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ABSTRACT. Classes of tape-bounded Turing machines similar to the on-line and off-line Turing 
machines, but without the restrictions that each machine halt and be deterministic, arestudied. 
It is shown that the lower bounds on tape complexity of [I] depend on neither the halting as­
sumption nor determinism. The existence of a dense hierarchy of complexity claases likewise 
does not depend on the halting assumption, and i t  is shown that below log n tape complexity 
there exista a dense hierarchy of complexity classes for two-way nondeterministic devices. It is 
also shown that the complexity classes of one-way, nondeterministic machines below linear tape 
complexity are not closed under complementation and are larger than the corresponding deter­
ministic complexity class. 
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1. Introduction 

Hartmanis, Lewis, and Stearns [I, 21 have considered the classification of languages 
according to the amount of memory necessary for recognition by a Turing machine. 
In [I]and 121, two Turing machine models are considered. Each model ha3 a read-
only input tape and an infinite working tape. One model, the off-lineTuring machine, 
has s two-way input head with endmarkers. It accepts or rejects by entering one of 
several designated accepting or rejecting states, and it is assumed not to loop. The 
other model, the on-line Turing machine, has a one-way input, and it must enter an 
accepting or rejecting state before each shift right. This model is also assumed not 
to loop. 

A main result of [I]is the existence of a hierarchy of recognizable languages. A 
set is said to be L(n)-recognizable by an off-line or on-line Turing machine if every 
word of length n can be recognized using at most L(n) cells of working tape. For 
the off-line Turing machine, the hierarchy exists for L(n) 2 log log n.' Unless 
L(n) 2 log log n, the off-line Turing machine accepts only regular sets; in fact 
L(n) is a constant in that case. For the on-line Turing machine, the hierarchy 
exists for L(n) 2 log n. Specifically, for Ll(n) and L2(n) 2 log log n (alt. log n), 
if Ll(n) > L2(n) then there is some language which is Ll(n)-recognizable by an 
off-line (alt. on-line) Turing machine but not L2(n)-recognizableby an off-line (alt. 
on-line) Turing machine. 

In this note we extend the results of Hartmanis, Lewis, and Stearns in two direc­

* Present address: Cornell University, Ithaca, New York. 
1 Throughout this paper we shall write L I ~ )2 Ldn) if sup,,, (Ll(n)/LZ(n))> 0; Ll(n)> 
L2(n) if inf,,, (L2(n)/Ll(n)) = 0. Also since constant factors in a function L(n) are seen in 
[I] not to affect the complexity class defined, we will write log n to mean logan for some b. 
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tions. First we determine the effect of removing the assumption that the Turing 
machine halts for every input. Second we extend some results to nondeterministic 
Turing machines. The latter are machines which may have a choice of moves in a 
given configuration. 

Our results concern a class of machines which is in some cases broader than the 
class of on-line or off-line Turing machines, although there are obvious relationships 
between our models and the latter models. In particular, the halting restriction is 
removed from our machines. We shall designate our machines as one-way or two-
way. 

Formally, we define a nondeterministic Turing machine (NTM) M to be a 6-tuple 
(K, T, I,6, qo, F )  where 

K is the finite set of states; 
T is the finite set of storage tape symbols; 
I is the finite set of input tape symbols; 
qo , in K, is the start state; 

F is the set of final states, F S K; 

6 i s a m a p f r o m K X I  X T t o s u b s e t s o f K X  T X  (-1 ,0 ,  +1) X (-1, 


0, +I}. 
If a quadruple (p, X, dl ,  dz) is in 6(q, a, Z), p and q in K, X and Z in T, a 

in I,and dl and & chosen from among -1,0, and +1, then the machine in state q, 
s c a ~ i n ginput symbol a and storage symbol 2,has the option of replacing the 
Z by X on the storage tape, going to state p, and moving its input and storage 
heads dl and da cells right, respectively. (- 1indicates a move left.) 

Initially the NTM is started with some string of input symbols on a finite length 
input tape, with its input head at the leftmost input symbol, in state qo ,and with a 
particular storage symbol (called the "blank") occupying each storage tape cell. 

We reserve two symbols, I! and $, to be left and right endmarkem, respectively, 
for all Turing machines. We say that a NTM M = (K, T, I,6,q0,F) is a two-way 
nondeterministic Turing machine (2NTM) if 

(1) I contains and $, and 
(2) for no p and q in K, X and Y in T, and d in (-1, 0, +1) does b(q, #,X) 

contain (p, X, -1, d), or does S(q, $, X) contain (p, X, +1, d). (M cannot move 
left from # nor right from $.) 

The language defined by the 2NTM M is the set of w in ( I  - (#, $))* such that 
M enters an accepting state when started with b$on its input. 

We say a NTM M = ( K ,  T, 1, 6, qo ,F )  is a one-way nondeterministic Turing 
machine (1NTM) if 

(1) I contains $, 
(2) for each q in K and X in T, 6(q, $, X) is empty, and 
(3) for eachqinK, a i n  I,a n d X i n  T, (p, Y, d l ,  dz) in 6(q, a, X) implies 

that dl f -1. (M cannot move left. ) 
The language defined by the lNTM is the set of w in ( I  - ($1 )* such that when 

started with w$ on its input tape, M enters an accepting state upon moving its 
input head to $. 

A NTM M = (K, T, I, 6, qo ,F )  is deterministic if for no q in K, a in I ,  and 
X in T does 6(q, a, X )  contain more than one element. The one-way and two-way 
varieties will be denoted lDTM and 2DTM, respectively. 

A Turing machine M is of tape wmpkxidy L(n) if for each input of length n (ex-
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cluding endmarkers, if any), M uses at most L(n)  cells of its storage tape. A lan­
guage is of tape complexity L(n)  for some machine model if it is defined by a 
Turing machine of that model which is of tape complexityL(n) .A nondeterministic 
Turing machine is halting if for each input there is a bound on the length of any 
allowable sequence of moves. 

2. TheHalting Property 

Observe that if a one-way or two-way Turing machine is halting, it can be easily 
converted to an equivalent on-line or off-line Turing machine. We naturally ask 
under what circumstances a machine of one of the models we have defined can be 
modified to be halting without changing the language defined. 

For the one-way machines, the answer is "always." Let a 1NTM M have s states 
and t storage tape symbols. If M has, at  some point in its computation, used k 
storage cells and made more than slctk moves without using a new storage cell or 
shifting its input head, then some configurationhas repeated. If M accepts its input, 
then there is a shorter sequence of moves leading to acceptance. Therefore M may 
halt if it makes more than sktkmoves without shifting its input head or using a new 
storage cell. 

Modify M to count in base b = 2st to bk on a track of its storage tape. The 
counter is reset to zero when M shifts the input head or uses a new storage cell. M 
will halt if the counter overflows. Since bk 2 sktk,the modification causes the ma-
chine to halt only when a configuration has repeated. 

The construction for the case where M is two-way works in almost the same 
manner. However we need the condition that M is not L(n)-bounded if log n 3 
L(n).  The number of configurations of M with an input of length n and k storage 
cells used is sk(n + 2)tk. The new machine counts in base b = 2st to bk+'0gb'n+2' 
and resets the count only when M uses a new storage cell. The count requires a t  
most L(n)  + logb ( n  + 2) cells. Since it is not true that log n > L(n) ,constants 
c and no can be found such that for all n 1 no , logb ( n  + 2) < cL(n).The new 
machine recognizes all inputs of length less than no in its finite control. For longer 
inputs it uses at most ( 1  + c)L(n)storage cells. By Theorem 1of [I], an equivalent 
machine of tape complexity L(n)  can be found. Thus we have: 

1.THEOREM Gwen one of the machines below, one can find an equivalent halting 
machine of the same model and complexity chss. 

( 1 )  A 1NTM. 
( 2 )  A 1DTM. 
( 3 )  A 2NTM of tape complexity L(n)  unless log n 4 L(n). 
( 4 )  A 2DTM of tape complexity L(n)  unless log n 3 L(n). 
It is an open question whether a 2NTM or 2DTM of tape complexity L(n)  

can be modified to halt if lo&n 3 L(n) .We conjecture that the answer is no and 
offer the language & (described below) as a candidate for a language which is de-
fined by a 2DTM of tape complexity log log n but by no halting 2NTM of tape 
complexity L(n)  if log n > L(n) .We, of course, have no proof. The best way to 
describe S1 is in terms of a 2DTM M1 defining it. S1consists of words of the form 
xlcxzc. . cxmccw2c . C W ~where xi , 1 5 i < m, is the binary representation of 
the integer i with no leading 0's. Ml uses X I  ,x2 ,. ,x, to mark off a block of length 
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log log m on its storage tape. (See [2] for an explanation of how this is done.) 
wl , wz , - .. ,wk are binary numbers equal to or less than m. M1 then does the 
following: 

(1) M1stores wl in the block on its storage tape and performs step 2. €
(2) If M1has wi in the storage block and its input head at  wi , M1 moves its 

input head right, searching for some w j  equal to wi , i < j Im. If none is found 
by the time M1 reaches the right endmarker, M1 accepts. If M1 finds wj = wi, 
M1places wj-~in the storage block and performs step 3. 

(3) If M1 has wi in the storage block and its input head at wi , MI moves its 
input head left, searching for some wj equal to wi , 1< j < i. If none is found by 
the time MI reaches cc, MI halts without accepting. If Ml finds wj = w; , M1 
places w,+~in the storage block and performs step 2. 

Observe that M1may enter a loop and never move off either end of thew's. These €
loops seem not to be detectable if only log log n memory is used with words of €
length n. €

3. Lower Bounds on Tape Growth 
We now show that the results of [I]concerning lower bounds on the rate of growth €

of tape-complexity functions do not depend on determinism or the halting assump­€
tion. To begin we need a few definitiom. €

A storage state of a NTM is the combination of state, contents of the storage tape, 
and position of storage tape head. 

Supposethat with input w, the 2NTM M uses k storage cells. Let r be the number 
of storage states using up to k storage cells, and assume these states are numbered 
from 1 to r. For this M and w, and for each sufEx u of w, we define the transition 
matrix T, to be the r X r matrix whose elements t i j  , 15 i,j 5 T,have the fol­
lowing properties: 

(1) tii = 00,01, 10, or 11. 
(2) t i j  = lx, x = 0 or 1, if starting in storage state i with the input head at 

the leftmost symbol of u, M can enter storage statej before its input head leavea u. 
Otherwise, tii = Ox for some X. 

(3) t i j  = XI, x = 0 or 1, if starting as in (2), M can enter storage state j im­
mediately upon moving its input head left from u, never having previously moved 
from u. tij = xO for some x otherwise. 

THEOREM€2. Let M be a 2NTM of complexity class L(n). Then if there ia no 
constant c such thal L(n) 5 cfor all n, we must have L(n) 2 tog log n. 

PROOF. Suppose that for some k there is a word w = $al& - .. a,,$ which is the 
shortest input causing M to use exactly k storage cells. Since M is of complexity 
class L(n), but there is no constant upper bound on length of tape used, there are 
an infinity of such w and k. 

Define wi to be aiai+l .. a,,$, 1 5 i 5 n, and suppose Twi = Twjfor some 
-1 5 i < j 5 n. Then we claim that w' = #al& - .. ai-~a,aj+~.. a,,$ is a shorter 

input causing M to use exactly k storage cells. 
To see the above, observe that if M can move right from position i - 1when in a 

given storage state and return to position i - 1, it can return to position i - 1 
in the same storage states whether w or w' is the total input. Thus if w causes M to 
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enter a storage state using k cells, with the input head at one of the first i - 1 
input symbols, w' will do likewise. Furthermore if w causes M to enter a storage 
state using k cells while the input head is scanning one of the symbols of wi ,w' will 
do likewise since Twi= Tw,.Thus assuming that T,, = Twjleads to the contradic. 
tion that w'is a shorter word using k storage cells than the assumed shortest word w. 
Hence Twicannot equal T,, for any i and j, and there must be a different transition 
matrix for each of the n s f i e s .  Consequently, the number of possible different 
transition matrices must equal or exceed n. 

If M haa s states and t tape symbols, then r, the number of storage states using 
up to k storage cells, is at most sktk.Hence the number of possible transition matrices 

l k s l l b
for terminal subwords of a word using k storage cells is 4", which equals 4' . 
We require that 

4 , v c v b  1 n. 

Taking logarithms twice, 

1 + 2 log2 s + 2 lo& k + 2k logzt 2 lo& logzn. (1) 

Since k 1 1, and log2 x < x for all x, the left-hand side of (1) is not greater than 
kI2 logzt + 2 logz s + 31. Hence 

k 2 -
log2 

1 
8t2sZlog2 log2 n, 

from which it immediately follows that L(n)  2 log log n. 
3.THEOREM If M is a lNTM with no constant upper bound on the anwunt of 

storage tape used for any input, and M is of complexity cluss L(n), then L ( n )2log n. 
PROOF.The proof is essentiallythe same as that used in [ I ]  for the deterministic, 

on-line Turing machine. Suppose w = alaz ... a,$ is a word of shortest length caw­
ing M to use k storage cells. The configuration using k storage cells must not be 
reached before the input head scans a,, . Suppose that for some i and j, 
1 5 i < j < n, there is a storage state which M may enter immediately before 
shifting the input head from ai to ai+l or from aj to aj+l.Then alan . aiaj+laj+z­
a,$ is a word of shorter length using k storage cells. 

We must therefore have 

n - 1 I sktk 

where s and t are the number of states and tape symbols of M, respectively. 
Taking logarithms, 

log2 ( n  - 1) 5 log2 s + logz k + k log2 t .  

As in the proof of Theorem 2, from (2) we can derive 

1k 2 
log, 
-

2st 
log ( n  - I ) ,  

from which L ( n )  - 2  log n follows immediately. 

4 .  Nondeterministic Versus Deterministic Models €

One would suspect that the nondeterministic devices are in general more powerful 
than deterministic devices of the same tape complexity. We were able to show this 
statement true only for some one-way classes, and the proof is presented here. 
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If for some lNTM the amount of storage tape used is bounded, only regular sets 
are accepted. In this case the deterministic and nondeterministic models are equiva­
lent [3]. If the working tape is not bounded, by Theorem 3 i t  must grow at least as 
log n. The next theorem exhibits a language which is accepted by a 1KTM of tape 
complexity log n, but which cannot be accepted by any lDTM of less than linear 
tape complexity. 

THEOREM4. Let S 2  be the language conaisting of all words of length n = 2' of the 
form O ~ ' - ~ W ~ W ~. - whomwhere: 

(1) Eachwi, 1 I i I k,isin{1,2): 
(2) k is the integer part of 2"/r. 
(3) m is the remainder when 2" is divided by r. 
(4) For some 1 5 i < j Ik, wi = wj . 

Szis accepted by a lNTM of tape complezity log n but by no lDTM of tape complexity 
L(n) unless L(n) 2 n. 
PROOF.One can construct a lNTM of tape complexity log n which counts the 

0's on its tape, checks that this number is a power of 2, computes k and m, and then 
scans the words wi , 1 Ii 5 k. W e  reading these it checks to see that there 
are exactly k of these, of proper length, followed by m 0's. Nondeterministically, i t  
chooses one word to store on the tape i t  has used and compares i t  with subsequent 
words. If a match is found, the machine accepts. This lNTM accepts S2. 

Now consider M, a lDTM accepting S2 .Suppose that M has s states and t tape 
symbols and that after reading p input symbols, M uses at most L(p)  tape cells. 
Consider inputs of the form O * ' - ~ W ~ W ~  . WI+I such that each wi , 1 I i < k, is in. 
(1, 2)'; for no 1 _< i < j < k does wi = w, ;and for 1 5 i I k - 2, the integer 
value of wi is less than that of wi+, .Since there are n possible values for wi , the 
total number of inputs of this form is n(n - 1) ..- ( n  - k + 2)/(k - l ) ! For 
each of these inputs the internal configuration of the machine must be unique; 
otherwise, we could choose wh so that one word was in S2and the other not, while M 
would accept both or neither. If we let p = n/2 + (k - l ) r ,  then 

Taking logarithms, 

The left-hand side of the above is bounded above by cL(p) where c = 1 + log21 + 
log, s. Also the right-hand side is bounded below by ( k  - l)log2[(n - k)/k]. Thus 

For large n, k - 1 is at  least n/(3 log2 n), and (n - k)/k 2 nl(2k). Also 
logz [n/(2k)] >_ 3 logz n for large n. Thus 

But n 2 p, so 
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There are an infinity of integers p for which a word of length p, 0"-'wlw2 ... 
wk-l ,is a prefix of a word in Sz. Therefore L(p) 2 p. We may conclude that if 
M accepts S2,then the amount of tape used by M grows at least linearly. 

For the two-way case, if the storage tape is bounded then only regular sets are 
accepted, and thus the deterministic and nondeterministic models are equivalent. 
However for two-way Turing machines of all other complexity classes it is an open 
problem as to whether or not the deterministic and nondeterministic models are 
equivalent. 

5. Hierarchy of Complexily Classes Below Log n 

The "diagonalhation" proof of a dense hierarchy of complexity classes that was 
given in [I] breaks down when the complexity classes are below log n. We offer a 
proof of the existence of such a hierarchy in this region, not only for off-line Turing 
machines but for the classes of 2NTM and 2DTM which are not restricted to be 
halting. 

Say a function L(n) is constructzZ& if there is some halting 2DTM M which is of 
tape complexity L(n) but of no tape complexity that is smaller than L(n) for any 
value of n. Say M constrmc2s L(n). 

THEOREM If L(n) is a constructible function and L(n) < 20g2(n/2) for all5. 
n > 1,then there is a set S such that Sis accepted by a halting 2DTM of tape com­
plezity L(n) but by no 2NTM of tape complexity Q(n) if L(n) > Q(n). 

PROOF.Let M construct L(n), and let the input alphabet of M be A. Let A' be 
the alphabet consisting of ab , a,, and ad for each a in A. For each a.in A', let 
hl(a,) = a and h2(a,) = x. Extend the homomorphiims hl and hz to words over A' 
in the obvious way. Let S be the language consisting of those words w over A' 
having the following property: If w is of length n and hl(w) causes M to use k 
storage cells, then &(w) is of the form udn-*+'u for some word u of length 2k over 
f b'cl -

It is easy to see that Sis accepted by a halting 2DTM of tape complexity L(n). 
The machine first lays off k cells of memory by simulating M on hl(w), then checks 
the format of w (to see that &(w) is of the correct form), and finally compares the 
initial and terminal strings of bpsand c's symbol by symbol, using its storage tape 
to memure positions within the initial and terminal subwords of b's and c's. 

Suppose S were accepted by a 2NTM of tape complexity Q(n)  where 
L(n) 3 Q(n). 

Let N be such a Turing machine with s states and t tape symbols that accepts S. 
The number of storage states available for inputs of length n or less is at most 
s ~ ( n ) t ~ ' " ' .  there are at most 4"0'n"0'n'1atransition matrices for words in alpha­~ h u s  
bet A' of length up to n. 

Let y be a word of length n over alphabet A such that M uses exactly L(n) stor­
age cells when processing y. Then consider all w in L such that hl(w) = y. There 
are clearly 22L'n'such w. For each of these words, the terminal string of b's and c's 
must have a unique transition matrix, or else a word not in L would be accepted. 
Hence 

2 ~ L ( n )  < 4[a0(n)tQ(n)lf-
Take logarithms twice: 

L(n) 5 1 + 2(log s + log2 Q(n) + Q(n) log2 1). 
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From the above it is immediate that there is a constant Ic such that L(n) < kQ(n). 
But then L(n) 3 Q(n) could not be true. We may conclude that N does not exist, 
proving the existence of hierarchies in the range desired for both deterministic and 
nondeterministic two-way Turing machines. 

6. Closure Under Boolean Operations €

The sets of languages of particular complexity classes for the various models are €
sometimes closed under the operations of union, intersection, and complementation. €
(We shall say hereafter that the complexity classes, rather than the set of languages €
accepted by them, are closed.) €

The complexity classes for nondeterministic models are easily seen to be closed 
under union. A machine is designed which "guesses" which of two other machines 
to simulate and accepts if either accepts. 

For the two-way Turing machines, closure under union and intersection is shown €
by simulating two machines one at  a time and accepting if either or both, respec­€
tively, accept. For union one obviously requires that the machines simulated are €
halting. The complexity classes of 2DTM that can be modified to halt are also €
closed under complementation, as can easily be shown. €

The one-way classes can all be modified to be halting, and closure under comple­
mentation is easily shown for the 1DTM. The classes for the lNTM and lDTM are 
also closed under union and intersection. A machine is constructed to simulate two 
others on two tracks of its storage tape. If both are halting they can be simulated in 
turn while the input head rests at  each input symbol. These results are summarized 
in the following theorem. 

6. (a) All complexity classes for the lDTM are closed under union,THEOREM 
intersection, and complementation. 

(b)  All complexity classes fur the 1NTM and 2NTM are closed under union and 
intersection. €

(c) All complexity classesfor the 2DTM are closed under intersection. Complexity €
class L(n) is closed under union and complementation, unless, perhaps, if  €
log n 4 L(n). €

There is no reason to suspect that the results not stated in Theorem 6 are true. €
However we have only been able to show a negative result in one simple case. €

7.THEO~EMLet S3 be the language [ w m  I w in (0,1)*).Then s3= (0, I, c)*- S3 
is accepted b z ~a lNTM of tape complexity log n, but S3 iS not accepted by any lNTM 
of tape complexity L(n) unless L(n) 1 kn for some constant k. Hence if n > L(n) 
but L(n) 2 log n for all n, then complexity class L(n) for the lNTM is not closed 
under complementalion. 

PROOF.A word w in (0, 1 ,  c)* is in $3 for one of three reasons: 
(1) w does not contain exactIy one c. 
(2) w is of the form w l m  , w1 and w2 in {O, I]*, but wl and w2 are of different 

lengths. 
( 3 )  w is of the form wlcw2 , wl and w2 in [O, I)*, and wl and w,, are of the same 

length, but wl# w2. 
We can design a lNTM Ma of tape complexity log n which checks (1) in its 

finite control. If w contains one c, Mt uses its storage tape as a binary counter to 
check (2). While counting, Ms "guesses" a position within WI ,recording the symbol 
there and the distance of that position from the left end of w1 . That symbol is 
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checked against the corresponding symbol of wz. If unequal, M 3  determines that 
(3) is satisfied. 

Now suppose that there is a lNTM M accepting S3.Suppose there are words ul 
and 2.42 in (0, I]*, and a storage state Q of M such that if it is in storage state Q, 
and either ul$ or u2$ is the remaining portion of input tape, then T would accept. 
Then Q could not be accessible from the initial configuration of M for any input 
sequence, or M would accept a word not in S3. 

Thus for any storage state Q, there is at most one input sequence leading to ac­
ceptance from Q. Moreover for any word u in (0, I)*, there must be some storage 
state Q from which, if u$ is the remaining portion of input, M will enter an accept­
ing state. Also Qmust be accessiblefrom the initial configuration of T when uc is the 
initial portion of the input tape. 

We may conclude that the number of storage states accessible from the initial 
state with an input of the form w:where u is in (0, 1)"is at least 2". If 116 has s 
states and t storage symbols, we must have 

s ~ ( n ) t ~ ' " '2 2", 

or 

log2 s + log2 L(n) + L(n) log t 2 n. 

It immediately follows that there is a constant k such that L(n) > kn. 

7. Conclusions 

We have demonstrated the following results concerning tape-bounded Turing 
machines. 

( 1 )  The lower bounds on tape complexity for nonregular sets given in [I]for the 
off-line and on-line machines do not depend on either the halting assumption or 
determinism. 

(2) There exist dense hierarchies of both the deterministic and nondeterministic 
two-way devices in the range between log log n and log n. 

(3 )  Tape complexity class L(n) for the one-way nondeterministic Turing ma-
chine is larger than complexity class L(n) for the one-way deterministic Turing 
machine if L(n) is not bounded above by a constant and varies with n at a rate 
less than linear. 

(4) Tape complexity class L(n)for the l N T M  is not closed under complementa­
tion if L(n) 2 log n and n 3 L(n). 

There are many unanswered questions proposed by the sirnple theorems we have 
presented. Among them are: Can 2NTM's and 2DTM's of tape complexity between 
log n and log log n be modified to be halting?Are the 2NTM's and 2DTM's of given 
complexity class equivalent? Are complexity classes for 2NTM's closed under com­
plementation? 

It might be asked why proving (3)  and (4) for the lNTM was so easy while 
answering the last two questions appears difEcult. Intuitively, the answer lies in the 
fact that there is only one known way to prove that a language is not acceptable by 
a one-way machine of tape complexity L(n).If L(n) is small, it can be shown that 
there is not enough storage space to store an initial portion of the input so that each 
initial portion has a unique representation in storage. If the language is defined by 
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some rule which involves the comparison of initial and final portions of the input, 
the machine might not be able to recognize the language because it does not know 
precisely what the initial portion of the input was when it is time for the final 
portion to be scanned. This argument breaks down if L(n) 2 n, since in that c a e  
the entire input may be stored on the working tape. 

There is a similar argument used for showing certain sets not acceptable by a 
2NTM of tape complexity L(n) if log n > L(n). If log n > L(n) then not al l  
suffixes of all inputs can have distinct transition matrices. In this case the accepting 
device cannot always determinewhat the terminal portion of the input is and carry 

unlesethis informationto the initial portion of the input. The argument breaks down 
suf3i.xL(n),>log becausen toit is havethen possible for each its own unique 

transition matrix. 
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