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Ab&act: Let YJl,, be the  class of  languages  defined  by  n-head  finite automata.  The  Boolean  and  Kleene  closure  properties of m,, are 
investigated, and a relationship between m,, and the  class  of  sets of  n-tuples  of tapes defined  by  n-tape finite automata is established. 
It is shown that the classes 102i form a hierarchy;  and that, moreover,  for  all n, there is a context-free  language (CFL) in ma+, - m,,. 
It is further shown that there is a CFL which is in  no 5JJ?n for any  integer n. Finally,  several  decision  properties  of  the  multi-head  lan- 
guages are  established. 

Introduction 

When faced with the task of processing an artificial lan- 
guage, such as a programming language, on a computer, 
one often employs an algorithm that simulates the action 
of an  automaton.  For example, a pushdown  algorithm 
(Burks et al.’), which simulates the performance of a 
pushdown automaton (Evey2), is frequently used in the 
processing of arithmetic expressions or statements  in the 
propositional calculus. Usually, however, there is no 
unique  algorithm, nor even a unique class of algorithms, 
for processing a given language. One must,  therefore, 
choose that algorithm which will be  most efficient for 
performing the  job at hand. It follows that  one  major 
problem in the area of “linguistic” automata theory is that 
of determining the relative computational powers and 
degrees of efficiency  of different models of syntactic ana- 
lyzers. 

If an  automaton requires no work tape  in  its computa- 
tions (i.e., is a nonwriting model) then,  in the simulation of 
this model for  the processing of a language, one need not 
establish and maintain the (often costly) list structures 
that  are usually employed to simulate the work tape of an 
automaton. The  automaton is, in a sense, more efficient 
than  any writing model (such as a pushdown automaton) 
that will do the same job. 

In view of the  computational weakness of the model of a 
finite automaton we are led, from  the above  motivation, 
to  the investigation of extensions of this basic model which 
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preserve its  nonwriting character. Rabin  and Scott3 and 
the  author4#‘ have investigated several nonwriting exten- 
sions of finite automata. In this  paper we extend the study 
reported in Ref. 5 of finite automata with several READ 

heads on their input tape. We designate the class of lan- 
guages which can be analyzed by such automata as multi- 
head languages. 

After defining the model to be  studied, we turn to an 
investigation of the closure  properties of the multi-head 
languages under the Boolean (union, intersection, com- 
plementation) and Kleene (concatenation, closure, and 
reversal) operations. We establish the relationship of the 
multi-head languages to the finite-state, context-free, and 
context-sensitive languages; and we generalize the adage, 
“two  heads are better than one,” to “n f 1 heads are 
better than n.” Finally we consider several decision prob- 
lems associated with multi-head finite automata. 

Definitions and notation 

We assume familiarity with the concepts of alphabet,  tape, 
set of tapes, and  the Boolean and Kleene operations on 
sets of tapes. (See, for example, Rabin  and Scott3). We 
let #(S) denote the cardinality of the set S. 

An n-head finite automaton (n-FA)  operates much as 
does a finite automaton in the sense of Rabin  and Scott, 
the main difference being in  that  an n-FA has n read-only 
scanning devices on  its  input tape. Our formalism differs 
in two respects from  that of Rabin  and Scott. First,  for 
reasons that  are more aesthetic than scientific, we  desig- 
nate  two internal configurations of our n-FA to be halting 
states; every computation is ended by entering one of these 
states. Secondly, we  give our n-FA’S information about 
when they have reached the  end of the  input tape. In fact, 
we view an  input  tape t as being placed on  an  input channel 
in the  form t$, where $ is a special end-tape symbol. While 



neither  the special halting  states  nor  the technical symbol 
alters  the  computational power of a finite automaton (see 
Remark l), one can easily convince himself that  the com- 
putational power of an n-FA (n > 1) is increased by the 
addition of an  end-tape symbol. 

Definition 1. An n-head (n > 0)  finite  automaton, 
n-FA, is  an  8-tuple ( K ,  S A ,  sR, I;, $, h,  M ,  so) where 

(1) K is a finite set (of states) which is the union of the 
2"- lnon-emnptysetsK'X(2""'""'- ( ( l , . . . ,  n ] ) ) ;  
(Subsequent notation is simplified.)' 

reject  states,  respectively); 
(2) sA and sR are special symbols, not  in K (the accept and 

(3) Z is an alphabet (of input symbols); 
(4) $ is  a  symbol not in I; (the end-tape symbol); 
(5 )  h (the head-selector function)  is  a  function from K into 

{ 1, ... , n ]  which maps 
h : K' X { S }  + (1, . - -  , n )  - S; 
(sin 211."'.nI - { ( 1 7  ... 9 .I 1); 

(6)  M (the  next  state function) is a  function on K X 
( X U  ( $ 1 ) :  
(a) M : (K' X {SI) X I; --f K' X (SI, 
(b) For q in K' X {SI, 

M(q, S) is in K ' X  ( S U  { h ( q ) ) )  if #(s> < n - 1, 
M(q, $) is in {SA, SR if #(S) = n - 1 ; 

(7) so is in K' X ( 4 }  (the initial state). 
Since sA, sR, Z, and $ wiIl be understood, we shall usually 
denote  an n-FA as ( K ,  M ,  h, so). 

An n-FA consists of a control  unit, which is capable of 
assuming a finite number of distinct internal configurations 
called states, and an  input channel on which is a tape of 
the  form t$, where t is a tape over the alphabet 8,  and $ 
is a symbol not in I;, the  end-tape symbol. Initially, the 
n-FA is in state so with all n READ heads positioned on the 
leftmost symbol of t. (For simplicity we assume idealized 
heads which can coexist on the same square of the tape.) 
At each time unit, the  head  controlled by the  current 
state (via the h function) reads the symbol on which it is 
now positioned and moves one  square to  the right. On  the 
basis of the  current state and  the symbol scanned, the 
n-FA changes state. The n-FA halts upon entering state sA 
or sR which occurs after  all n READ heads have scanned the 
end-tape  symbol; the  tape t is accepted or rejected accord- 
ing as  the halting state is sA or sR, respectively. 

We make  the restriction: that once a READ head has 
scanned the  end-tape symbol, no  further READS are initiated 
with that READ head. 

We formalize the concept of a  computation by an n-FA. 
Definition 2. Let 8 be an n-FA over Z with state set K .  

If the tape  t  is on the  tape channel of 8 ,  then  the instan- 
___ " 

t We shall  often  write K' X S for K' X { S )  when no confusion can 

f This  restriction  is  formalized  in  the  definition  of  the h function  and 
occur. 

the  definition of the M function. 

taneous description (i.d.) oj 91 at  time k is the  pair IX(k)  = 
(s, w) where 

1) s is a  member of K ;  
2)  w is of the form w = xlrni,x2m,%. . -min-lxnn~i.,xn+l 

where x l ,  - - * , x,, are (possibly null) tapes, { i l ,  - - - , in ) 
= 41, , n ) ,  xlx,  X,,X,,+~ = t$, and the mii  are 
distinct symbols, not  in Z, which denote the positions 
of the READ heads. 
Let L(f )  denote the length of the tape t. 
Definition 3. Let 8 = (K,  M ,  h,  so) be an n-FA. The 

computation of a  tape t by 8 is a sequence of i.d.'s Znr(0),- * * ,  

Zn(k) where k = n(L(t) + 1) such that: 

1) Zn(0) = (so, m1m2 * . . m,,t$). 
2)  For 0 5 j < k ,  if Z n r ( j )  = (s, xm,uuy)  for  h(s) = i, 

u a  member of the Kleene closure' of {m,,..., mi-,, 
mi+l ,  , m,j, and u in Z u { $ I ,  then Znr ( j  + 1) = 

( M s ,  u), xuumiy). 
3 )  In(k)  = (s, w), where w = t$ml m,, and s is  in 

{ S A ,  sR]. 

It is clear from  the definition of an n-FA that such a k 
exists and is unique. 

An n-FA 8 accepts a tape t iff there is a computation 
Znr(0), . . , Znr(k) of t such that  the state of 8 at time k 
is sA.  %Xn is the class of sets of tapes defined (accepted) by 
n-FA's. 

Remark I .  A 1-FA is a finite automaton in the sense of 
Rabin and Scott. Thus %Xl is  precisely the class of regular 
sets. 

Chapter I .  Characterization and closure properties 

8 Charncterization 

We begin this section by finding a characterization of %X, 
in terms of the class of sets of n-tuples of tapes defined  by 
deterministic n-tape a ~ t o m a t a . ~  ' We recall the definition 
of an n-tape automaton. 

Definition 4. An n-tape ( n  > 0) finite  automaton, n-DA, 
is  an 8-tuple (K, sA,  sR, I;, $, f ,  M ,  so) where 

(1) K is a finite set (of states) which is  the union of the 
2" - 1 non-empty  sets 

x ( 2  lI,....nJ - ( ( 1 ,  . * -  ,rill>; 
(2 )  sA and sR are special symbols, not in K (the accept and 

reject  states,  respectively); 
(3) Z is  an alphabet (of input symbols); 
(4) $ is a  symbol not in Z ( the end-tape symboC); 
( 5 )  f (the tape-selector function) is a function from K into 

{ 1 ,  . . . , n) which maps 

f :  K' X ( S )  + (1,  . . .  , n )  - S, 

for S in (,I1 ..... ,I - { ( I ,  * * .  , n ) l ) ;  
9 Subsequently  we  denote  the  Kleene  closure  of  a  set S hy S*. 389 
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(6) M (the  next  state  function) is a function on K X 
( X U  ($1) :  
(a) M : (K' X { S ) )  X X "+ K' X {SI, 
(b) for q in K' X IS), 

M(q ,  $1 is in K' X { S U { f ( q ) } }  

i f  #(S) < n - 1, 

M ( q ,  S) is in {sa, s I1 ]  if # ( S )  = n - 1; 

(7) so  is in K' X { 4 ]  (the initial state). 

As with an n-FA, we shall denote an n-DA as (K,  M ,  

An n-DA works much as does an n-FA except that an 
n-DA has n input channels with one READ head per channel. 

Definition 5. (a) Let % be an n-DA over B with  state 
set K.  If the n-tuple of tapes ( t l ,  - - - , tn) is on the tape chan- 
nels of 3, then  the instantaneous description o f  A at  time k is 
the (n + 1)-tuple I,(k) = (s, wl, . . . , wn) where 

1 )  s is a member of K ;  
2 )  for i = 1, ... , n,  wi  is of the form w i  = x imy,  where 

xi  and y i  are (possibly null) tapes, x iy i  = t i$ ,  and m 
is a  symbol, not in 8,  which denotes the  position of the 
READ head. 

(b) Zf 8 = ( K ,  M ,  f ,  so), then the computation of an n-tuple 
of  tapes ( t l ,  1 . . , t,) by % is a sequence of  i.d.'s ZPL(0); , 
I,(k) where k = n + BiL( t i )  such that: 

f ,  so). 

1 )  = (so, mtl$, m t 8 ;  * .  . , mt,$). 
2 )  For 0 2 j < k ,  i f   l a ( j )  = (s, xlmuly1, . . . , x,mu,y,) 

for ui in B U I $ ) ,  then, i f   f (s)  = r, I &  + 1) = 
(M(s,  ur) ,  wl, . . .  , w,) where w ,  = x,u,my, and, for 
i # r, wi = ximuiy,. 

3) Zpl(k) = (s, ~ 1 ,  , wn) where s is in { sA,  sR} , and 
wi = t i$m for  i = 1,  ... , n. 

An n-DA % accepts an n-tuple (tl, . . . , t,) iff there is a 
computation Za(0), . . . , ZX(k) of ( t l ,  . . , t,) such that  the 
state of % at time k is sA. Dn is the class of sets of n-tuples 
of tapes accepted by  n-DA's. 

Of special interest is the set of n-tuples of tapes 

E, = { ( t l ,  t 2 ,  , tn) : t l  = t2 = * *  * = tn 1 
in b, which  defines the n-ary diagonal relation. 

Theorem 1. A set of tapes A is in %Pn if and only if 
there is a set o f  n-tuples of tapes B in b, such that A is the 
projection, on any coordinate, of B n E , .  That is, t E A i f f  

Proof: If A is defined by the n-FA % = ( K ,  M ,  h, so) 
then B is defined by the n-DA % = (K,  M,  f ,  so) where for 
any state s in K ,  f(s) in 8 is equal to h(s) in %. For  the 
converse, we apply the inverse mapping. Thus, in essence, 
we interchange the  tape- and head-selector functions to go 

390 from one class to the  other. Q.E.D. 
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A context-free grammar (CFG) is a 4-tuple @ = 

(V, T ,  P, s) where V is a finite set, T is a subset of V,  s 
is in V - T, and P is a subset of (V - T)  X V*. For 6 in 
V - T and y in V*, we write b --+ y if (b, y )  is in P; for 
words x and y over V,  x * y if x = ubu, y = uzu, and 
b + z ;  x & y if either x = y or if there is a sequence 
zo, . . . , z ,  of words over V such that x = zo, y = z ,  and 
zi =+ zi+l for i = 0, . . . , r - 1. The language generated 
by ($3, denoted L(@), is the set of strings over T, I@) = 
{ w : s & w ) .  A language L is context-free (is a CFL) if 
L = L (($3) for some CFG @. 

Theorem 1 now yields: 
Theorem 2. For n > I ,  there is a set in m, which is not 

context-free. 
Proof: We show there is a non-CF set in a2. Since, 

for  all k,  %Ik is obviously contained in ~ t k + l ,  the result 
will follow: Let B = ( (Oml lmsOms ,  Om41m10ma) : mi 2 1 ) .  

One  can easily  see that B is in b2. The 2-DA moves the 
READ head on  tape 2 past  the  initial string of 0's to  the 
first 1. It then checks that the  initial  string of 0's on  tape 1 
is of the  same length as the  string of 1's on  tape 2, and 
that  the string of 1's on  tape 1 is of the same length as the 
terminal string of 0's on tape 2.  Now, by Theorem 1, there 
is a set A in which is the projection, on either  coordi- 
nate, of B n E2. Thus, 

A = (O"1"O" : n 2 1 )  

which is not context-free (Bar-Hillel et a1.6). Q.E.D. 

We now determine the relationships among the mi. 
Relationship among classes mi 
Theorem 3. The mi form a  hierarchy;  that is, for all n, 

Proof: We show that,  for n 2 1 ,  the set 
%l, is a proper subset o f  YX,+l. 

B, = { O"'10"'l - O"'llO"'1 . O""10"': m ,  2 l } ,  

where r = n(n + 1)/2 is in - m,,. 
a) We show that $3, is in m,+, by describing the action 

of an (n + 1)-FA 8 which defines 23". We intersperse 
examples of the processing by a 4-FA of a member of 
let this sample tape be 

t = OalOblOclOdlOelO'llOrloElodloclobloa 

Since every member of %"& has n(n + 1) = 2r blocks of 
O's, we may unambiguously refer to  the k th  block of 0's 
from the left as block k. 

STEP I(a):  Dispatch  head 1 to block 2r - n + 1, and 
dispatch head k ,  for k = 2, * , n + 1 to block k - 1. 

TAPE: O " l O b ~ O c ~ O d l O E ~ ~ ' ~ l O ' ~ ~ e ~ ~ d ~ ~ c ~ ~ b ~ ~ Q  
HEAD: 2 3 i I T t  

STEP  1(b): Use (1) head 1 and head n + 1 to check 
equality of blocks 2r - n + 1 and n ;  ( 2 )  head 1 and head n 



to check equality of blocks 2r - n + 2 and n - 1 ; . . . (n) 
head 1 and head 2 to check equality of blocks 2r and 1. 

TAPE?: ~ a l ~ b l ~ " ~ ~ d l ~ " ~ ~ ' ~ l ~ ~ ~ ~ e ~ ~ d ~ ~ c ~ ~ b ~ ~ a  
HEAD: $ 1 i 

STEP  2(a): Dispatch head 2 to block 2r - 2n + 2, and 
dispatch head k ,  for k = 3, . , n + 1 to block n + k - 2. 

TAPE: ~"~~bl~clOdlOe~~'l~~'lO"lOdlO"lO"lO" 
HEAD: 1 i  1 i 

STEP  2(b) : Use: (1) head 2 and head n + 1 to check 
equality of blocks 2r - 2n + 2 and 2n - 1 ; (2)  head 2 
and head n to check equality of blocks 2r - 2n + 3 and 
2n - 2 ;  . . (n - 1) head 2 and head 3 to check equality 
of blocks 2r - n and n + 1. 

TAPE: ~ " ~ ~ b l ~ " ~ ~ ' l ~ " l O ' l ~ O ' ~ ~ e l ~ ~ ~ ~ c ~ ~ ~ ~ ~ ~  
HEAD : i i  1 I 

STEP n - ] (a):  Dispatch head n - 1 to block r + 2 ;  
and dispatch head n to block r - 2 and head n + 1 to 
block r - 1. 

STEP n - I(b): Use (1) head n - 1 and head n 4- 1 to 
check equality of blocks r + 2 and r - 1 ; (2)  head n - 1 
and head n to check equality of blocks r + 3 and r - 2. 

STEP n(a) : Dispatch head n to block r + 1, and dis- 
patch head n + 1 to block r. 

TAPE: ~ " ~ O b ~ ~ c l ~ d ~ O " l O ' ~ ~ O ' ~ O e ~ O d ~ O c ~ ~ b ~ O a  
HEAD : i i  5 I 

STEP  n(b): Use head n and head n + 1 to check for 
equality of blocks r f 1 and r. 

TAPE: O"lOblOclOdlOelO'l 10'1 OelOdl OclOblOQ 
HEAD : 5 5  1 i 

The interested reader can  easily  fill  in the details to 
verify that 3 does indeed define B,,. Thus Bn is  in %R,,+]. 

b)  We  now show that B,, is not in "R,,. The demonstra- 
tion of this assertion is facilitated by the following ob- 
servations. 

Observation I: The processing of any member of Bn 
consists of comparing blocks r - k + 1 and r + k ,  where k 
ranges from 1 to r. This processing, then, involves r = 
n(n + 1)/2 comparisons. 

Observation 2: The length of any block  of 0's is not 
bounded. (This  follows from the condition "mi 2 1" in the 
definition of a,,.) 

Observation 3:  By definition of our model, the READ 

heads of a multi-head FA are restricted to unilateral 
motion on the input tape. 

Now  assume that some n-FA % defines an. If heads i 
and j of 8 are used to compare blocks r - k + 1 and 
" 

t Those hlocks of zero's which  have been  processed a r e  in italics. 

r + k of a tape in Bn, for some k in { 1, * , r ) ,  then we 
claim that this pair of heads cannot be  used to compare 
any other pair of blocks on the tape. Let us assume that 
heads i and j are also used to compare blocks r - k' + 1 
and r + k', where k' > k (a symmetric argument works 
if k' < k). By Observation 2, neither of these comparisons 
can be made by the finite-state memory alone. Thus, when 
the blocks r - k + 1 and r + k are compared, one of the 
heads, say i, must  be scanning block r - k + 1, while the 
other is scanning block r + k. A similar assertion holds 
for blocks r - k' + 1 and r + k'. One can easily see from 
the topology of the situation that the assumption that 
heads i and j are used for both comparisons must  violate 
Observation 3. Thus each pair i and j of READ heads can 
be used for at most one comparison. It follows that ?I, 
having only n READ heads, can make at most n(n - 1)/2 
comparisons (this being the number of pairs of heads of 
Yl). By Observation 1, 91 cannot possibly  define 23%. Thus 
%3n is not in %X,,. Q.E.D. 

Since B,, is  clearly a CFL, we get 
Corollary 3.1 For all n,  there is a CFL in YlJt,, - m,,. 
We are now  in a position to deduce the Boolean closure 

properties of D l n .  

Closure properties 

Theorem 4. (a) For all n, m,, is closed under complemen- 
tation. (b) for n > 1, %X,, is not closed under the operations of 
union or intersection. (c) ulYX, is a Boolean algebra. 

Proof: (a) If 8 = (K,  M ,  h, so) is an n-FA defining A,  
then the n-FA % = ( K ,  M',  h,  so) defines A, where, for s 
in K :  

"(s, u) = M ( s ,  u) for u in z , 

i sA if M ( s ,  $) = sI1 

M'(s,  $) = sR if M(s,  $) = sA 

\M(S, $) otherwise. 

It follows from this construction that if A in !JXn is the 
projection, on any coordinate, of B n E,, for B in a,,, 
then A is the projection on any coordinate of n E,,. 
Thus  the mapping of Theorem 1 preserves  complements. 

(b) We show that, for n > 1, !E!,, is not closed under 
intersection. 

The following two sets are in "R,,: is as in Theo- 
rem 3) 

A = ( (o)*( l ) )n%3jn- , ( ( l t iOl*)n  

c = ( o m 1 1  . * .  O""lO"""1 . . . 0"'110"'+'1 . . . 0""'" 

lO""1 . 10"': m i  2 1 and r = n(n + 1)/2}. 

However, A n C = 8% which, by Theorem 3 is in 
%!,,,, - %Xn. We conclude that " I v b  is not closed under 
intersection. 39 1 
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By part (a) and DeMorgan’s law, we conclude that ’$Xn 
is not closed under union for n > 1. 

(c) By part (a), %I,, is  closed under complementation for 
all n. 

It is obvious that, if A is in a, and B is in m,,,, then 
both A u B and A A B are in mm+n. 

It follows that uy is  closed under the Boolean 
operations. Q.E.D. 

Remark 2. For n > 1 the class of sets of tapes defined  by 

Proof: Nondeterministic n-FA’S are clearly closed under 

In Theorem 2, we showed that there are sets in %Rn, for 
all n > 1, that are  not context-free. The following remark 
is,  however,  obvious. 

Remark 3. For all iz, %‘i!,, is a subset of the class of con- 
text sensitive  languages.? 

In view  of this remark, it is natural to wonder if the 
union over all %Rn exhausts the CSL’s. If not, we wonder if 
the union exhausts at least the CFL‘s.  We  now exhibit a 
CFL which  is  in no mfi for any n. Thus, the answer to 
both questions is  in the negative. 

Lemma 1. Zf A is in and B is a regular set, then 
both A U B and A B are in m,,. 

Proof: Since, for all n, m,, is  closed under complementa- 
tion, it will  suffice to show that A A B is  in as. 

Let A be  defined  by the n-FA (K,  sA,  sK, 8,  $, h, M ,  so), 
and let B be  defined  by the 1-FA (L ,  tA ,  t& 8,  $, N ,  to). 

(Note that the head selector function for a 1-FA, being 
degenerate, can be ignored). The set A A B is then de- 
fined by the n-FA ( J ,  uA,  uK, 8, $, g, P, uo)  where 

(2) U A  = (SA, t A ) ;  uK is a special symbol, not in J ;  
(3) 8, $ are as in  Definition 1 ; 
(4) for (s, t )  in K X ( L  U ( f A J ) ,  d(s ,  t)) = hb) ;  
( 5 )  f o r ( s , r ) i n K X  (LU { t A } ) ,  

nondeterministic n-FA’S properly includes m,,. 

union. 

(1) J =  K X  (LW { I A } ) ;  

(a) if CJ is in 8,  

P((s ,  4 ,  a) = -i ( M ( s ,  a), N ( t  , a)) if h(s) = 1 ,  

( M b ,  a), t )  if h(s) # I ;  

‘uK if h(s) = 1 and 

N ( t ,  $) = t K ,  or if m(s; $) = sK, 

(b) P ( ( s ,  t ) ,  $) = < ( M ( s ,  $), t A )  if h(s) = 1 and 

N t ,  $1 = fa,  

, (M(s ,  $>, t )  if h(s) # 1; 

(6) uo = (SO, t o ) .  

In essence, the 1-FA  defining B “shares” the first READ 

head of the n-FA  defining A.  A tape is  accepted iff both 

392 ? For definition of “context-sensitive” see Kuroda.’ 
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automata would  have accepted it; i.e. iff the tape is in 
A n  B. Q.E.D. 

Remark 4 .  The proof of Lemma 1 can be modified to 
show that, if A is in %Rn and B in m,, then both A u B 
and A A B are in mn+n-l. 

Theorem 3 and Lemma 1 combine to yield 
Theorem 5. There is a CFL which is in !Dl,& for no 

integer n. 
Proof:ConsiderthesetA=(tlltT:tisin8*-8*11Z*). 

(If t is a tape, then tT is the reversal of t ) .  Clearly A is a 
CFL. 

Assume that,  for some k,  A is  in mk. 
Consider the set C= (00*1)‘(100*)‘, where r=  k(k+ 1)/2. 

Since C is a regular set, it follows from Lemma 1 that 
A A C is in Dk. However, A n  C = % k  which  by Theorem 
3, is in %Pk+, - Wk, a contradiction. 

We conclude there is no integer n such that A is  in 
m n -  Q.E.D. 

Remark 5. It can be shown that A is a deterministic 
CFL. Thus, there is a deterministic CFL which  is in 
for no integer n. 

Theorem 3 and Lemma 1 further combine to yield the 
following theorem which determines the Kleene closure 
properties of mfi. 

Theorem 6. For n > 1, ‘$Rn is not closed  under tire oper- 
ations of concatenation, reversal, or closure. 

Proof: We consider first the operations of concatenation 
and reversal. 

Let A and C be as in the proof of Theorem 4(b).  As 
was  shown there, A A C is not in m,,; by Theorem 4(a), 
A U is not  in %,,. However,  since both A’ and c are 
in mn, if c is a symbol not  in the alphabet 8 over  which 
A and C are encoded, then the set { c }  A{ c }  u c is  in mn. 
Let us denote this latter set by D. 

Obviously the set (c, cc}, being  finite, is in mJZ,. We 
claim that the set ( c ,  CC} D is not in mn. 

Assume, for contradiction, that the set is in Dl,,. It then 
follows, by Lemma 1 , that the set F = ( c ,  CC} D A ( CC} 
(8* W 8* { c ) ) ,  which  is the intersection of a set in ‘%Rw and 
a regular set, is also in %,,. However, F = { cc )  .(Ajc}Uc) 
is not in !Dln. Since 3 is  in %Rn - mn-l, the n-FA cannot 
afford to send a head down to the  end of the  tape to deter- 
mine whether or  not there is a c preceding the $. Thus 
A( c )  U in m,, would imply that 3 U c is  in Zm, which 
we know not  to be the case. 

We conclude that mn is not closed under concatenation. 
Since A and C are symmetric sets (S is  symmetric if 

S = ST), A and e, and thus D, are symmetric also. Thus, 
sinceD{c,ccj i s i n ~ , , w h i l e ( D ~ { c , ~ c } ) ~ = { c , c c } ~ D ~ =  
j c, cc) D is not in !Dl,,, we conclude that m,, is not closed 
under reversal. 

To show that %R, is not closed under closure, consider 



the set ( ( c )  A u e){ c )  u { c )  where A, C, and c are as 
above. Clearly this set, call it G ,  is  in mn. We claim that 
G* is not in mn. 

Assume for contradiction that G* is  in m,. It follows 
from Lemma 1 that the set H = G* A { c )  X* { c )  is also 
in !J&. However, H = { c) - ( A  U c). { c )  , which  is  clearly 
not in m,, since A V C is not. 

We conclude that mn is not closed under closure for 
n >  1. Q.E.D. 

Chapter II. Decision  properties 

We assume familiarity with the concepts of a Turing 
Machine (TM), the instantaneous description of a TM, 
the computation by a TM, and  the concept of recursive 
undecidability. We employ the formalism of Davis8 

The halting problem 

To decide, given a TM 5, whether or not the computation 
by X with a completely blank initial tape is finite; that is, 
whether or not there exists an integer k such that the 
sequence ZI, . . , Zk of instantaneous descriptions (i.d.’s) 
of S is the computation by X of a completely blank initial 
tape  and Zk is a halting configuration. 

We state without proof the following  well-known result. 
Theorem 7. The halting problem for TM’s is recur- 

sively unsolvable. 
We shall show  several  problems to be undecidable for 

n-FA’S by showing that their decidability would  imply 
the decidability of the halting problem. We shall say that 
a problem is undecidable for 2 X n  if it is undecidable for 
the class of  n-FA’s. 

Lemma 2. Zf a problem P is undecidable  for mz, then 
it is undecidable for an for all n 2 2. 

Proof: Any 2-FA can be considered as an n-FA  in  which 
only two of the READ heads are used. 

We need, therefore, to prove undecidability results only 
for the class of 2-FA’S; the generalization will follow by 
Lemma 2. 

Theorem 8. The following problems are  recursively 
undecidable for sets A and B in mn for n > 1 : 

(a) Is A = 4? 
(b) Is A = X*? 
(c) Is A finite? 
(d) Is A regular? 
(e) Is A context-free? 
(f) Is A in %TIn-,? 
(g) Is A n B = f$? 
(h) Is A G B? 
(i) Is A = B? 

Proof: (a) This proof is a modification of one suggested 
by S. A. Greiba~h.~ Assume, for contradiction, that, given 
an n-FA %, one could effectively decide  whether or not 
T(%) = 4. 

Consider the class of sets defined thus: Let 5 be a TM. 

H ( 5 )  = {Zix/3Zi,/3 . - .  P I i ,  : Zi,, , Ii, is a com- 
putation by 2 when X is started in its initial state 
on a completely blank tape; Zi, is a halting configura- 
tion of X;  and 0 is not in the alphabet over  which the 
i.d.’s Zi, are encoded]. 

We claim that, for all TMs X, H ( 5 )  is  in m,: The 
processing  of a tape by the 2-FA  proceeds  in three stages. 

(1) The 2-FA uses head 1 to check that Zi, is a valid 
initial configuration of 5; i.e., that Zi, = qoB where q o  
is the initial state of 2 and B is the blank symbol. 

(2) The 2-FA  uses both heads concurrently to check 
thatZij+,isavalidconsequentofZi, ( j =  1 , e . a  , k -  1). 
This is  possible  since if Zij = xS’q.Sy for symbols S,  S’, 
state qT and (possibly  null) tapes x and y ,  then : 
(a )  if q,SS”q, is an instruction of S, 

Associate  with X the set of tapes: 

I i i + ,  = xS’q“’‘y; 

(b )  if q,SRq, is an instruction of X, 

I,,,, = xs’sq,Y; 

(c )  if q,SLq, is an instruction of 2 ,  

I , , + ,  = xq,S’Sy. 

Thus, only three symbols of an i.d. need be examined. 
(3) Finally, when head 1 encounters the end-tape symbol, 

head 2 is used to check that Zi, is a halting configuration 
of X; i.e., that Zi, is of the form xS’qSy, and no instruction 
of 5 begins  with qS. Since these three stages can all be 
performed by a 2-FA, it is  clear that H ( 5 )  is  in m2. 

Assuming the emptiness problem for !JX2 to be solvable 
we could, in particular, given any TM 2, decide whether 
or not H ( 5 )  = 4. However, H ( 5 )  = q5 iff the TM X does 
not  halt when started in its initial state  on a completely 
blank  tape. Thus, the solvability of the emptiness problem 
for m, implies the solvability of the Halting Problem, 
contradicting Theorem 7. The result follows. 

Let us denote by C the class { H(%) : 2 is a TM} . 
(b) Assuming that the problem were  solvable,  we could, 

since ill?,, is closed under complementation, solve the 
emptiness problem for C, contradicting part (a). 

(c)  Assume, for contradiction, that the finiteness problem 
were  solvable for mn. Let H ( 5 )  be as in part (a), and 
consider the set 

Y@) =if€@) {TI { tDt  : t E I;* and P B 1,  
L”. 
where y is not in the alphabet over  which H(E)  is encoded. 
Y(Z) is  in mZ. 

If the finiteness problem were  solvable, we could, in 
particular, decide whether or not, given a TM 2, Y(X) 
were  finite.  However, Y(5)  is  finite iff Y(2) = 4 iff 
H(2) = q5. Thus the solvability of the finiteness problem 393 
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implies the solvability of the emptiness problem for C 
contradicting part (a). 

(d) and (e) Assume, for contradiction, that, given an 
n-FA 8 one could effectively decide whether or  not T(3)  
were regular (CF). We  could  then,  in  particular, decide 
whether or  not  the set Y(X) were regular (CF) for  any 
TMX. However, since the  set { tpt : t E 8* and p 6 X} 
is not  CF, Y(X) is regular (CF) iff Y(&) = 4. Thus  the 
solvability of these reduction  problems implies the sol- 
vability of the emptiness problem for C,  contradicting 
part (a). The result follows. 

(f) We recall the definition of the set Brn of Theorem 3. 
Consider, for a TM X, the set of tapes: Z(&) = 
H(X){T}B%.-~ where y is not in the  alphabet over which 
H(X) is encoded. 

Assume, for contradiction, that, given an n-FA 8, one 
could effectively decide whether or  not T(%) were in !JYln.- 1. 

One  could,  in  particular, decide whether or  not Z(&) 
were in for any TM X. Since H(%) is  in m2, and 
since Bn-l is in ‘%Xrn - %Rn-l, the  set Z(X) is in %Rn-%Rn-l 

unless Z(%) = 4. However, Z(%) = I$ iff H(%) = 4. 
Thus, the solvability of this  reduction  problem implies 

the solvability of the emptiness problem for C, contradict- 
ing part (a). 

(g) Since, for all n, 8 * is in m,, if the disjointness prob- 
lem for mrn were solvable, we could decide, for any n-FA 3, 
whether or  not T ( 8 )  A 8* = T(%) = 4, contradicting 
part (a). 

(h) Assuming, for contradiction, that  the containment 
problem were solvable, we could solve the disjointness 
problem for mn, since A A B = 4 iff A 2 B. The result 
thus follows from  part (g), and  the effective closure of 9J la  

under  complementation. 
(i) Assuming, for contradiction, that  the problem were 

solvable, we could,  in  particular, decide, given an n-FA 3, 
whether or  not T(%)=I$, contradicting part (a). Q.E.D. 

From Theorems 1 and 8, we obtain a result that strength- 
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ens  the  known results on the undecidability of the con- 
tainment and emptiness of intersection problems for 
sets in Q,. We recall the  set En of Theorem 1. 

Theorem 9. The foIIowing problems  are  recurswely 
unsoIvabIe for A in Dn: 

a) Is An E, = 4? 
b) Is E, 2 A? 
c) Is A C En? 
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