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Summary. 
Our main result, theorem 2, gives a 

bound on the storage required for a 
Turing machine to simulate certain time- 
bounded pushdown machines. The theorem 
is a generalization of the result appear- 
ing in [3] stating that any context-free 
language can be recognized by a determi- 
nistic Turing machine within storage 

(log n) 2 We introduce a combinatorial 
object, called a path system, develop its 
theory briefly, and use the theory to 
prove both the result on pushdown machines 
and the result on context free languages, 
as well as a third result. The third 
result is the Theorem of Savitch [5] 
stating that a non-deterministic L(n) - 
storage bounded Turing machine can be 
~imulated by a deterministic 

(L(n)) 2 - storage bounded Turing machine. 

Path Systems. 
Definition A path system is a 

quadruple ~. = (S,R,S,T), where X is 
a finite set (of nodes), R is a three 
place relation on X (the incidence 
relation), S C X (S is the set of 
source nodes)--and T C X (T is the set 
of terminal nodes). 

The admissible nodes of ~ are the 
least set A such that T C A, and such 
that if y, z e A and R(x?y,z), then 
x e A. We say ~ is solvable if at 
least one admissible nod~ ~sin S. 

The notion of solvable can be 
defined alternatively as follows. Start- 
ing with a node s e S, we try to form a 
directed graph by finding nodes Xl,X2,eX 

so R(S,Xl,X 2) holds. Then we let 

S,Xl,X 2 be vertices of the graph, and 

let (s,x I) and (s,x 2) be directed 

edges. Then we find x3,x 4 and x5,x 6 

so R(Xl,X3,X 4) and R(x2,Xs,X 6) hold, 

and let (Xl,X3), (Xl,X4), (x2,x5), 

(x2,x 6) be directed edges as shown. 

We continue in this way (possibly letting 

a node have two or more edges coming in) 
until every directed path leads to a 
terminal node (member of T). This is 
possible if and only if ~ is solvable. 

More precisely, .~ is solvable if 
and only if there is a digraph G = (V,E) 
where 

a) the set V of vertices is a 
subset of X, 

b) for each edge (x,y) e E, there 
is z e V such that (x,z) e E 
and either R(x,y,z) or 
R(x,z,y) holds. 

c) There are no directed loops in 
G (i.e. no sequences (Xl,X2) , 

(x2,x3),...,(Xk_l,Xk):,(Xk,X I) 

of edges), 
d) V A S is non-empty, 
e) Every vertex x either has 

edges leading out from itself or 
x eT. 

Such a digraph G is called solution 
gra~ for the path systems . 
Def'n The path system 2~ is tree - like 
luther ~_ is unsolvable, or~ some 
solution graph of ~ is a binary tree. 
(For our purposes, a digraph Ls an binary 
tree if and only if each vertex has at 
most one edge coming in and eLther two or 
zero edges coming out, and no directed 
loops). 

We shall be concerned only with tree- 
like path systems here. However, more 
general path systems are of interest; for 
example the proofs of the results on 
auxiliary pushdown machines in [2] could 
be stated in terms of general path 
systems. 

Example Let G = (V, Z, P~r) be a 
context-free grammar with terrainals V, 
alphabet Z, productions P, and initial 
symbol~--. We shall assume G is in the 
normal form in which all production are 
of one of the forms 

$i ÷ ~2 ~3' ( ÷ A, 

where ~i' ~2' ~3 and ~ are nontermi- 

nals, and A is a terminal. 

For a non-empty string w E V* we 
associate a tree like path system 
~= (X,R,S,T) with w and G as follows 
(here n is the length of w): 

* Most of the materfal here appeared in 
a different form in the unpublished 
report [i] 
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X is the set of triples (~, i, j), 
where ~ is a non terminal, and i and 

j are integers satisfying i < i < j < n. 

R(x,y,z) holds if and only if 
x,y,z have the form (~_, i, k), ± 
(~2' i, j), (~3' j+l, k) respectlvely, 

where ~i + ~2 ~3 is a production of G, 

S = {<~-, I, n)}, 

T is the set of all nodes of the 
form (~, i, i), where ~ ÷ W. is 

1 
production of G, and w = W I W2...W n. 

It is not hard to see that the 
admissible nodes of ~ are precisely 
those nodes <~, i~ j) such that the 
string W i Wi+i...W j is derivable 

from $ in G. Thus w = WiW2...W n is 

in the language generated by G if and 
only if (~F', i, n) is admissible, i.e. 
if and only if ~ is solvable. 

To see that ~ is tree - like, we 
note if w is in the grammar generated 
by G, then a generation tree for w 
tells us how to construct a solution 
digraph for ~ which is a binary tree. 
In fact, the generation tree, with final 
branches pruned, will be isomorphic to 
the solution digraph. 

We shall use this example to show 
that context-free languages can be 2 
recognized within storage (log n) . 

Query Machines 

Let E be a finite alphabet, and 
suppose R is a finite r-place relation 
on E* (i.e. R is a finite set of 
r-tuples of strings on E). The norm IRI 
of R is the length of the longest 
string in some r-tuple of R. That is, 

r 
IRI = max {~I £ = max lwil, for some 

i=l 

<Wl,...,w r) such that R(Wl,...,w r) 

holds} 

A query machine (simular to the 
Turing machines M with oracle defined 
in [4])is a (deterministic) Turing 
machine designed to recognize a class 
of finite r-place relations on E*. The 
query machine M is equipped with a 
special query tape, in addition to a work 
tape, and M has three distingushed 
states, called the yes state, no state, 
and query state. 

A query machine is deterministic, 
except when in the query state it can 
continue in either the yes state or no 
state. If R is an r-place relation on 

E*, then the R-computation of M is the 
computation M undergoes starting in the 
initial state with both tapes blank, such 
that whenever M enters the query state 
with a string of the form Wl* w2*...*w r 

on the query tape, w i e E*, the next 

state assumed is the yes state if 
R(Wl,...,w r) holds and the no state if 

R(Wl,...,w r) fails to hold. If the 

string on the query tape is not of the 
.*w when M is in the query form Wl*.. r 

state, then M halts. 

We say M accepts R within storage 
if the R-computation ends in an 

accepting state and no more than 
squares of the work tape are scanned. 
Suppose ~ is a set of finite r-place 
relations on E*, and L(n) is a func- 
tion from natural numbers to reals. We 
say M accepts R within storase L(n) 
if for all R e ~, M accepts R within 
storage L(IRI) , and for all R e ~, M 
fails to accept R (in any storage). If 
some such machine M exists for the set 
~, then we say ~ has tape complexity 
L(n). 

A path system ~ = (X,R,S,T> is a 
E-path system if the set X of nodes is 
a set of strings on E excluding the 
empty string. The relation R* codes 
such a path system ~ if R* = R U 
{( x,A,A|x e S}U{~,y,~> IY e T}, where~i 
is the empty string. 

Theorem i Let E be a finite 
alphabet. Then there is a set ~ of 
finite 3-place relations on E* such that 

i) ~ includes all R* which code 
solvable tree-like E-path 
systems 

2) ~ includes no R* which code 
unsolvable E path systems 

3) ~ has tape complexity L(n)=n 2 

The proof is an abstraction of that 
outlined in [3] showing that every context 
free language has tape complexity 

(log n) 2. In fact, that result follows 
from the present result. 

Corollary I Every context-free 
language has tape complexity 

L(n) = ~og n) 2 

Proof. Let G = <V,E,P,~ be a 
context-Re language, and for each 
w e V* let .2~ w be the path system 

associated with w and G which we 
described earlier. Let E'=E U {0,i,/}. 
Then ~ can be translated into a tree- 

w 
like E'-path system ~'w by representing 
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the node <~,i,j) by the string ~/T/J, 
where T, J are the binary notations 
for i and j. Note that if Rw* codes 

~'w' then IR*wl ~ 2 log 2 lwl -3. Thus 

a Turing machine M can be constructed 
which incorporates the query machine of 
theorem i. Given an input w, M has 
the query machine perform an R* w- 

computation by answering the queries 
appropriately, and M accepts w if and 
only if the query machine accepts R* 

W 

The storage required by M is dominated 
by that required by the query machine, 
which, by theorem i, is (2 log21w I + 3) 2 

This can be reduced to (log lwl) 2, by 
standard results on Turing machines. 

Corollary 2 (Savitch [5]) If a set 
A of strings on E is accepted by a non- 
deterministic Turing machine within 
storage L(n) ~ log n, then A is 
accepted by a [eterministic Turing 

machine within storage (L(n)) 2. 

Proof. With each input w to the 
non-deterministic Turing machine one can 
associate a tree-like path system w 

coded by a relation R* w such that 

IR*wl _< L(n), and ~w is solvable if 

and only if the Turing machine accepts 
w. The proof proceeds as in the above 
proof. 

Theorem 2 If a set A of strings 
is accepted by a (non-deterministic) 
multihead two-way pushdown automaton 
within time T(n) = e n k for some 
constants c and k, then A has tape 

complexity (log2n)2. 
The proof proceeds along the lines 

of the preceeding corollaries, although 
the path system is considerably more 
complicated• This result can be 
generalized to other types of pushdown 
machines, including the auxiliary push- 
down machines of [2] using results in [2]. 
Corollaries i and 2 above are immediate 
corollaries of the generalization. 
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