
DETERMINISTIC SIMULATION OF NON-DETERMINISTIC TURING MACHINES 
(DETAILED ABSTRACT) 

Walter J. Savitch 
Department of Mathematics 

University of California, Berkeley, California 

S~ary 

Computations of non-deterministic Taring 
machines are shown to correspond to "solving" cer- 
tain mazes. The storage needed to "solve" mazes 
is related to the storage needed to deterministi- 
cally si~mlate non-deterministic Taring machines. 
In particular, it is shown that a non-determinis- 
tic L(n)-tape bounded ~uring machine can be 
simulated by an (L(n))Z-tape bounded Taring 
machine, provided L(n) ~log2n. 

Mazes 

Amaze is a set of rooms connected by one- 
way corridors. Certain rooms are designated goal 
rooms, and one room is designated the start room. 
The maze is threadable if there is a path from the 
start room to some goal room. More formally: 

Definition i. A maze over Z (a finite alphabet) 
is a quadruple 9~= (X,R,z,G), where X is a 
finite set of strings over ~ (X is the set of 
rooms), R is a binary relation on X (giving the 
corridors), z~ X (z is the start room), and G~X 
(G is the set of goal rooms). 

Definition 2. The maze 9~ is threadable if there 
is a sequence rl, to, ..., r~ of rooms such that 
rl= z (the start roo'm), E(ri~ ri+ l) holds for 
i=l, 2, ..., e-l, snd r e@G. 

Definition 3. Let ), (, and * be three new sym- 
bols. A representation of W~ is a string of the 
form: 

1 2 
"*Yn(1) ) 2 2 ~'Yn(2) )''" 

• W W W 

"'" ~ Xw~Yi*Y2 *'" "*Yn(w) ;Ul*U2*" "" ,Ug 

where, z is the start room, X={Xl,X 2 ..... Xw~ , 

and for l<_ i_<w. "" Yn(i) is an 

enumeration of all y~X such that E(xi, y) 
holds • 

Definition 4. M E denotes the set of all repre- 
sentations of threadable mazes over ~. 

In what follows, Turing machine will mean 
off-line Turing machine. That is, a finite-state 
control attached to a read only input tape, with 
end markers, and to finitely many read/write work 
tapes. A Taring machine Z (deterministic or 
non-deterministic) is said to accept the set A 
within storage L(n) if for each string w in 
A, Z accepts w in a computation in which no 

work tape head scans more than L(n) squares, 
where n is the length of w, and if Z does not 
accept any string not in A. 

Theorem i. There is a deterministic Turing 
machine. ZM, which accepts M E within storage 
(log2n) 2. 

Theorem i is proven by exhibiting an algo- 
rithm for Z M. The algorithm is similar to that 
used by LewiS, Stearns and Hartmanis ~ to show that 
every context-free language is accepted by a de- 
terministic Taring machine within storage 
(log2n) z. Although we will not present it here, 
a unified proof of Theorem 1 and the result on 
context-free languages can be given (see Cook and 
Savitch 2) . The general idea of the algorithm for 
Z M is as follows. 

Suppose Z M is given an input of length n 
which codes a maze. Z M divides its work tape into 
blocks of length log2n each. Each room can be 
given a name which can be stored in log2n squares 
of tape. So each block can store the name of one 
room. 

In the course of the algorithm, Z M will 
have the names of two rooms r, r" stored on its 
work tape, and will need to check if there is a 
path from r to r" which passes through at most 
2 m rooms. Furthermore Z M will have to perform 
this task using only m blocks of storage. Z M 
proceeds as follows. Z M runs through (in a sys- 
tematic way) all rooms r' of the maze and for 
each r', Z M checks to see if there is a path 
2 f-r°~m-± r to r' which passes through at most 

rooms and a path from r' to r" which 
passes through at most 2 m'l rooms. Z M needs one 
block of storage to record its guess at r', leav- 
ing it with m-1 blocks of storage. So ZM has 
reduced the task of finding a path of length 2 m, 
using m Blocks of storage, to finding paths of 
length 2 re'A, using m-I blocks of storage. Z M 
then reduces each path of length 2 m'l to two paths 
of length 2 m'2. Z M continues to reduce the length 
of the paths it need check, until it need only 
check, for appropriate rooms r I, r~, whether 
there is a corridor leading directl~ from r I to 
r 2. This it can easily do using zero storage. 

Now an input of length n can code a maze 
with at most n rooms. So if there is any 
threading of the maze,.then there is one passing 
through at most n = 2 A°g n rooms. So Z M can 
find this threading using loggn blocks of 
storage or a total of (log2n)Z'squares of storage. 

If we allow the machine t~ operate non-deter- 
ministically, then the (log2n) bound can be 
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lowered to log2n. That is: 

Theorem 2. There is a non-deterministic Turing 
machine which accepts MZ within storage log2n. 

A straightforward crossing sequence argument 
shows that the logsn bound in Theorem 2 is the 
best possible, up ~o a constant factor. 

Main Theorem 

A non-deterministic Turing machine, with 
input w, gives rise in a natural way to a maze. 
The rooms of the maze are the instantaneous 
descriptions of the machine, and the corridors 
are given by the transition function of the 
machine. That is, there is a corridor from ID 1 
to room ID 2 if, with input w, the machine can 
in one step change its configuration from ID I to 
ID 2. The initial instantaneous description or the 
machine is designated the start room. Those in- 
stantaneous descriptions which include an accept- 
ing state are designated goal rooms. The machine 
will accept the input w if and only if the 
corresponding maze is threadable. Using Theorem i 
and this correspondence between non-deterministic 
machines and mazes, we obtain the following: 

Theorem 3. Suppose a set A is accepted by a 
non-deterministlc Turing machine, ZN, within stor- 
age L(n) > _ log2n. Then A is accepted by a de- 
termir~Astic Turing machine, ~, within storage 
(LCn)) z. 

Given an inout w, Z D mimics Z~ to see if 
the maze corres~ndlng to Z N and W" is thread- 
able. Z M is the deterministic machine of 
Theoreml which recognizes threadable mazes. 

Setting L(n)= n in Theorem 3, w~ get: 

Corollary. Every context sensitive language is 
accepted by some deterministic Turing machine 
within storage L(n)=n z. 

If the (log2n) 2 tape bound given in Theorem 1 
could be reduced, we could obtain a corresponding 
reduction of the (L(n)) z and n ~ bounds in 
Theorem 3 and its corollary. In particular, if 
the set of threadable mazes, M~ , could be recog- 
nized within deterministic storage log2n, then 
every context sensitive language could-be recog- 
nized by a deterministic linear bounded automaton. 

An unsolved problem in the theory of tape 
complexity is whether there is some set A of 
strings and some function L(n) > _ logan such that 
A is accepted by some non-determlnistic T~rlng 
machine within storage L(n) but accepted by no 
deterministic Turing machine within storage L(n). 
Although we cannot offer a solution to this 
problem, we can show that: if any such A and 
L(n) exist, then A=M X and L(n) = log2n will 
do. This is proven using Theorem 2 and the 
remarks in the previous paragraph. 
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