Step 10 where we try 
the next coordinate of a if possible. 

If k # kf,  k is incremented by 1 in Step 14. (Thus, for 
the first time through, k = 1.) 

Now, to simplify notation, in Step 15 and subsequent 
steps we let dt', the kth successor  of ai, be denoted by s 
(s for successor). For the same reason  in Step 16 and 
subsequent ones, rs, the set of  predecessors  of  line s, is 
denoted by p .  

Now the algorithm as described in this program is 
restricted for convenience of expression to the logic  blocks 
AND, OR, NAND, and NOR. In Step 17, the expression  within 
oblique brackets / ; ;/ defines a vector 1. The expression 
e; is a vector obtained from p by replacing each com- 
ponent by a 1 or 0 according to whether it is or is not in a. 
When it is, the value /;;/ is D, the right term, so that the 
corresponding coordinate of t would also be D. When it is 
not,  the value  of the corresponding coordinate of t is 
the value of the proposition (All 2 AND, NAND): 1 if 
logic  block s is an AND or NAND, and 0 otherwise,  in  which 
case it is either an OR or NOR. Thus Step 17 determines all 
the values of the input coordinates of s. 

Step 18 determines its  output coordinate by the expres- 
sion in  the oblique brackets and catenates this with f, 
to form pdc, the appropriate primitive D-cube  of s. Within 287 
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/;;/ now, A, y NOR, NAND is a proposition equal to 1 or O 
depending upon whether or not  the logic  block of s is or 
is not a NOR or NAND. If it is, then the output coordinate 
shall be ij, the right member of the expression. If not, then 
D. Thus is pdc  the primitive D-cube of s defined. 

Step 19 forms the D-intersection  of tc with this primitive 
D-cube pdc.  However, only the subset of the coordinates 
of f c  corresponding to  the block s are needed and these are 
specified  by the subscript p ,  s. The D-intersection  is  called 

Now in contrast to the definition in Section 2, this w 
is meant to be the coordinate D-intersection and in Step 20 
this is tested. Step 20 evaluates the proposition: Are any 
coordinates of w equal to 4, I) or do  both X and p appear? 
If this proposition is true (equals 1) then no D-intersection 
is formed and we branch to Step 28 to update a, fa, and j .  

Step 21 tests to ascertain whether or not a p occurs in 
the coordinate D-intersection w. If p does not occur, then, 
according to the rules for D-intersection, the D’S and b’s 
of pdc  must be interchanged. This is accomplished  in 
steps 22 and 23. 

Step 22 defines the intermediate primitive D-cube ipdc:  
where p d c  has coordinate D, ipdc has coordinate D; 
where p d c  does not have coordinate D, ipdc coincides 
with pdc.  In step 23, where pdc  had coordinate D, re- 
specified pdc  has D; otherwise the “new” pdc  coincides 
with ipdc.  If p does occur (in step 21) then we skip steps 
22 and 23. In either case we arrive at step 24. 

Steps 24 through 27 are concerned  with what quantities, 
if any, should be stored in  case the branching process 
returns to this stage in the execution of the algorithm. 

Steps 28 through 31 are bookkeeping operations as- 
sociated with a. Now a consists of those coordinates of tc 
which are “active”, that is, coordinates which  lie on  the 
frontiers of tc. The respecification of a (and fa) is  accom- 
plished  by  use of the survivor vector sur. Imagine that 
for each coordinate of a that is a predecessor p of s, the 
fanout vector fa is  decremented by 1, i.e., nfa + (fa - e;). 
Only those coordinates of “new” fa which are not zero 
should survive  since only they  have a chance of propagat- 
ing. This sur is  defined in step 28 as a logical  vector  whose 
i th coordinate is 1 if and only if nfai is 1 ; otherwise 0. In 
step 29 all coordinates of nfa that are 0 are deleted, i.e., 
sur compresses nfa, this respecifies a. In step 30 a is  simi- 
larly compressed by sur, to eliminate all coordinates of a 
which are not on the frontiers of f c. Step 31 updates the 

W .  

we return to step 13 to resume the examination of suc- 
cessors.  When both a D and ij are present, step 33.1 tests 
to see if the block output has previously  been set to the 
incorrect value: if so, it is  necessary to back up, thus a 
branch to step 6 is executed. Step 33.2 tests to see  if the 
output is x. If it is, step 34 is  used to set the output. If 
the  output is not  an x, it must already have  been set cor- 
rectly; the program branches to step 13. 

Now what we want of  new f c  is that its old coordinates 
shall be those of old f c  while its new shall be those as- 
sociated with  block s, namely either its input coordinate 
p or its  output s. Thus the expression  within the left oblique 
bracket \; ;\ (which  Iverson  calls mesh) contains a vector 
e p ” .  If the rth coordinate of this vector (or proposition) 
is 1, then the corresponding coordinate of f c  is that of 
w. If it is 0, then the corresponding coordinate of tc is 
that of old t c, which  is obtained by restricting f c  to the 
subset E p ” ,  not in the inputs or outputs of the block s. 
This is what C p ’  “ / t  c specifies. 

Step 36 adjoins s to a. In step 37, necessary modifications 
for fa are made (Cf. step 3). 

Step 38 determines whether or  not the “D-drive” to  the 
output has been completed, i.e.,  whether all entries in a 
are primary outputs which have been  driven forward as 
far as possible. If not, the action returns to step 13, to 
resume the examination of successors. If it has, then we 
have pursued the D’S to primary outputs and we have 
finished  with the first part of the algorithm. 

The only instructions in the first part of the algorithm 
yet to be explained are steps 5 through 8. These are reached 
through the backup procedure in branching. Step 5 is 
accessed from step 10 when all elements  in a have  been 
examined. Step 5 ascertains whether or not a Po has been 
reached. If it has, we branch to step 38. If a Po has not 
been reached, we ask in step 6 whether any branching 
levels remain to be investigated: i.e., is rn = O? If not, 
then no test exists.  If so, steps 7 and 8 back up in the 
branching structure. 

The last part of the algorithm, the CONSISTENCY opera- 
tion, begins with step 39. This step defines a vector g 
consisting of all lines  whose coordinates of t c have values 
1 or 0. Step 40 asks whether or not g consists  solely  of 
primary inputs p i .  If it does, the algorithm STOPS, for the 
purpose of the CONSISTENCY operation is consistently to 
drive  back the values on  the lines g to primary inputs, to 
determine the actual test, in terms of primary inputs, to the 

index j on a to compensate for the compression. For each circuit. Step 41 deletes those coordinates of g which are 
coordinate r 5 j whose corresponding entry in sur is 0, already primary inputs. Since we will  always be working 
j is  decremented by 1.  with the last element of g, step 42 sets the g index, n, to vg. 

Step 32 decides (again) whether or not a.valid D-inter- Step 43 tests the inputs (predecessors) of logic  block gn 
section was formed. If it was, then we branch to step 35 to to see  if both a D and D occurs in t c. If both do occur, this 
form the new t c .  If it was not, step 33 tests to see  whether  block can be skipped (its output was determined strictly 
or not the D-intersection  failed  because of a D and 6 both by the D, 6; cf. step 34) so that step 44 deletes g,, from g I 



made. If they do not both occur, step 45  is entered. Step 45 
sets to 0 the index 1 on the number of  rows  of the singular 
cover 'S of the r th logical  block. As was indicated in Sec- 
tion 3, it is  necessary that S consist  of  prime  cubes, that is, 
of prime  implicants. In Step 46 P(~"S) is the number of 
rows of the matrix " S  and Step 46 tests whether or not 
all rows of '"S have been tried (unsuccessfully). If they 
have,  then  this  test  cube t c  is  finished and control shifts 
to Step 55 where m is  tested to ascertain  whether all 
branches  have  been  exhausted. If m = 0, the process  is 
ended and there is no test. If m # 0, then  in  Step 56 the 
parameter h, is tested. If h, = 1 then the next branch is 
in the CONSISTENCY mode and Steps 57 and 58 prepare for a 
return to Step 46.  But  if h, = 0 in Step 56 control shifts 
to Step 7 for commencing the first part of the algorithm. 
But  we return to Step 46. If 1 is  less than p(""S) then  more 
D-intersections  can  be formed: Step 47 increments 1 and 
Step 48 forms the coordinate D-intersection.  Step 49 is a 
test to ascertain  whether or not a nontrivial D-intersection 
is  formable. If not, control returns to Step 46. If so, then 
Steps 50, 51, 52 ascertain  whether to save  this  stage of the 
computation: if I < p('"S) then it is  saved. In any  event 
in step 53, g,, is  deleted  from g and those coordinates of gnS, 
whose  value  is 0 or 1 and for which f c = x, are added to g. 
Step 54  respecifies t c  by y. Finally control is shifted to 
Step 40 where the test for completion is made:  is g con- 
tained in the set pi of primary inputs? With this, then, 
the description of the program  is  complete. 

5. Proof of validity of algorithm 

Definition: Let q = ql, v', - , vr be a set of  D-cubes. 
Let a(q) be  defined  as their D-intersection 

a(q) = q1 n q2 n - n 7'. 

If q is the empty set 4, let a(q) = xx . . x,  of dimension vG. 
For notational convenience  let c(T, F) be denoted c. 

As in Section 4 we restrict  ourselves to the functions AND, 

OR, NAND, and NOR for the logic  blocks 1. 
A-construction: Let I be a logic  block not the site of the 

failure F, for which the output coordinate cI of c is D or 
B. We  define a D-cube a' in  the  following  manner: for the 
immediate inputs p of I and output I ,  let the coordinates of 

coincide  with  those of c ;  let the coordinates of a' else- 
where  be x. The proof of  Lemma 6 establishes that a' is a 
primitive  D-cube  of  block I .  

Let o denote the set or', . , or"' of all such  primitive 
D-cubes, one for each  block I ,  which has a D or b in its 
output coordinate and is not the site of failure F. 

B-construction: Suppose that for logic  block J the out- 
put coordinate of c is 1 (or 0) and both D and B do not 
occur on the inputs.  Then c can  be  used to form a singular 
cube P J a  according to the following  construction.  Let r 
be an output or input coordinate of  block J: if c(r) 

1 (or O), let PJ'(r) 3 1 (or 0);  if c(r) = D, b or x, let 
PJ*(r) = x; let all other coordinates of p J *  be X. 

Lemma 7: (1) The cube P J *  is contained  in a singular  cube 
0" of 'S. (2) Furthermore, P J  D-contains c(T, F). 

Proof: We shall prove part (1) of the lemma for hJ being 
an AND. Similar  proofs  establish the lemma for the other 
three possibilities. 
Case Z: The output of  block J is a 1. This  implies that all 
inputs are 1 and the lemma  immediately  follows. 
Case ZI: The output of  block J i s  a 0. Now the only ways in 
which it is  possible in the D-algorithm for this output to be 0 
is that either (a) a D-, fj-combination  occurs,  which  is  ruled 
out by hypothesis or (b)  some input L of J is 0. Clearly 
/3 * is contained  in the prime  cube /3 of JS, consisting of a 
0 in lines z and J, and an x in all other coordinats. 

Part (2) of the lemma  follows  immediately from the 
construction. Q.E.D. 

Let /3 denote the set pJ', - - , P J "  of such constructed 
singular  prime  cubes,  one for each  block J which has  in c 
a 1 or 0 in  its output and whose input does not contain 
both D and B. 

r-construction: Suppose that for logic  block K its out- 
put coordinate in c(T, F) is 1 (or 0) and that a D and B 
occur as input coordinates. In this  case we  define cube +yK 
consisting of a 1 (or 0) in coordinate K and x's elsewhere. 
Let y = y K 1 ,  - - - , y K c  be the set of all such y%. 

Hypothesis H :  Given a Boolean  graph G ,  a failure Fin G ,  
and the existence of a test T to detect Fin G .  

Theorem I : Under  Hypothesis H ,  the following  conclusions 
hold: 
(1) The D-cube of test-and-failure c(T, F) (as defined  in 
Section 2) can  be  constructed. 

(2) This D-cube c(T, F) conversely  defines T as its primary 
input coordinates pi. 

(3) There  exists a primitive  D-cube-of-failure (YO which 
D-contains c(T, F) 

a" 3 c ( T ,  F). 

(4.0) There  exists a set o E arl, azz, e . .  , arm of primitive 
D-cubes  of a set of logic  blocks  in G such that their D- 
intersection a(o) D-contains c(T, F), 

a b )  3 c (T ,  F). 

(4.1)  There  exists a set /3 of prime  singular  cubes 
P"', @ J' ,  - , pJn of G such that a(@) D-contains c(T, F), 

First we state 

a(P> 3 c (T ,  0 .  289 
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c* 3 c(T, F ) ,  

and c* defines a  set  T* of  tests  containing T. 

Proof of Theorem 1 

(1) The construction of c(T, F) requires that,  for each  line 
of G in both the good and failing  circuit,  a  unique  signal 
value  occurs.  This  is  ensured by the hypothesis that G is  a 
Boolean  graph. 

(2) By definition, Tis completely  specified  by the values of 
the coordinate positions of the primary inputs of  c(T, F). 

(3) This is a  restatement of  Lemma  4,  with a" being the 
primitive-D-cube-of-failure. 

(4.0)  By Lemma 6 for each  logic  block I, for which an 
output coordinate of  c(T, F) is D or ij, there is  a  primitive 
D-cube  of failure ar 2 c(T, F). That a(a) 3 c(T, F) follows 
directly from Lemmas 3 and 5. 

(4.1)  By Lemma 7 for each  logic  block J for which the out- 
put coordinate of c(T, F) is  a  1 or 0 and for which a wij- 
combination does not appear on its inputs, a  singular  cube 
,f3 is  constructed,  each  D-containing  c(T, F). Let there 
be n of  these  blocks J ,  and thus n 0's: P J ' ,  - , PJ*.  By 
Lemmas 3 and 5, a@) = p' n pz n . . A p" 3 c(T, F). 

( 5 )  That c* 2 c(T, F) follows  directly from the A-, B- and 
I"constructions and from Lemma 5. Now  since c* 2 
c(T, F) E cy the only  way in which c* differs, if at all, 
from c  in any coordinate r is for c*, to be x while  c, is 1 
or 0. Thus,  denoting c& as T* and c, as T,  we have that 
T* 2 T. Q.E.D. 

Theorem 2: If for a given failure F of the circuit there exists 
a test T to detect that failure,  then the D-algorithm  will 
compute  a  test  cube c(T', F) for some  test T'. 

Proof of Theorem 2. 

Assume that, in the execution of the D-algorithm,  as 
described in Fig. 5, no test  cube t c  c(T', F) has been 
constructed  before the test  cube  c(T*, F) has been en- 
countered, for if one  such  has  been,  then the theorem is 
already  proven. We shall demonstrate, under this assump- 
tion, that c(T*, F) is in fact generated by the D-algorithm. 

Assume that the set q = a V y has been arranged in 
ascending order with  respect to superscripts, logic  block 
numbers,  i.e., 7 = qL1,  . - , qLm+# where Li < Li+l .  Let 
6 be similarly  ordered. 

The following  terms  will  be  convenient in the exposition. 
Block w is said to be a D-successor  of  block u if and only 
if block w has  a D or ij in the coordinate position corres- 
ponding to block u. We shall dually  describe this relation- 
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A  sequence of sets H v  (composed of elements from 
CY", q, and P)  and corresponding  test  cubes fc', u = 0,1,. . -, 
n + rn + 4, will  now  be constructed,  recursively,  in  such 
a  manner that the t cv will correspond  directly to a sequence 
of test  cubes  generated by the algorithm in Fig. 5. 

Let H" = a' and fc" = a(H") = a". Having  defined the 
set H" and test  cube fc"  we proceed to define H"" and 
tc'+' from q', the uth entry in H",  as follows. 

Case 1 : Suppose q n  is  a y. Then 
H"1 = - Hv 

1cv+1 = fc"; 
i.e., in the algorithm the successors of blocks  arising  from 
y's are never  examined. 

Case 2 : Suppose q v  is  an CY. Then 

p" = H" v ~ ( T J ' )  

tCUf1 = IC" aP(7J">l, 

where qw E Z(q")  if and only if: (a) qw is not an element 
of H " ;  (b) qw is  a  D-successor  of qv  ; and (c) one of the 
following  two  conditions  holds : 

Condition 1. Suppose qm is an a. Then all D-predecessors 
of w must  have their corresponding  primitive D-cubes  of 
failure, a, in H".  

Condition 2.  Suppose qw is a y. Then there must  be at 
least one D-predecessor  of  block w whose  primitive D-cube 
of failure is in H" and has value  opposite to  that of q v  in its 
output coordinate. 

After u* = m + q iterations, H" contains all the elements 
of a", a, and y. This  corresponds to the completion of the 
D-drive: the q' do not have  any  new D-SUCCeSSOrS, and the 
primary outputs Po must therefore have  been reached. 

The  final n iterations in the formation of H" and t c ' ,  
where u* < u 5 u* + n, are carried out as follows.  Pick 
the highest coordinate position,  hence  a  logic  block, in 
f c' which is a 1 or 0, which  is not a  primary input p i ,  and 
which has not already been  examined  (Cf.  Steps  41 and 42 
of Fig. 5). If there is both a D and ij on the inputs of this 
block  skip the coordinate. If not, then the B-construction 
generated  a Pw for this block.  Now form 
HV+l  = H" v p" 
t C W + l  = IC" A p". 

After n iterations, this final  intersection  process  must 
terminate. 

1. Theorem 1 proves that c* = a' A a(a> n a@) A a(r) 
defines a  set of tests T* containing T. 
2. The above  construction  follows precisely the steps of 

We can now make the following  assertions : 



the D-algorithm of Fig. 5 in generating the test  cube 
fcm+n+a: the  order of examination of 7’ and formation of 
c(7”) corresponds precisely to  that specified by  Steps 5 
through 38 and the order of intersection of the 0’s is 
specified by Steps 39 through 58. 

Since intersection is commutative (Lemma 3) we have 

f C n + m + a  = 

Thus  the algorithm generates a test T* which contains T. 
Q.E.D. 
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