
1970 ACM Turing Lecture

Form and Content in Computer Science

MARVIN MINSKY

Massachusetts Institute of Technology,* Cambridge, Massachusetts

AUSTRAC'r. An excessive preoccupation with formalism is impeding the development of com-
puter science. Form-content confusion is discussed relative to three areas: theory of computa-
tion, programming languages, and education.

KEY WORDS AND PHRASES; education, programming languages, compilers, theory of program-
ining, heuristics, primary education, computer science curriculum, self-extending languages,
"new mathematics"

CR CATEOO~II,~S: 1.50, 3.66, 4.12, 4.29, 5.24

The trouble with computer science today is an obsessive concern with form instead
of content.

No, that is the wrong way to begin. By any previous standard the vitality of
computer science is enormous; what other intellectual area ever advanced so far in
twenty years? Besides, the theory of computation perhaps encloses, in some way,
the science of form, so that the concern is not so badly misplaced. Still, I will argue
that an excessive preoccupation with formalism is impeding our development.

Before entering the discussion proper, I want to record the satisfaction my col-
leagues, students, and I derive from this Turing award. The cluster of questions,
once philosophical but now scientific, surrounding the understanding of intelli-
gence was of paramount concern to Alan Turing, and he along with a few other
thinkers--notably Warren S. McCulloch and his young associate, Walter P i t t s - -
made many of the early analyses tha t led both to the computer itself and to the
new technology of artificial intelligence. In recognizing this area, this award should
focus attention on other work of my own scientific family--especially Ray Solomo-
noff, Oliver Selfridge, John McCarthy, Allen Newell, Herbert Simon, and Seymour
Papert, my closest associates in a decade of work. Papert 's views pervade this essay.

This essay has three parts, suggesting form-content confusion in theory of compu-
tation, in programming languages, and in education.

1. Theory of Computation

To build a theory, one needs to know a lot about the basic phenomena of the sub-
ject matter. We simply do not know enough about these, in the theory of computa-
tion, to teach the subject very abstractly. Instead, we ought to teach more about
the particular examples we now understand thoroughly, and hope that from this

* Project MAC and Electrical Engineering Department

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970, pp. 197-215.

198 MA~V~- ~mSXy

we will be able to guess and prove more general principles. I am not saying this
just to be conservative about things probably true that haven't been proved yet.
I think that many of our beliefs that seem to be common sense are false. We have
bad misconceptions about the possible exchanges betweeu t.ime and memory, trade-
offs between time and program complexity, software and hardware, digital and ana-
log circuits, serial and parallel computations, associative and addressed memory,
and so on.

It is instructive to consider the analogy with physics, in which one can organize
much of the basic knowledge as a collection of rather compact conservation laws.
This, of course, is just one kind of descrip~ion; one could use differential equations,
minimum principles, equilibrium laws, etc. Conservation of energy, for example,
can be int.erpreted as defining exchanges between various forms of potential and
kinetic energies, such as between height and velocity squared, or between tempera-
ture and pressure-volume. One can base a development of quantum theory on
trade-off between certainties of position and momentum, or between time and
energy. There is nothing extraordinary about this; any equation with reasonably
smooth solutions can be regarded as defining some kind of trade-off among its vari-
able quantities. But there are many ways to formulate things and it is risky to be-
come too attached to one particular form or law and come to believe that it is the
real basic principle. See Feynman's [i] dissertation on this.

Nonetheless, the recognition of exchanges is often the conception of a science, if
quantifying them is its birth. What do we have, in the computation field, of this
character? In the theory of recursive functions, we have the observation by Shan-
non [2] that any Turing machine with Q states and R symbols is equivalent to one
with 2 states and nQR symbols, and to one with 2 symbols and n~QR states, where
n and n ~ are small numbers. Thus the state-symbol product QR has an almost in-
variant quality in classifying machines. Unfortunately, one cannot identify the
product with a useful measure of machine complexity because this, in turn, has a
trade-off with the complexity of the encoding process for the machines--and that
trade-off seems too inscrutable for useful application.

Let us consider a more elementary, but still puzzling, trade-off, that between
addition and multiplication. How many multiplications does it take to evaluate the
3 X 3 determinant? If we write out the expansion as six triple-products, we need
twelve multiplications. If we collect factors, using the distributive law, this reduces
to nine. What is the minimum number, and how does one prove it, in this and in
the n X n case? The important point is not that we need the answer. It is that we
do not know how to tell or prove that proposed answers are correct ! For a particular
formula, one could perhaps use some sort of exhaustive search, but that wouldn't
establish a general rule. One of our prime research goals should be to develop meth-
ods to prove that particular procedures are computationally minimal, in various
senses.

A startling discovery was made about multiplication itself in the thesis of Cook
[3], which uses a result of Toom; it is discussed in Knuth [4]. Consider the ordinary
algorithm for multiplying decimal numbers: for two n-digit numbers this employs
n ~ one-digit products. It is usually supposed that this is minimal. But suppose we
write the numbers in two halves, so that the product is N = (~ A + B)((~C + D),
where ~ stands for multiplying by 10~/~. (The left-shift operation is considered to
have negligible cost.) Then one can verify that

Journal of the Association for Computing Machinery, 'Vol. 17, No. 2, April 1970

Fo~n and Content in Computer Science 199

N = @ @ A C -q- BD + @(A + B)(C + D) - @(AC -t- BD).

This involves only three half-length multiplications, instead of the four that one
might suppose were needed. For large n, the reduction can obviously be reapplied
over and over to the smaller numbers. The price is a growing number of additions.
By compounding this and other ideas, Cook showed that for any ~ and large enough
~, multiplication requires less than n ~+' products, instead of the expected 'n ~. Sim-
ilarly, V. Strassen showed recently that to multiply two m X m matrices, the num-
ber of products could be reduced to the order of m ~°~ 7, when it was always believed
that the number must be cubie~because there are rn 2 terms in the result and each
would seem to need a separate inner product with m multiplications. In both eases
ordinary intuition has been wrong for a long time, so wrong that apparently no
one looked for better methods. We still do not have a set of proof methods adequate
for establishing exactly what is the minimum trade-off exchange, in the matrix
ease, between multiplying and adding.

The nmltiply-add exchange may not seem vitally important in itself, but if we
cannot thoroughly understand something so simple, we can expect serious trouble
with anything more complicated.

Consider another trade-off, that between memory size and computation time.
In our book [5], Papert and I have posed a simple question: given an arbitrary col-
lection of n-bit words, how many references to memory are required to tell which
of those words is nearest ~ (in number of bits that agree) to an arbitrary given word?
Since lzhere are many ways to encode the "l ibrary" collection, some using more
memory than others, the question stated more precisely is: how must the memory
size grow to achieve a given reduction in the number of memory references? This
much is trivial: if memory is large enough, only one reference is required, for we can
use the question itself as address, and store the answer in the register so addressed.
But if the memory is just large enough to store the information in the library, then
one has to search all of i t - -and we do not know any intermediate results of any value.
I t is surely a fundamental theoretical problem of information retrieval, yet no one
seems to have any idea about how to set a good lower bound on this basic trade-off.

Another is the serial-parallel exchange. Suppose that we had n computers instead
of just one. How much can we speed up what kinds of calculations? For some, we
can surely gain a factor of n. But these are rare. For others, we can gain log n, but
it is hard to find any or to prove what are their properties. And for most, I think, we
can gain hardly anything; this is the case in which there are many highly branched
conditionals, so that look-ahead on possible branches will usually be wasted. We
know almost nothing about this; most people think, with surely incorrect optimism,
that parallelism is usually a profitable way to speed up most computations.

These are just a few of the poorly understood questions about computational
trade-offs. There is no space to discuss others, such as the digital-analog question.
(Some problems about local versus global computations are outlined in [5].) And
we know very little about trades between numerical and symbolic calculations.

There is, in today's computer science curricula, very little attention to what is
known about such questions; almost all their time is devoted to formal classifica-
tions of syntactic language types, defeatist unsolvability theories, folklore about

For identifying an exact match, one can use hash-coding and the problem is reasonably well
undemtood.

Journal of the Association for Computing Ma0hinery, Vol. 17, No. 2t April 1970

200 MARVIN MINSKY

systems programming, and generally trivial fragments of "optimization of logic
design"--thc latter often in situations where the art of heuristic programming has
far outreached the special-case "theories" so grimly taught and tested--and in-
vocations about programming style almost sure to be outmoded before the student
graduates. Even the most seemingly abstract courses on recursive function theory
and formal logic seem to ignore the few known useful results on proving facts about
compilers or equivalence of programs. 5Iost courses treat the results of work itl
artificial intelligence, some now fifteen years old, as a peripheral collection of special
applications, whereas they in fact represent one of the largest bodies of empirical
and theoretical exploration of real computational questions. Until all this preoccupa-
tion with form is replaced by attention to the substantial issues in computation, a
young student might be well advised to avoid much of the computer science curricula,
learn to program, acquire as much mathematics and other science as he can, and
study the current literature in artificial intelligence, complexity, arid optimization
theories.

2. Programming Languages

Even in the field of programming languages and compilers, there is too much con-
cern with form. I say "even" because one might feel that this is one area in which
form ought to he the chief concern. But let us consider two assertions: (1) languages
are getting so they have too much syntax, and (2) languages are being described
with too much syntax.

Compilers are not concerned enough with the meanings of expressions, assertions,
and descriptions. The use of context-free grammars for describing fragments of
languages led to important advances in uniformity, both in specification and in
implementation. But although this works well in simple eases, attempts to use it
may be retarding development in more complicated areas. There are serious prob-
lems in using grammars to describe self-modifying or self-extending languages that
involve executing, as well as specifying, processes. One cannot describe syntac-
t ical ly- that is, statically--the valid expressions of a language that is chaI~ging.
Syntax extension mechanisms must be described, to be sure, but if these are given
in terms of a modern pattern-matching language such as SNOBO~, CONV~BT [6], or
MATCHLESS [7], there need be no distinction between the parsihg program and the
language description itself. Computer languages of the future will be more con-
cerned with goals and less with procedures specified by the programmer. The follow-
ing arguments are a little on the extreme side but, in view of today's preoccupation
with form, this overstepping will do no harm. (Some of the ideas are due to
C. I-Iewitt and T. Winograd.)

2.1. SYNTAX Is OFTEN UNNECESSARY. One can survive with much less syntax
than is generally realized. Much of programming syntax is concerned wil~h suppres-
sion of parentheses or with emphasis of scope markers. There are alternatives that
have been much underused.

Please do not think that I am against the use, at the human interface, of such
devices as infixes and operator precedence. They have their place. But their impor-
tance to computer science as a whole has been so exaggerated that it is beginning to
eorruvg the youth.

Consider the familiar algorithm for the square root, as it might be written in a

Journal of the Association for Computing Machinery, Yol. 17, No. 2, April 1970

Fo~w7 and Content in ConTputer Science 201

modern algebraic language, ignoring such matters as declarations of data typos. One
asks for the square root of A, given an initial estimate X and an error limit E.

.DEFINE SQRT(A,X,E) :
if ABS(A - X* X) < E then X elso SQRT(A, (X + A + X) + 2, E).

II1 an imaginary but recognizable version of LisI, (see Levin [8] or Weissman [9]),
this same procedure might be written:

(DEFINE (SQRT A X E)
(IF (LESS (ABS (- A (, X X))) E) THEN X
ELSE (SQRT A (+ (+ X (+ A X)) 2) E)))

Here, the function names come immediately inside their parentheses. The clumsi-
ness, for humans, of writing all the parentheses is evident; the advantages of not
h~ving to learn all the conventions, such as that (X "4- A + X) is (-4- X (+ A X))
a n d not (+ (-6 X A) X), is often overlooked.

It remains to be seen whether a syntax with explicit delimiters is reactionary, or
whether it is the wave of the future. I t has important advantages for editing, inter-
preting, and for creation of programs by other programs. The complete syntax of LIsP
c a n be learned in an hour or so; the interpreter is compact and not exceedingly com-
plicated, and students often can answer questions about the system by reading the
interpreter program itself. Of course, this will not answer all questions about a real,
practical implementation, but neither would any feasible set of syntax rules. Further-
more, despite the language's clumsiness, many frontier workers consider it to have
outstanding expressive power. Nearly all work on procedures that solve problems
b y building and modifying hypotheses have been written in this or related lan-
guages. Unfortunately, language designers are generally unfamiliar with this area,
a n d tend to dismiss it as a specialized body of "symbol-manipulation techniques."

Much can bc done to clarify the structure of expressions in such a "syntax-weak"
language by using indentation and other layout devices that are outside the language
proper. For example, one can use a "postponement" symbol that belongs to an input
preprocessor to rewrite the above as

DEFINE (SQRT A X E) J~ .
IF J~ THEN X ELSE ~ .

LESS (ABS ~) E.
- A (, X X).

sQi~T A ,~ E.

+ x (+ A X)

where the dot means ")(" and the arrow means "insert here the next expression,
delimited by a dot, that is available after replacing (recursively) its own arrows."
T h e indentations are optional. This gets a good part of the effect of the usual scope
indicators and conventions by two simple devices, both handled trivially by reading
programs, and it is easy to edit because subexpressions are usually complete on each
l i n e .

'To appreciate the power and limitations of the postponement operator, the reader
s h o u l d take his favorite language and his favorite algorithms and see what happens.
I - I e will find many choices of what to postpone, and he exercises judgment about
w, ha t to say first, which arguments to emphasize, and so forth. Of course, ~ is not

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970

202 MARVIN MINSKy

the answer to all problems; one needs a postponement device also for list fragments,
and that requires its own delimiter. In any case, these are but steps toward more
graphical program-description systems, for we will not forever stay confined to
mere strings of symbols.

Another expository device, suggested by Dana Scott, is to have alternative brack-
ets for indicating right-to-left functional composition, so that one can write (((x>h)g)f
instead of f(g(h(x))) when one wants to indicate more naturally what happens to a
quantity in the course of a computation. This allows different "accents," as in
f((h(x))g), which can be read: "Compute f of what you get by first computing h(x)
and then applying g to it."

The point is better made, perhaps, by analogy than by example. In their fanatic
concern with syntax, language designers have become too sentence oriented. With
such devices as ~ , one can construct objects that are more like paragraphs, without
falling all the way back to flow diagrams.

Today's high level programming languages offer little expressive power in the
sense of flexibility of style. One cannot control the sequence of presentation of ideas
very much without changing the algorithm itself.

2.2. EFFICIENCY AND ~J'NDERSTANDING PROGRAMS. What is a compiler for?
The usual answers resemble "to translate from one language to another" or "to
take a description of an algorithm and assemble it into a program, filling in many
small details." For the future, a more ambitious view is required. Most compilers
will be systems that "produce an algorithm, given a description of its effect." This
is already the case for modern picture-format systems; they do all the creative work,
while the user merely supplies examples of the desired formats: here the compilers
are more expert than the users. Pattern-matching languages are also good examples.
But except for a few such special cases, the compiler designers have made little prog-
ress in getting good programs written. Recognition of common subexpressions,
optimization of inner loops, allocation of multiple registers, and so forth, lead but to
small linear improvements in efficiency--and compilers do little enough about even
these. Automatic storage assignments can be worth more. But the real payoff is in
analysis of the compulational content of the algorithm itself, rather than the way the
programmer wrote it down. Consider, for example:

D E F I N E FIB(N) : if N=I then 1, if N=2 then 1,
else F I B (N - l) 4- F I B (N - 2) .

F(6)

F(5)

"~ /~F(3)
/~k F(2) F(2) F(1)

F(2) F(1)
FIG. 1

F(4)

F(3) F(2)

F(2) F(1)

Journal of the Association for Computing Machinery, Vol. 17, No. 2, Aprll 1970

Form and Content in Computer Science 203

This reeursive definition of the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, ..- can be
given to any respectable algorithmic language and will result in the branching tree
of evaluation steps shown in Figure 1.

One sees that the amount of work the machine will do grows exponentially with N.
(More precisely, it passes through the order of FIB(N) evaluations of the definition [)
There are better ways to compute this function. Thus we can define two temporary
registers and evaluate FIB(N 1 1) in

D E F I N E F I B (N A B): if N = I then A else F I B (N - 1 A + B A).

which is singly recursive and avoids the branching tree, or even use

LOOP

A = O
B = I
SWAP A B
i[N= 1 return A
N = N - 1
B = A+B
gore LOOP

Any programmer will soon think of these, once he sees what happens in the branch-
ing evaluation. This is a case in which a "course-of-values" recursion can be trans-
formed into a simple iteration. Today's compilers don't recognize even simple cases
of such transformations, although the reduction in exponential order outweighs any
possible gains in local "optimization" of code. I t is no use protesting either that
such gains are rare or that such matters are the programmer's responsibility. If it is
important to save compiling time, then such abilities could be excised. For programs
written in the pattern-matching languages, for example, such simplifications are
indeed often made. One usually wins by compiling an efficient tree-parser for a BNF
system instead of excuting brute force analysis-by-synthesis.

To be sure, a systematic theory of such transformations is difficult. A system will
have to be pretty smart to detect which transformations are relevant and when it
pays to use them. Since the programmer already knows his intent, the problem
would often be easier if the proposed algorithm is accompanied (or even replaced)
by a suitable goal-declaration expression.

To move in this direction, we need a body of knowledge about analyzing and
synthesizing programs. On the theoretical side there is now a lot of activity studying
the equivalence of algorithms and schemata, and on proving that procedures have
stated properties. On the practical side the works of W. A. Martin [10] and J. h~loses
[11] illustrate how to make systems that know enough about symbolic transforma-
tions of particular mathematical techniques to significantly supplement the applied
mathematical abilities of their users.

There is no practical consequence to the fact that the program-reduction problem
is recursively unsolvable, in general. In any case one would expect programs even-
tually to go far beyond human ability in this activity, and make use of a large body
of program transformations in formally purified forms. These will not be easy to
apply directly. Instead, one can expect the development to follow the lines we have
seen in symbolic integration, e.g. as in Slagle [12] and Moses [11]. First a set of
Simple formal transformations that correspond to the elementary entries of a Table

Journal of the Association for Computing Machinery, Vol. i7, No. 2, April 1970

204 MARVIN MINSKY

of Integrals was developed. 0n top of these Slagle built a set of heuristic techniques
for the algebraic and analytic transformation of a practical problem into those
already understood elements; this involved a set of characterization and matching
procedures that might be said to use "pattern recognition." In the system of Moses
both the matching procedures and the transformations were so refined that, ill most
practical problems, the heuristic search strategy that played a large part in the
performance of Slagle's program became a minor augmentation of the sure knowl-
edge and its skillful application comprised in Moses' system. A heuristic compiler
system will eventually need much more general knowledge and common sense than
did the symbolic integration systems, for its goal is more like making a whole mathe-
matician than a specialized i~rtegrator.

2.3. DESC~BING PROGRAMMING SYSTEMS. NO matter how a language is de-
scribed, a computer must use a procedure to interpret it. One should remember that
in describing a language the main goal is to explain how to write programs in it and what
such programs mean. The main goal isn't to describe the syntax.

Within the static framework of syntax rules, normal forms, Post productions, and
other such schemes, one obtains the equivalents of logical systems with axioms,
rules of inference, and theorems. To design an unambiguous syntax corresponds
then to designing a mathematical system in which each theorem has exactly one
proof! But in the computational framework, this is quite beside the point. One has
an extra ingredient--control--that lies outside the usual framework of a logical
system; an additional set of rules that specify when a rule of inference is to be used.
So, for many purposes, ambiguity is a ~seudoproblem. If we view a program as a
process, we can remember that our most powerful process-describing tools are pro-
grams themselves, and they are inherently unambiguous.

There is no paradox in defining a programming language by a program. The
procedural definition must be understood, of course. One can achieve this under-
standing by definitions written in another language, one that may be different,
more familiar, or simpler than the one being defined. But it is often practical, con-
venient, and proper to use the same language! For to understand the definition, one
needs to know only the working of that particular program, and not all implications
of all possible applica.tions of the language. If, is this particularization that makes
bootstrapping possible, a point that often puzzles beginners as well as apparent
authorities.

Using BNF to describe the formation of expressions may be retarding develop-
ment of new languages that smoothly incorporate quotation, self-modification, and
symbolic manipulation into a traditional algorithmic framework. This, in turn,
retards progress toward problem-solving, goal-oriented programming systems.
Paradoxically, though modern programming ideas were developed because pro-
cesses were hard to depict with classical mathematical notations, designers are
turning back to an earlier form~the equation-in just the kind of situation that
needs program. In Section 3, which is on education, a similar situation is seen in
teaching, with perhaps more serious consequences.

3. Learning, Teaching, and the "New Mathematics"

Education is another area in which the computer scientist has confused form and
content, but this time the confusion concerns his professional role. He perceives his

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970

Fo~'m and Content in Co~nputer Science 205

principal function to provide programs and machines for use irl old and new educa-
tional schemes. Well and good, but I believe he has a more complex responsibility--.
to work out and communicate models of the process of education itself.

In the discussion below,] sketch briefly the viewpoint (developed with Seymour
I)apert) from which this belief stems. The following statements are typical of our

view:

---~o help people learn is to help them build, in their heads, various kinds of
computational models.

--This can best be done by a teacher who has, in his head, a reasonable model of
what is in the pupil's head.

--For the same reason the student, when debugging his own models and proce-
dures, should have a model of what he is doing, and must know good debugging
techniques, such as how to formulate simple but critical test cases.

- - I t will help the student to know something about computational models and
programming. The idea of debugging ~ itself, for example, is a very powerful con-
cept--in contrast to the helplessness promoted by our cultural heritage about gifts,
talents, and aptitudes. The latter encourages "I'm not good at this" instead of "How
can I make myself bet ter at i t?"

These have the sound of common sense, yet they are not among the basic prin-
ciples of any of the popular educational schemes such as "operant reinforcement,"
"discovery method~," audio-visual synergism, etc. This is not because educators
have ignored the possibility of mental models, but because they simply had no
effective way, before the beginning of work on simulation of thought processes, to
describe, construct, and test such ideas.

We cannot digress here to answer skeptics who feel it too simpleminded (if not
impious, or obscene) to compare minds with programs. We can refer many such
critics to Turing's paper [13]. For those who feel that the answer cannot lie in any
machine, digital or otherwise, one can argue [14] that machines, when they become
intelligent, very likely will feel the same way. For some overviews of this area, see
Feigenbaum and Feldman [15] and Minsky [16]; one can keep really up-to-date in
this fast-moving field only by reading the contemporary doctoral theses and con-
ference papers on artificial intelligence.

There is a fundamental pragmatic point in favor of our propositions. The child
needs models: to understand the city he may use the organism model; it must eat,
breathe, excrete, defend itself, etc. Not a very good model, but useful enough. The
metabolism of a real organism he can understand, in turn, by comparison with an
engine. But to model his own self he cannot use the engine or the organism or the
city or the telephone switchboard; nothing will serve at all but the computer with
its programs and their bugs. Eventually, programming itself will become more im-
portant even than mathematics in early education. Nevertheless I have chosen
mathematics as the subject of the remainder of this paper, partly because we under-
stand it better but mainly because the prejudice against programming as an aca-
demic subject would provoke too much resistance. Any other subject could also do,
I suppose, but mathematical issues and concepts are the sharpest and least confused
by highly charged emotional problems.

2 Turing was quite good at debugging hardware. He would leave the power on, so as not to lose
the "feel" of the thing. Everyone does that today, but it is not the same thing now that the
circuits all work on three or five volts.

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970

206 MARVIN" M I N S K Y

3.1. I~ATHEMATICAL IDORTRAIT OF A SMALL C H I L D , Imagine a small child of
between five and six years, about to enter the first grade. If we extrapolate today's
trend, his mathematical education will be conducted by poorly oriented teachers
and, partly, by poorly programmed machines; neither will be able to respond to
much beyond "correct" and "wrong" answers, let alone to make reasonable inter-
pretations of what the child does or says, because neither will contain good models
of the children, or good theories of children's intellectual development. The child
will begin with simple arithemtic, set theory, and a little geometry; ten years later
he will know a little about the formal ~heory of the real numbers, a little about linear
equations, a little more about geometry, and almost nothing about continuous and
limiting processes. He will be an adolescent with little taste for analytical thinking,
unablc to apply the ten years' experience to understanding his new world.

Let us look more closely at our young child, in a composite picture drawn from
the work of Piaget and other observers of the child's mental construction.

Our child will be able to say "one, two, th ree , . . . " at least up to thirty and prob-
ably up to a thousand. He will know the names of some larger numbers but will not
bc able to see, for example, why ten thousand is a hundred hundred. He will have
serious difficulty in counting backwards unless he has recently become very inter-
ested in this. (Being good at it would make simple subtraction easier, and might be
worth some practice.) He doesn't have much feeling for odd and even.

He call count four to six objects with perfect reliability, but he will not get the
same count every time with fifteen scattered objects. He will be annoyed with this,
because he is quite sure he should get the same number each time. The observer will
therefore think the child has a good idea of the number concept but that he is not
too skillful at applying it.

However, important aspects of his concept of number will not be at all secure by
adult standards. For example, when the objects are rearranged before his eyes, his
impression of their quantity will be affected by the geometric arrangement. Thus
he will say that there are fewer x's than y's in:

X X X X X X Z

Y Y Y Y Y Y Y
and when we move the x's to

X X X X T • X

Y Y Y Y Y Y Y
he will say there are more z's than y's. To be sure, he is answering (in his own mind)
a different question about size, quite correctly, but this is exactly the point: the
immutability of the number, in such situations, has little grip on him. He cannot
use it effectively for reasoning although he shows, on questioning, that he knows
that the number of things cannot change simply because they are rearranged.
Similarly, when water is poured from one glass to another (Figure 2(a)), he will
say that there is more water in the tall jar than in the squat one. He will have poor
estimates about plane areas, so that we will not be able to find a context in which
he treats the larger area in Figure 2(b) as four times the size of the smaller one.
When he is an adult, by the way, and is given two vessels, one twice as large as the
other, in all dimensions (Figure 2(c)), he will think the one holds about four times
as much as the other: probably he will never acquire better estimates of volume.

As for the numbers themselves, we know little of what is in his mind. According
to Galton [17], thirty children in a hundred will associate small numbers with deft-

Journal of the Association for Computltlg Machinery, Vol. 17, No. 2, April 1970

Form and Content in Compuler Sciencs 207

(a)

i
A A

(b) (c)
FzG. 2

nite visual locations in the space in front of their body image, aiTanged in some
idiosyncratic manner such as that shown in Figure 3. They will probably still retain
these as adults, and may use them in some obscure semiconscious way to remember
telephone numbers; they will probably grow different spatio-visual representations
for historical dates, etc. The teachers will never have heard of such a thing and, if a
child speaks of it, even the teacher with her own number form is unlikely to respond
with recognition. (My experience is that it takes a series of carefully posed questions
before one of these adults will respond, "Oh, yes; 3 is over there, a little farther
back.") When our child learns column sums, he may keep track of carries by setting
his tongue to certain teeth, or use some other obscure device for temporary memory,
and no one will ever]<now. Perhaps some ways are better than others.

His geometric world is different from ours. He does not see clearly that triangles
are rigid, and thus different from other polygons. He does not know that a 100-line
approximation to a circle is indistinguishable from a circle unless it is quite large.
He does not draw a cube in perspective. He has only recently realized that squares
become diamonds when put on their points. The perceptual distinction persists in
adults. Thus in Figure 4 we see, as noted by Attneave [18], that the impression of
square versus diamond is affected by other alignments in the scene, evidently by

FiG. 3

¢ ¢ ¢ ¢
¢

¢
¢

¢
FiG. 4

Journal of the Assoo/ation for Computing Machinery, Vol. 17, No. 2, April 1070

208 MARVIN MINSKy

determining our choice of which axis of syrnmet~T is to bc used in the subjective
description.

Our child understands the topological idea of enclosure quite well. Why? This is
a very complicated concept in classical mat.hematics but in terms of computational
processes it is perhaps not so difficult.]hit our child is almost sure to be muddied
about the situation in Figure 5 (see Papert [19]): "When the bus begins its trip
around the lake, a boy is seated on the side away from the water. Will he be on the
lake side at some time in the trip?" Difficulty with this is liable to persist through
the child's eighth year, and perhaps rclates to his difficulties with other abstract
double reversals such as in subtracting negative numbers, or with apprehending
other consequences of eontinuity--"At what point in the trip is there any sudden
change?'~--or with other bridges between local and global.

Our portrait is drawn in more detail in the literature on developmental psychology.
But no one has yet built enough of a computational model of a child to see how these
abilities and limitations link together in a structure compatible with (and perhaps
consequential to) other things he can do so effectively. Such work is beginning,
however, and I expect the next decade to see substantial progress on such models.

If we knew more about these matters, we might be able to help the child. At
present we don't even have good diagnostics: his apparent ability to learn to give
correct answers to formal questions may show only that he has developed some
isolated library routines. If these cannot be called by his central problem-solving
programs, because they use incompatible data structures or whatever, we may get
a high rated test-passer who will never think very well.

Before computation, the community of ideas about the nature of thought was too
feeble to support an effective theory of learning and development. Neither the finite-
state models of the Behaviorists, the hydraulic and economic analogies of the Freud-
ians, nor the rabbit-in-the-hat insights of the Gestaltists supplicd enough ingre-
dients to understand so intricate a subject. It needs a substrate of already debugged
theories and solutions of related but simpler problems. Now we have a flood of such
ideas, well defined and implemented, for thinking about thinking; only a fraction
are represented in traditional psychology:

symbol table
pure procedure
time-sharing
calling sequence
functional argument
memory protection
dispatch table
error m e s s a g e
function-call trace
breakpoint
languages
compiler
indirect address
m a c r o
property list
data type
hash coding
microprogram
format matching

closed subroutines
pushdown list
interrupt
communication cell
common storage
decision tree
hardware-software trade-off
serial-parallel trade-off
time-memory trade-off
conditional breakpoint
asynchronous processor
interpreter
garbage collection
list structure
block structure
look-ahead
look-behind
diagnostic program
executive program

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970

Form and Content in Computer Science 209

r

' " . !: "*1 /,

• 00, ® • 00 • q Oi

FiG. 5 FiG. 6

These are just a few ideas from general systems programming and debugging; we
have said nothing about the many more specifically relevant concepts in languages
o r in artificial intelligence or in computer hardware or other advanced areas. All
these serve today as tools of a curious and intricate craft, programming. But just
a s astronomy succeeded astrology, following Kepler's regularities, the discovery of
principles in empirical explorations of intellectual process in machines should lead
t o a science. (In education we face still the same competition! The Boston Globe has
a n astrology page in its "comics" section. Help fight intellect pollution !)

To return to our child, how can our computational ideas help him with his number
.concept? As a baby he learned to recoguize certain special pair configurations such
a s two hands or two shoes. Much later he learned about some threes--perhaps the
]ong gap is because the environment doesn't have many fixed triplets: if he happens
t o find three pennies he will likely lose or gain one soon. Eventually he will find some
procedure that manages five or six things, and he will be less at the mercy of finding
~tnd losing. But for more than six or seven things, he will remain at the mercy of
f()rgetting; even if his verbal count is flawless, his enumeration procedure will have
defects. He will skip some items and count others twice. We can help by proposing
better procedures; putting things into a box is nearly foolproof, and so is crossing
them off. But for fixed objects he will need some mental grouping procedure.

First one should t ry to know what the child is doing; eye-motion study might
help, asking him might be enough. He may be selecting the next item with some
unreliable, nearly random method, with no good way to keep track of what has
been counted. We might suggest: sliding a cursor; inventing easily remembered groups;
drawing a coarse mesh.

In each case the construction can be either real or imaginary. In using the mesh
method one has to remember not to count twice objects that cross the mesh lines.
The teacher should show that it is good to plan ahead, as in Figure 6, distorting the
mesh to avoid the ambiguities! Mathematically, the important concept is that
"every proper counting procedure yields the same number." The child will under-
s tand that any algorithm is proper which (1) counts all the objects, (2) counts none of
them twice.

Perhaps this procedural condition seems too simple; even an adult could under-
stand it. In any case, it is not the concept of number adopted in what is today
generally called the "New Math ," and taught in our primary schools. The following
polemic discusses this.

Journal of the Assoclation for Computing Machinery, Vol. 17, No. 2, April 1970

210 MARVIN MINSKy

3.2. THE "NEW MATHEMATICS." By the "new math" I mean certain primary
school attempts to imitate the formalistic outputs of professional mathematicians.
Precipitously adopted by many schools in the wake of broad new concerns with
early education, I think the approach is generally bad because of form-content
displacements of several kinds. These cause problems for the teacher as well as for
the child.

Because of the formalistic approach the teacher will not be able to help the child
very much with problems of formulation. For she will feel insecure herself as she
drills him on such matters as the difference between the empty set and nothing, or
the distinction between the "numeral" 3-t-5 and the numeral 8 which is the "com-
mon name" of the number eight, hoping that he will not ask what is the common
name of the fraction ,~-~, which is probably different from the rational s~ and differ-
ent from the quotient ~ and different from the "indicated division" s~ and differ-
ent from the ordered pair (8, 1). She will be reticent about discussing parallel lines.
For parallel lines do not usually meet, she knows, but they might (she has heard)
if produced far enough, for did not something like that happen once in an experiment
by some Russian mathematicians? But enough of the problems of the teacher: let
us consider now three classes of objections from the child's standpoint.

D~elopmental Objections. It is very bad to insist that the child keep his knowl-
edge in a simple ordered hierarchy. In order to retrieve what he needs, he must have
a multiply connected network, so that he can try several ways to do each thing. He
may not manage to match the first method to the needs of the problem. Emphasis
on the "formal proof" is destructive at this stage, because the knowledge needed
for finding proofs, and for understanding them, is far more complex (and less useful)
than the knowledge mentioned in proofs. The network of knowledge one needs for
understanding geometry is a web of examples and phenomena, and observations
about the similarities and differences between them. One does not find evidence, in
children, that such webs are ordered like the axioms and theorems of a logistic
system, or that the child could use such a lattice if he had one. After one under-
stands a phenomemon, it may be of great value to make a formal system for it, to
make it easier to understand more advanced things. But even then, such a formal
system is just one of many possible models; the New Math writers seem to confuse
their axiom-theorem model with the number system itself. In the ease of the axioms
for arithmetic, I will now argue, the formalism is often likely to do more harm than
good for the understanding of more advanced things.

Historically, the "set" approach used in New Math comes from a formalist
attempt to derive the intuitive properties of the continuum from a nearly finite set
theory. They partly succeeded in this stunt (or "hack," as some programmers
would put it), but in a manner so complex that one cannot talk seriously about the
real numbers until well into high school, if one follows this model. The ideas of
topology are deferred until much later. But children in their sixth year already
have well-developed geometric and topological ideas, only they have little ability
to manipulate abstract symbols and definitions. We should build out from the
child's strong points, instead of undermining him by attempting to replace what
he has by structures he cannot yet handle. But it is just like mathematicians~
certainly the world's worst expositors--to think: "You can teach a child anything,
if you just get the definitions precise enough," or "If we get all the definitions right
the first time, we won't have any trouble later." We are not programming an

Journal of the Association for Computing Machinery, ¥01. 17, No. 2, April 1970

Foam and Content in Computer Science 211

empty machine in FORTRAN: we are meddling with a poorly understood large sys-
tem that, characteristically, uses multiply defined symbols in its normal heuristic
behavior.

Intuitive Objections. New Math emphasizes the idea that a number can be
identified with an equivalence class of all sets that can be put into one-to-one cor-
respondence with one another. Then the rational numbers are defined as equiva-
lence classes of pairs of integers, and a maze of formalism is introduced to prevent
the child from identifying the rationals with the quotients or fractions. Functions are
often treated as sets, although some texts present "function machines" with a
superficially algorithmic flavor. The definition of a "variable" is another fiendish
maze of complication involving names, values, expressions, clauses, sentences,
numerals, "indicated operations," and so forth. (In fact, there are so many different
kinds of data in real problem-solving that real-life mathematicians do not usually
give them formal distinctions, but use the entire problem context to explain them.)
In the course of pursuing this formalistic obsession, the curriculum never presents
any coherent picture of real mathematical phenomena of processes, discrete or
continuous; of the algebra whose notational syntax concerns it so; or of geometry.
The "theorems" that are "proved" from time to time, such as, "A number x has
only one additive inverse, - x , " are so mundane and obvious that neither teacher
nor student can make out the purpose of the proof. The "official" proof would add
y to both sides of x + (--y) -- 0, apply the associative law, then the commutative
law, then the y + (- y) = 0 law, and finally the axioms of equality, to show that
y must equal x. The child's mind can more easily understand deeper ideas: " In
x + (- y) = 0, if y were less than x there would be some left over; while if x were
less than y there would be a minus number left--so they must be exactly equal."
The child is not permitted to use this kind of order-plus-continuity thinking, pre-
sumably because it uses "more advanced knowledge," hence isn't part of a "real
proof." But in the network of ideas the child needs, this link has equal logical status
and surely greater heuristic value. For another example, the student is made to
distinguish clearly between the inverse of addition and the opposite sense of distance,
a discrimination tha t seems entirely against the fusion of these notions that would
seem desirable.

Computational Objections. The idea of a procedure, and the know-how that
comes from learning how to test, modify, and adapt procedures, can transfer to
many of the child's other activities. Traditional academic subjects such as algebra
and arithmetic have relatively small developmental significance, especially when
they are weak in intuitive geometry. (The question of which kinds of learning can
"transfer" to other activities is a fundamental one in educational theory: I empha-
size again our conjecture tha t the ideas of procedures and debugging will turn out
to be unique in their transferability.) In algebra, as we have noted, the concept of
"variable" is complicated; but in computation the child can easily see "z + y + z"
as describing a procedure (any procedure for adding!) with "x," "y," and "z" as
pointing to its "da ta . " Functions are easy to grasp as procedures, hard if imagined
as ordered pairs. If you want a graph, describe a machine that draws the graph; if
you have a graph, describe a machine that can read it to find the values of the func-
tion. Both are easy and useful concepts.

Let us not fall into a cultural trap: the set theory "foundation" for mathematics
is popular today among mathematicians because it is the one they tackled and mas-

Journal of the A~ociation for Computing Machinery, Vol. 17, No. 2, April 1970

212 MAI:~VIN MINSKY

tered (in college). These scientists simply are not acquainted, generally, with compu-
tation or with the Post_Turing-McCulloch-Pitts-:\ 'IcCarthy-Ncwell-Simon-.. . fam-
ily of theories that will be so much more important when the children grow up.
Set theory is not, as the logicians and publishers would havc it, the only and true
foundation of mathematics; it is a viewpoint that is pre t ty good for investigating
the transfinite, but undistinguished for comprehending the real numbers, and quite
substandard for learning about arithmetic, algebra, and geometry.

To summarize my objections, the New i~:[ath emphasizes the use of formalism
and symbolic manipulation instead of the heuristic and intuitive content of the
subject matter. The child is expected to learn how to solve problems but we do no~
teach him what we know, either about the subject or about problem-solving. 3

As an example of how the preoccupation with form (in this case, the axioms for
arithmetic) can warp one's view of the content, let us examine the weird compulsion
to insist that addition is ultimately an operation on just two quantities. In New
Math, a + b + c must "real ly" be one of (a+(b-~c)) or ((a+b)+c) , and a+b-~c+d
can be meaningful only after several applications of the associative law. Now this
is silly in many contexts. The child has already a good intuitive idea of what it
means to put several sets together; it is just as easy to mix five colors of beads as
two. Thus addition is already an n-ary operation. But listen to the book trying to
prove that this is not so:

Addition i s . . . always performed on two numbers. This may not seem reasonable
at first sight, since you have often added long strings of figures. Try an experiment on
yourself. Try to add the numbers 7, 8, 3 simultaneously. No matter how you attempt
it, you are forced to choose two of the numbers, add them, and then add the third to
their sum.

--From a ninth-grade text

Is the height of a tower the result of adding its stages by pairs in a certain order?
Is the length or area of an object produced that way from its parts? Why did they
introduce their sets and their one-one correspondences then to miss the point?
Evidently, they have talked themselves into believing tha t the axioms they selected
for algebra have some special kind of t ru th!

Let us consider a few important and pret ty ideas tha t are not discussed much in
grade school. First consider the sum ~ + ~ + ~/~ ~ Interpreted as area,
one gets fascinating regrouping ideas, as in Figure 7. Once the child knows how to
do division, he can compute and appreciate some quanti tat ive aspects of the limit-
ing process .5, .75, .875, .9375, .96875, . . . , and he can learn about folding and cut-
ting and epidemics and populations. He could learn about x ~ px -~ qx, where p

q = 1, and hence appreciate dilution; he can learn that ~ , ~ , 5/~, ~ , ~ , . . .
1 and begin to understand the many colorful and common-sense geometrical and

topological consequences of such matters.
But in the New Math, the syntactic distinctions between rationals, quotients,

and fractions are carried so far that to see which of ~ and ~ is larger, one is not

3 In a shrewd but hilarious discussion of New Math textbooks, Feynman [20] explores the con-
sequences of distinguishing between the thing and itself. "Color the picture of the ball red,"
a book says, instead of "Color the ball red." "Shall we color the entire square area in which
the ball image appears or just the part inside the circle of the ball?" asks Feynman. (To "color
the balls red" would presumably have to be "color the insides of the circles of all the members
of the set of balls" or something like that.)

Journal of the Association for Computing Machinery, Vol. 17, No. 2, April 1970

Form and Content in. Computer Science 213

FIO. 7

permitted to compute and compare .375 with .4444. One must cross-multiply. Now
cross-multiplication is very cute, but it has two bugs: (1) no one can remember
which way the resulting conditional should branch, and (2) it doesn't tell how far
apart the numbers are. The abstract concept of order is very elegant (another set
of axioms for the obvious) but the children already understand order pretty well
and want to know the amounts.

Another obsession is the concern for number base. I t is good for the children to
understand clearly that 223 is "two hundred" plus " twenty" plus "three," and I
think that this should be made as simple as possible rather than complicated. 4 1 do
not think that the idea is so rich that one should drill young children to do arith-
metic in several bases! For there is very little transfer of this feeble concept to
other things, and it risks a crippling insult to the fragile arithmetic of pupils who,
already troubled with 6 -+- 7 = 13, now find that 6 ~ 7 = 15. Besides, for all the
attention to number base, I do not see in my children's books any concern with even
a few nontrivial implications--concepts that might justify the attention, such as:

Why is there olfly one way to wr i te a decimal integer?
W h y does cas t ing ou t nines work? (I t i sn ' t even ment ioned .)
W h a t happens if we use a r b i t r a r y nonpowers , such as a ~ 37b -Jr 2Ac -{- l l d -~- . - . i n s t ead

of the usual a ~ 10b k- 100c + 1000d ~ . . . ?

If they don't discuss such matters, they must have another purpose. My con-
jecture is that the whole fuss is to make the kids better understand the procedures
for multiplying and dividing. But from a developmental viewpoint this may be a
serious mistake--in the strategies of both the old and the "new" mathematical
curricula. At best, the standard algorithm for long division is cumbersome, and
most children will never use it to explore numeric phenomena. And, although it is
of some interest to understand how it works, writing out the whole display suggests
tha t the educator believes that the child ought to understand the horrible thing
every time! This is wrong. The important idea, if any, is the repeated subtraction;
the rest is just a clever but not vital programming hack.

If we can teach, perhaps by rote, a practical division algorithm, fine. But in any
ease let us give them little calculators; if that is too expensive, why not slide rules.
Please, without an impossible explanation. The important thing is to get on to the
real numbers[The New Math 's concern with integers is so fanatical that it reminds
me, if I may mention another pseudoscience, of numerology. (How about that,
Boston Globe/)

The Cauchy-Dedekind-Russell-Whitehead set-theory formalism was a large ac-
complishment-another (following Euclid) of a series of demonstrations that many

4 Cf. 'Tom Lehre r ' s song , " N e w M a t h " [21].

Journal of the Assoclstion for Computing l~aohlnery, Vol. 17, No. 2, April 1970

214 MARVIN MINSKy

mathematical ideas can be derived from a few primitives, albeit by a long and
tortuous route. But the child's problem is to acquire the ideas at all; he needs to
lea T M about reality. In terms of the concepts available to him, the entire formalism
of st:t, theory cannot hold a candle to one older, simpler, and possibly greater idea:
the ~honterminating decimal representation of the intuitive real number line.

There is a real conflict between the logician's goal and the educator's. The logician
wants to minimize the variety of ideas, and doesn't mind a long, thin path. The educator
(rightly) wants to make the paths short and doesn't m i n d - i n fact, prefers--connecgons
to many other ideas. And he cares almost not at all about the directions of the links.

As for better understanding of the integers, countless exercises in making little
children draw diagrams of one-one correspondences will not help, I think. I t will
help, no doubt, in their learning valuable algorithms, not for number but for the
important topological and procedural problems in drawing paths without crossing,
and so forth. I t is just that sort of problem, now treated entirely accidentally, that
we should attend to.

The computer scientist thus has a responsibility to education. Not, as he thinks,
because he will have to program the teaching machines. Certainly not because he
is a skilled user of "finite mathematics." He knows how to debug programs; he
must tell the educators how to help the children to debug their own problem-solv-
ing processes. He knows how procedures depend on their data structures; he can
tell educators how to prepare children for new ideas. He knows why it is bad to
use double-purpose tricks that haunt one later in debugging and enlarging pro-
grams. (Thus, one can capture the kids' interest by associating small numbers with
arbitrary colors. But what will this trick do for their later a t tempts to apply number
ideas to area, or to volume, or to value?) The computer scientist is the one who
must study such matters, because he is the proprietor of the concept of procedure,
the secret educators have so long been seeking.

REFERENCES

1. FEYNMAN, R. P. Development of the space-time view of quantum electrodynamics.
,%ience 153, No. 3737 (Aug. 1966), 699-708.

2. SHANNON, C. E. A universal Turing machine with two internal states. In Automata
Studies, Shannon, C. E., and McCarthy, J. (Eds.), Princeton U. Press, Princeton, N. J.,
1956, pp. 157-165.

3. COOK, S. A. On the minimum computation time for multiplication. Doctoral diss.,
Itarvard U., Cambridge, Mass.,]966.

4. KNu'r~, D. The Art of Computer Programming, Vol. I[. Addison-Wesley, Reading, Mass.,
1969.

5. MINSKY, M., AND PAPERT, S. Perceptrons: An Introduction to Computalional Geometry.
MIT Press, Cambridge, Mass., 1969.

6. GUZM.~.N, A., AND MCINTosH, H.V. CONVERT. Co.,nm. ACM 9, 8 (Aug. 1966), 604-615.
7. HEWI~T, C. PLANNER: A language for proving theorems in robots. In: Proe. of the

International Joint Conference on Artificial Intelligence, May 7-9, 1969, Washington,
D. C., Walker, D. E., and Norton, L. M. (Eds.), pp. 295-301.
LEviN, M., ~:'r xL. The LISP 1.5 Programmer's Manual. MIT Press, Cambridge, Mass.,
1965.

WRISSMA~, CLARK. The LISP 1.5 Primer. Dickenson Pub. Co., Belmont, Calif., 1967.
MAaTIN, W. A. Symbolic mathematical laboratory. Doctoral diss., MIT, Cambridge,
Mass., Jan. 1967.
MosEs, J. Symbolic integration. Doctoral diss., MIT, Cambridge, Mass., Dec. 1967.
SLAGLE, J.R. A heuristic program that solves symbolic integration problems in Fresh-

8.

9.
10.

1].
12.

Journal of the Association for Computing Machinery, ¥ol. 17, No. 2, April 1970

From and Content in Computer Science 215

man calculus. In Computers and Thought, Feigenbaum, E. A., and Feldman, J. (Eds.),
McGraw-ttill, New York, 1963.

13. TURIN~, A.M. Computing machinery and intelligence. Mind 59 (Oct. 1950), 433--460;
reprinted in Computers and Thought, Feigenbaum, E. A., and Feldman, J. (Eds.), McGraw-
Hill, New York, 1963.

14. MiNsKY, M. Matter, mind and models. Proe. IFIP Congress 65, Vol. 1, pp. 45-49 (Spar-
tan Books, Washington, I). C.). Reprinted in Semantic Information Processing, Min-
sky, M. (Ed.), MIT Press, Cambridge, Mass., 1968, pp. 425-432.

15. FE[O]tlNBAUM, E. A., AND FELDMAN, J. Comput6rs and Tho~lght. McGraw-Hill, New York,
1963.

16. Mircsxr, M. (Ed.). Semantic I,nformation Processing. MIT Press, Cambridge, Mass.,
1968.

17. GALTON, F. Inquiries into Human Faculty and Development. Macmillan, New York, 1883.
18. ATTNE,~,VE, FR:ED. Triangles as ambiguous figures. Amvr. J. Psychot. 81, 3 (Sept. 1968),

447...-453.
19. P,~,PERT, S. Principes analogues h la r~currence. In Probltmes de la Construction du Nom-

bre, Presses Universitaires de France, Paris, 1960.
20. F~]YNMnN, R.P. New textbooks for the "new" mathematics. Engineering and Science $8,

6 (March 1965), 9-15 (California Inst. of Tachnology, Pasadena).
21. LEHR:SR, T. New math. In That Was th8 Year That Was, Reprise 6179, Warner Bros.

Records.

RECEIVED OCTOBER, 1969; REVlSJ~D DECEMBER, 1969

Journal of the Association for Computing Machinery, ¥ol . 17, No. 2, April 1970

