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Short Communication 

The Reduction of Two-way Automata 
To One-way Automata 

Rabin  has provedl,  that two-way finite automata, which 
are allowed to move in both directions  along their  input 
tape, are equivalent to one-way automata as far as the 
classification of input tapes is concerned. Rabin’s proof is 
rather complicated and consists in giving a method  for 
the successive elimination of loops  in the  motion of the 
machine. The  purpose of this  note is to give a short, direct 
proof of the result. 

The idea  behind the proof is as follows: The only way 
an initial portion t of the  input  tape  can influence the 
future behaviour of the two-way machine A when A is 
not  actually  scanning  this  portion of the  tape is via the 
state transitions of A which it causes. The  external effect 
of t is thus completely  determined by the transition func- 
tion, or “table,” rt which gives (in addition to  the  state  in 
which the  machine originally exits from t ) ,  for  each 
state s of A in  which A might  re-enter t ,  the corresponding 
state s’ which A would be  in  when it  left t again. This is 
all the  information  the  machine can  ever get about t how- 
ever many times it comes backJ  to refer to t ;  so it is all 
the machine  needs to  remember  about t. But there  are 
only  a finite number of different such transition tables 
(since the  number of states of A is finite), so the  machine 
has  no need to use the  input  tape  to supplement  its own 
internal memory; a  one-way machine 2 with  a sufficiently 
large number of internal states could store the whole tran- 
sition table rt of t as it moved forward,  and would then 
have  no need to reverse and refer back  to t later. If we 
think of the different states which A could  be in when it 
re-entered t as the different  questions A could ask about 
t ,  and  the corresponding  states A would be in  when it sub- 
sequently left A again,  as the answers, then we can  state 
the result more crudely and succinctly thus: A machine 
can  spare itself the necessity of  coming  back  to refer to a 
piece of tape t again, if, before it leaves t ,  it thinks of all 
the possible questions it might later  come back and ask 
about t ,  answers  these  questions  now and carries the table 
of question-answer  combinations forward along the  tape 
with it, altering the answers where necessary as it goes 
along. 

In case this sketch of the proof leaves some readers 
unconvinced, we now give a detailed  proof. First we must 
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state  the definitions and theorems from Ref. 2 which we 
require. 

Definition 1 

A one-way finite automaton over a finite alphabet Z is 
a system A = (S, M ,  so, F )  , where S is a finite non-empty 
set  (the internal  states of A ) ,  M is a function  from 2 x s 
into S (the table of moves of A ) ,  so is an element of S (the 
initial state  of A ) ,  and F is a  subset of S (the designated 
final  states of A ) .  The class T ( A )  of tapes accepted by A 
is the class of all finite sequences u1 . . . un of symbols of I: 
for which the sequence so (initial state), SI, . . . , s, defined 
by S ~ + ~ = M ( U ~ + ~ ,  si) (i=O, . . . , n- 1) satisfies s,eF. A set 
of tapes is said to be definable by a one-way automaton if 
it is equal  to T ( A )  for some A .  

Definition 2 

A two-way   f i n i t e   au tomaton  over  2 is  a sys tem 
A = (S, M ,  so, F )  as in Definition 1 with the difference 
that now M is a function  from 2 X S into L X S where 
L= { - 1, 0, 1). A operates  as  follows: It  starts  on  the 
leftmost square of the given tape in  state so. When its 
internal  state is s and  it scans the symbol u, then if 
M ( u ,  s) = ( p ,  s’) it goes into  the new state s’ and moves 
one  square  to  the right,  stays  where it is, or moves one 
square  to  the left  according  as p = + 1, 0, or - 1. The class 
T ( A )  of tapes  accepted by A is the class of those  tapes 1 
such  that A eventually moves off the right-hand4 edge of 
t in  a state belonging to F.  

Theorem 1 

A necessary and sufficient condition  for  a set U c Tx5 to 
be the set T ( A )  of accepted tapes of some one-way finite 
automaton  A is that TP is partitioned into  a finite number 
of classes  by the equivalence relation Uz defined thus: 

tl=tz(mod UR)@(t)  (tlteU@t,teU). 

Furthermore  there is an effective procedure  for  construct- 
ing such6 an  automaton A from  the following data:  (i) a 
method of deciding for  each t whether teU; (ii)  an  upper 
bound N for  the  number of elements of T ~ / U R . ~  

Now  the  theorem we prove  in this note is: 

Theorem 2 

For every  two-way finite automaton  A there exists a  one- 
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way finite automaton Asuch that T ( A )  = T ( X ) .  Further- 
more A can be  obtained effectively from A .  

Proof: Suppose A is given in the  form mentioned in Defini- 
tion 2. For each teT define a function T t  : {io} US+ { 0 )  
as  follows: For seS, T t ( S )  describes the ultimate  result of 
the motion of A when started in state s on  the rightmost 
symbol of t ,  that is to say, if with these initial  conditions 
A ultimately leaves t from  the right  in  internal state s‘ 
then T ~ ( S )  =sf; if on  the  other  hand A either leaves t from 
the left, or never leaves t then T t  (s) = 0. T t  (So) similarly 
describes the result of  the motion  when A is started in the 
initial state so on  the leftmost symbol of t .  NOW it is easily 
seen that if T t l  = T ~ ~  then tl 12 (mod. T ( A )  R ) .  But if nI3 

is the  number of internal states of A there  are  at most 
(n+  l)n+l distinct T+. By Theorem 1 it follows that  the 
set T ( A )  is definable by a one-way automaton 2. We 
also have a bound, ( n  + 1 ) ?‘+I, on  the number of elements 
of Tx/T(A)R so to complete the proof that x c a n  be  ob- 
tained effectively from A we have  only to show that  (i) of 
Theorem 1 is satisfied, i.e., that  there is an effective 
method of deciding for  each t whether it belongs to T ( A )  , 
thus  whether it is accepted by A .  This is the case, for we 
have  only to feed t into the machine and see what hap- 
pens. If the  machine does not move off t ,  either  accepting 
or rejecting it, in less than l ( t )  X n units of time, then 
some  combination of internal  state  and scanned square 
must have been  repeated so that  the machine will go into 
non-stop cyclic behavior and t will never  be  accepted. 
This completes  the proof of Theorem 2. 

Note 1 

As outlined in the preliminary informal  proof, a  direct 
construction of a (nonminimal) machine 2 such  that 
T ( A )  = T ( 2 )  can be given in  terms of the above analysis. 
We have only to take the states of 2 to be the different 
functions T t  which arise for teT2, to define M ( u ,  T t )   = T t g  

(which is permissible, since T t = T t !  implies T t o = T t , g ) ,  to 
define the initial state of 2 to be T A  (where A is the null 
tape SO that T A ( S )  =0, T*(&) =SO), and  to  take  the desig- 
nated  final  states of 2 to  be those T t  for which T t ( & )  

belongs to F .  This avoids the use of Theorem 1, but  to see 
that  it is an effective construction of 2 we have to show 
(i)  how  to find T t  given t ;  (ii) how to  make a complete 
list of all the different T t .  The solution to  (i) is as  above; 
to  work  out T ~ ( s )  simply  feed the rightmost  symbol of t 
into 2 in state s and see  what happens; if the  machine is 
still going after [ ( t )  X It units of time  then T t ( S )  =o. The 
solution to (ii) is to  make use of the  argument used to 
prove (i) of Footnote 7; this tells us that all different T t k  

which occur will be obtained by considering all t of length 
less than ( n  + 1 ) n+1 .  

An even more direct  construction of an A can be made 
by taking  as  states of 2 not merely those  functions from 
{io}  US+{O} US which  arise as T ~ ’ S  for some t, but  all the 
(n+ l )n+ l  possible such functions. The table of moves 
can then  be defined in the obvious way, i.e., so that if the 
function f is equal to T t  for some t then M(u,  f )  =T~,,. 

(However,  the definition requires  a little care  due  to  the 

possibility of a  large number of “shuttles” through  the 
square  marked a.) 

Note 2 

If T~~ = T t 2  then t l ,  t 2  are only  equivalent  when  regarded  as 
initial  tapes. If  we want t l ,  t z  to be  replaceable  whenever 
they occur  in  a tape, i.e., if we want 

( t )   ( t ’ )  (ttlt‘ET(A)C-Stt2f’&T(A)) 

then we must  consider  instead of T t  a function T t ’  which 
registers the result of starting A in any state on either 
end of t .  The  function Tt’  will thus be a function from 
{ - I ,  1 } x S  into {- I ,  l } x S U { O }  such  that r t ’ ( p , s )  

gives the result of starting A in state s on the p-most sym- 
bol of t ( -  1 = left, + 1 = right)  and is equal  to (p’ ,  s’) 
if A leaves t in state s’ from  the p’-most symbol, is equal 
to 0 if A does not leave t .  If T t l ’ = T t g ’  then t l ,  t2 will be 
equivalent in this strong sense, i.e., will be truly indis- 
tinguishable by the machine. 

Note 3 

Not only the set T ( A )  of tapes  which are accepted by A ,  
but also the set T 1 ( A )  of tapes  which are definitely re- 
jected (i.e.,  machine  ultimately leaves the  tape  but not 
from  the right-hand side, or not in a designated state), 
and  the set T 2 ( A )  of tapes  which give rise to non-stop 
behavior of A ,  are definable by a  one-way automaton. 
The easiest way to see this is to use the construction of 
Note 1 but with the “full” functions T+’ of Note 2 instead 
of T t ;  to get an Al defining T , ( A )  we take as designated 
final states those T ~ ’  with T ~ ’ (  -1, so) = ( p ’ ,  s’) where 
p’ = - 1, or p’ = 1 and s%F; to get an A2 defining T2 ( A )  
take as designated final states  those T ~ ’  with Tt‘ (  - 1 ,so) = 0. 

Note 4 

Theorem 2 is the reduction theorem  for two-way auto- 
mata  to one-way automata in the case of automata which 
classify tapes into just  two classes. The  theorem obviously 
applies also to  the case of automata which classify tapes 
into any finite number of classes, where the class to which 
a tape belongs depends  only on  the final state of the 
machine. But it does not  apply to the case of automata 
which produce  an  output  tape,  one symbol per  unit of 
time, as the  machine moves over  the  input tape. For a 
two-way machine could  be constructed which  would give 
an  output  tape of On12 when  presented  with an  input  tape 
of On and  an  output  tape of On1On when presented  with  a 
tape of the  form Onlt  ( t  being any tape  on  the alphabet 
(0, l})-all it  has  to  do is to go along to the first 1 
putting  out O’s, then put  out a 1, reverse and go off the 
tape  to  the  left,  putting  out 0’s as it goes. And  it is easy 
to see that  no one-way output  automaton could do this. 

Note 5 

At first sight it would appear  that with  a two-way auto- 
maton  more general sets of tapes  could be defined if all 
tapes were provided with special marker symbols b,  e 
(not  in 2) at  the beginning and end, respectively. For 199 
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the  beginning of  a tape,  checking  for a certain  property, 
and  then  return  again.  This  would  appear to be  impossible 
for an unmarked  tape  because of the  danger of inadver- 
tently  going off the  left-hand  edge of the  tape  in  the  mid- 
dle of the  computation.  In  fact,  the  machine  has no way 
of telling  when  it  has  returned  to  the  first  symbol of the 
tape.  However,  Theorem 2 implies  that  this is not so; 
that  the  addition of markers  does  not  make  any  further 
classes of tapes  definable  by  two-way  automata. For if the 
set { b }   U { e }  (of  all  tapes of the  form bte for t e U )  is de- 
finable  by a two-way  automaton  then  it is definable by a 
one-way  automaton;  and  it is easy  to  prove  that { b }  U {  e }  
is definable  by a one-way  automaton if and  only if U is. 
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