Compressing SOAP Messages by using
Pushdown Automata

Christian Werner, Carsten Buschmann, Ylva Brandt, Stefan Fischer
Institute of Telematics
University Liibeck
Ratzeburger Allee 160
D-23538 Liibeck, Germany
Email: {werner | buschmann | brandt | fischer} @itm.uni-luebeck.de

Abstract—In environments with limited network bandwidth
or resource-constrained computing devices the high amount of
protocol overhead caused by SOAP is disadvantageous. There-
fore, recent research work concentrated on more compact, binary
representations of XML data. However, due to the special
characteristics of SOAP communication most of these approaches
are not applicable in the field of web services. First, we give
a detailed overview of the latest developments in the field of
XML data compression. Then we will introduce a new approach
for compressing SOAP data which utilizes information on the
structure of the data from an XML Schema or WSDL document
to generate a single custom pushdown automaton. This cannot
only be used as a highly efficient validating parser but also
as a compressor: its transitions are tagged with short binary
identifiers which replace XML tags during compression. This
approach leads to extremely compact data representations as
well as low memory and CPU utilization.

I. INTRODUCTION

Since SOAP is a dialect of XML, it suffers from the fact
that SOAP messages are significantly bigger than binary repre-
sentations. Comparisons on different approaches for realizing
Remote Procedure Calls (RPC) have shown that SOAP over
HTTP uses significantly more bandwidth than competitive
technologies. The transmitted data is about three times as big
as for Java RMI or CORBA [1].

Though today’s wired networks are powerful enough to
provide sufficient bandwidth even for very demanding applica-
tions, there are still some fields of computing where bandwidth
is costly. In cellular phone networks, for instance, it is quite
common to charge the customer according to the transmitted
data volumes. Also when using dial-up connections via modem
or ISDN, which are still common in many enterprise networks,
bandwidth is very limited. Even more important is the eco-
nomical use of bandwidth in energy-constrained environments:
since the radio interface is usually a main power consumer on
mobile devices, tight restrictions apply to the transmitted data
volumes.

Binary representations of XML data have gained a lot of
interest in the last two years. Therefore, the W3C XML Binary
Characterization Working Group has been founded in March
2004. Its members conducted a detailed requirement analysis
for binary XML representations and created a survey of the
existing approaches in this field [2]. This working group has
specified a set of properties that are important for binary

XML representations. Besides compactness the main aspects
that have been evaluated are support for directly reading
and writing the binary XML data, independence of transport
mechanisms, and processing efficiency.

As a major outcome the XML Binary Characterization
Working Group created a set of 18 typical use cases for binary
XML representations and analyzed their requirements. It is
notable that in all use cases the property “compactness”, which
will be in the focus of this paper, has been rated at least as a
nice-to-have feature. In ten use cases this property was even
rated as mandatory.

In December 2005 another W3C working group has been
established that will focus on the interoperability of binary
XML: the Efficient XML Interchange Working Group [3].

Up to now both of the W3C working groups in this field
have not drafted any recommendations. Currently they are
still discussing the requirements of interoperable binary XML
representations.

In this paper we will elaborate on how to compress SOAP
messages efficiently. In particular, we will present a new
compression approach that exploits the fact that XML network
messages are usually described by an XML grammar which is
known to both the sender and the receiver. For SOAP messages
this grammar can be derived from the WSDL document of the
web service. Most of the information contained in the message
can be inferred from this XML grammar and hence can be
omitted during transmission.

The remainder of this paper is structured as follows: In
Section II we will give a survey on the compression of SOAP
and XML, with a focus on techniques that make use of
the availability of grammar descriptions. We then present the
results of an extensive evaluation measuring the compression
effectiveness of the different algorithms. In section III we will
present our approach to SOAP compression, and compare the
resulting compression ratios to those of related algorithms. The
paper is concluded by a summary and directions for future
work.

II. SURVEY ON XML COMPRESSION

As XML documents are commonly represented as text, the
naive approach for generating more compact representations
is to apply well-known general purpose text compressors like

IEE I-'

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

gzip. Unfortunately these perform rather poorly, especially
when exposed to short input files, which is a typical case in
the domain of web services [1].

A. Overview of XML Compression

With the growing popularity of XML more sophisticated
XML compression concepts were developed. They separate the
markup from the character data in a document and compress
both independently with different algorithms. This technique
is used by XMill [4] and xmlppm [5]. Additionally, the XML
syntax rules can be exploited for data compression: in all well-
formed documents the name of any end tag can be inferred
from the name of the corresponding opening tag and hence,
the name of an end tag can be omitted. This technique is
applied by the Fast Infoset [6] compressor, which produces
a binary serialization that is optimized with a special focus
on processing speed. A most recent approach in the field
of non-Schema-aware XML compressors is Exalt [7]. This
compressor learns about typical tag sequences in the input
document and stores this information in automata structures.
From these automata Exalt can predict the next tag at a certain
stage of compression and encodes only the difference between
the prediction and the read value.

Another group of XML compressors is custom-tailored for
selected XML languages. By knowing the vocabulary from
a fixed grammar description, it is possible to create a highly
specialized compressor that maps the markup-structures of this
language to shorter binary tokens using fixed built-in coding
tables. WBXML [8] and Millau [9] are such tools supporting
various languages in the field of mobile devices like WML or
SyncML. A similar approach is the Binary Format for MPEG-
7 Metadata (BiM) [10] which is a specialized compressor for
MPEG-7 Metadata.

Although such highly specialized Schema-based XML com-
pressors exhibit very promising compression results [1], their
value for practical applications is limited. Their most severe
disadvantage is that they do not support the extensibility XML
has been designed for. SOAP is a typical example of this
problem: The SOAP body may carry all kinds of application
specific data. Hence, it cannot be encoded using fixed coding
tables.

B. XML Compressors with Dynamic Schema Processing

To overcome this limitation while still leveraging the
outstanding performance of Schema-based compression, re-
searchers started to develop compressors that can be cus-
tomized to application specific XML grammars.

If information on the document structure is available
through an XML grammar description like XML Schema or
DTD, two additional compression strategies become available.
First, efficient binary content encodings can be inferred from
the data type definitions in the grammar. For example, all
numeric values in the XML document could be represented
as 32 bit integer numbers instead of using verbose text repre-
sentations. Second, the grammar prescribes how valid instance

documents are structured. Therefore, parts of the structure in-
formation can be omitted in the instance document. Of course,
the Schema information is also required for reconstructing the
original message from the compressed representation.

Although the XGrind compressor [11] employs the cor-
responding DTD when processing an XML file, it neither
omits tags that can be inferred from the grammar nor uses
efficient binary encodings for numeric content like xsd: int
or xsd:DateTime etc. The reason for this is that it focuses
on so called context-free compression, i.e. XGrind allows for
parsing and querying selected parts of the binary encoded file
without decompressing it.

Anyhow, even under the constraint of context-free com-
pression XGrind implements some features for generating
compact XML representations. It uses shorter identifiers that
represent the text values of tag and attribute names: It uses
the DTD to identify all possible tag names, which are then
mapped to compact 8 bit identifiers in the binary encoding.
Additionally, the names of closing tags are omitted since in
well-formed XML documents these can be inferred from the
name of the corresponding opening tag. The possible values of
enumeration types are also binary encoded using binary block
codes. All other content is Huffman encoded in a per-tag-name
fashion, i.e. for each element with a certain name a separate
Huffman table is maintained.

A second approach for XML compression with optional dy-
namic grammar support is Xebu [12]. It encodes the sequence
of SAX events generated by a parser. Again, on their first
appearance tag names are indexed with a byte value which is
then used as a short-hand pointer on repetition. Unlike XGrind,
the Xebu encoder can detect numeric data and encodes it in a
more compact binary format.

These two features of Xebu are also available if no grammar
is present. In addition, so called omission automata can be
generated from a Relax NG [13] grammar. These can then be
used to omit the encoding of SAX events which can be inferred
from the grammar on decoding. This approach increases com-
pression efficiency, e.g. if the grammar prescribes a sequence
with each element occurring exactly once. Unfortunately, the
paper does not describe how these automata are generated
from the grammar. Additionally, the Relax NG grammar can
also be used for setting up the coding tables with initial values,
since possible tag and attribute names are specified in the
grammar. This feature is called pre-caching.

Another Schema-aware XML processor is XML Xpress [14].
It employs a two step processing scheme. In a first step a so
called Schema Model file is generated offline from an XML
Schema document and a set of sample XML files that represent
typical data the compressor will be exposed to later on. Step
two comprises the actual compression process and takes the
Schema Model file and the XML source file to be compressed
as input. The decompressor also uses the Schema Model file
in order to decode the compressed representation. Because
XML Xpress is a commercial product no details about the
conversion processes are publicly available. Furthermore, it
remains unclear if the generation of the Schema Model file

IEE |-:

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

can be done automatically or requires manual intervention.

An approach which targets the special needs of SOAP is
Differential Encoding presented in [1]. The authors employ
a differential encoding algorithm to achieve compact SOAP
message representations. Instead of sending the entire SOAP
message only the difference between the message and a skele-
ton, which is previously generated from the WSDL service
description, is transmitted. There are many data formats for de-
scribing differences between two XML documents. One very
efficient solution is to use the Document Update Language
(DUL) in combination with the xmlppm compressor [5].

A major benefit of this approach is that very high com-
pression rates can be achieved. This holds also true for small
files, i.e. smaller than 10 kBytes, which is a typical case for
SOAP communication. Anyhow, the algorithmic complexity
of XML differencing is quite high and therefore on resource-
constrained devices this approach is only feasible with small
documents.

C. Setup for the Performance Evaluation

In order to compare the SOAP compression performance
of the different existing approaches, we have set up a test bed
consisting of two web services which represent typical payload
patterns of today’s SOA applications.

We found that there is a large number of services exchang-
ing small SOAP messages with only very little payload. The
structure of the exchanged messages is described by an XML
Schema, which is very restrictive. A typical example of this
kind of service would be a stock quote application: Here we
are sending a request message that contains the ticker symbol
which is a very short string and the service then sends back a
response message which holds the current quote as a numeric
value. Such very short messages are hard to compress, because
the compressor must not reserve much space in the output
stream for transmitting large tables mapping symbols to their
bit codes — such coding tables might easily need more space
than the encoded data itself. As a result, a compressor that
works very well on large files may perform poorly on small
files.

Therefore, our first benchmark web service is a simple
calculator application. We implemented four different
service operations yielding messages with different
amounts of payload: void doNothing(), int
increment (int il), int add(int il, int i2),
and int addéints(int i1, int i2, int i3,
int i4, int 15, int i6). We have implemented
this application as a literal-style web service using the
Microsoft .NET platform. Each service operation was called
with randomly-chosen integer values. We saved the resulting
request and response messages to files, which were then
passed to the compressors.

Anyhow, there are also some web services that exchange
quite large messages containing a lot of string data. The
structure of possible messages is described by a rather complex
XML Schema definition, which heavily employs attributes to

structure the transmitted information. A typical example of
this kind of service is the Amazon E-Commerce Service [15].

Hence, we used the Amazon E-Commerce Service as our
second test case. We issued three ItemSearch request messages
with the search keyword “web service”. In the first request,
we set the ResponseGroup parameter to “small” which signals
the web service to send back a non-verbose response message.
In the second and third request message we set the Re-
sponseGroup parameter to “medium” and “large” respectively
which leads to much more detailed response messages. Again,
we saved the resulting SOAP messages into files. They contain
a fraction of 47% (small), 35% (medium) and 37% (large)
xsd:string data while the rest consists of markup and
numeric values.

In order to evaluate compressors with Schema support we
also saved the WSDL descriptions of the two web services into
files and extracted the enclosed XML Schema descriptions.
These specify how the enclosed application specific data types
in the body of the SOAP message are structured. In order to
get an XML Schema description of the full recorded SOAP
messages, i.e. including the SOAP Envelope and its child ele-
ments, we combined the extracted XML Schema descriptions
with the XML Schema description of the SOAP 1.1 Envelope
(available at: http://schemas.xmlsoap.org/soap/
envelope/) by importing the extracted Schema definition
for the application specific namespace and by modifying the
data type of the body element.

Since Xebu is not able to process XML Schema files, we
finally converted the XML Schema description of our SOAP
messages into the Relax NG language using the tools Sun
Relax NG Converter [16] and Trang [17].

D. Compression Performance on Typical SOAP Data

We analyzed the compression effectiveness of the previously
described approaches when exposed to typical SOAP data.
For all compressors we measured the resulting file sizes S,
as well as the compression ratio A, which is the quotient
Scompressed/ Suncompressed- We also calculated the sum of all file
sizes X for all compressors.

Table I shows the results. For better readability we omitted
the single values for A\ and denoted only the best, worst and
average values here. Please note that the average compression
ratio is not weighted by the file sizes and therefore this value
differs from Zcompressed/Euncompressed~

All compressors were used in their default settings, i.e.
without additional command line parameters. An exception
is Xebu, which is not a ready-to-use application but a set of
Java classes providing an API. We implemented a minimal
compression application which makes use of both additional
features that are available when an XML grammar is present:
omission automata and pre-caching.

Obviously, it is not possible to evaluate WBXML, Millau
and BiM in this setting since these compressors are not
useable with SOAP. XML Xpress has not been experimen-
tally evaluated because there is no publicly available imple-
mentation. The XGrind compressor could not be included,

IEE l-:

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

TABLE I
COMPRESSION RESULTS FOR TYPICAL SOAP DATA. ALL FILE SIZES ARE SPECIFIED IN BYTES.

| [[uncompressed | gzip [XMill [xmlppm [Fast Infoset | Xebu [Diff. Enc. (DUL + xmlppm) |
doNothing (Request) 336 224 338 167 210 103 21
doNothing (Response) 344 229 352 173 210 103 21
increment (Request) 381 236 334 177 246 127 52
increment (Response) 425 249 351 187 246 127 52
add (Request) 401 239 360 181 269 135 106
add (Response) 401 238 361 180 246 127 95
add6ints (Request) 559 307 436 242 397 217 155
add6ints (Response) 429 255 378 195 254 135 104
Amazon “small” (Request) 680 371 519 319 455 - 255
Amazon “small” (Response) 9,144 1,625 2,072 1,576 7,446 - 2,366
Amazon “medium” (Request) 681 373 518 321 456 - 257
Amazon “medium” (Response) 60,319 8,795 8,298 7,190 46,283 - 16,096
Amazon “large” (Request) 680 371 520 319 455 - 255
Amazon “large” (Response) 299,619 | 45,841 31,977 32,171 236,349 - 88,103

[= I 374399 [59,353 | 46,814 | 43,398 | 293,522] -] 107,938 |
Abest 1.00 0.15 0.11 0.11 0.58 0.30 0.06
Aworst 1.00 0.67 1.02 0.50 0.81 0.39 0.38
Aaverage 1.00 0.50 0.71 0.39 0.67 0.32 0.24

III. USING PUSHDOWN AUTOMATA FOR SOAP
COMPRESSION

either, since the available implementation from July 19, 2002
(which can be downloaded at http://sourceforge.
net/projects/xgrind/) did not perform as expected:
when compressing SOAP messages, the decompressor gener-
ates invalid files from the compressed representation. Some
implementation problems also occurred when using the Xebu
implementation. It was not able to process the Amazon web
service grammar. Hence, the Amazon test files were excluded
from the Xebu evaluation.

Existing XML compression approaches with dynamic
Schema support suffer from the limitation that they either
use very expensive computations (differential encoding) or
that they make use of dynamically growing data structures
like coding tables (Xebu). Especially in the filed of resource-
constrained devices both of these facts are disadvantageous.

Hence, our major design goal was to develop an approach

Despite these difficulties with some implementations, which ~ that features low computational complexity and uses only

are obviously not ready for every day use, the results show
that Schema-based compression yields very promising perfor-
mance. Xebu and Differential Encoding feature the smallest
average compression ratios. Their home turf is the efficient
compression of small SOAP messages with a tight Schema
description: for the calculator web service both yield the
smallest message sizes. Due to the small size of the original
messages gzip and XMill can hardly compress them because
they have to embed extra information about the used encoding
rules in addition to the actual data. For small files Fast Infoset
achieves its best results, but the best ratio is only 0.58.
The xmlppm approach shows the best performance possible
without Schema information.

With the Amazon web service the situation is different:
the Differential Encoding approach is outperformed by gzip,
XMill and xmlppm when compressing the medium and large
responses. These consist mainly of hardly predictable tags
containing large amounts of text data. As a result, the resulting
messages are not of competitive size. Fast Infoset performs
even worse and again achieves only poor compression ratios.

All in all, it becomes clear that Schema-based compression
seems to be the most promising way to achieve compact SOAP
message encodings. However, no currently available compres-
sor implementation can robustly yield high compression ratios
for all kinds of files and file sizes.

very litte memory while still yielding excellent compression
ratios. Existing approaches like Exalt, BiM and Xebu show
that automata may be beneficial for representing structure
information of XML data.

Anyhow, a plain finite-state automaton (FSA) as utilized
in Exalt, BiM and Xebu cannot fully represent the grammar
described by an XML Schema document, because languages
described by a DTD or XML Schema are not a subset of
the class of regular languages. Hence, a single FSA can
only be used for processing small fragments of the XML
tree. In general, it can only handle the direct children of a
node. SEGOUFIN and VIANU elaborate on this problem in
detail [18]. In consequence, BiM and Exalt need to provide
additional mechanisms for controlling which of the generated
automata is used at a certain stage of the compression process.
Xebu uses a single FSA for improving compression results,
but here the automaton is only an add-on for the compression
algorithm and does not fully represent the Relax NG grammar.

Well-known validating XML parsers like Xerces or Expat
are also based on automata. Like BiM and Exalt they cannot
only rely on FSAs but need to employ additional mechanisms
like tree automata [19].

A. Architecture

Our approach is to generate a single deterministic push-
down automaton (PDA) which represents the XML Schema

IEE |-:

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="a" type="A"/>
<xsd:complexType name="A">
<xsd:choice>
<xsd:element name="b" minOccurs="0">
<xsd:complexType>
<xsd:choice>
<xsd:element ref="a" minOccurs="2" maxOccurs="2"/>
<xsd:element name="c" type="xsd:int"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:schema>

Fig. 1. Recursive XML Schema Description

information that is included in the commonly available WSDL
description of a web service. This is done at the sender as
well as the receiver side. The sender processes the SOAP
message using the PDA. The path taken through the automaton
represents the structure of the SOAP message (markup) and is
encoded together with the leaf element (simple type) values.
This information is then sent to the receiver, which uses its
automaton to reconstruct the original document.

SEGOUFIN and VIANU show in [18] that it is possible
to construct deterministic pushdown automata from an XML
grammar yielding improved speed of parsing. However, their
work considers only the by now outdated DTD grammars. We
adopted the concept of using PDAs for XML processing and
made it applicable to XML Schema.

In the following we present an algorithm for constructing a
single PDA that fully represents an XML Schema. Due to the
nature of this approach the PDA is a highly efficient parser but
— as we will show — it can also be used for data compression.

Our algorithm takes an arbitrary XML Schema document
as its input which describes the structure of the documents to
be transmitted. Figure 1 shows an example that we will use
for demonstrating our approach.

Of course, for SOAP applications this Schema document is
typically much more complex and also imports other XML
Schema documents for processing different namespaces.

The first construction step is to convert the XML Schema
document into a so called Regular Tree Grammar (RTG) G. An
RTG is a 4-tupel consisting of a set of non-terminal symbols
N, a set of terminal symbols 7', a set of production rules P
and a set of start symbols S C N. MURATA ET AL. provide in
[19] a detailed description of how to convert the XML Schema
description into a RTG.

For our example the conversion result looks as follows:

G = ({A, B,C,xsd:int}, {a, b, c}, P, {A}) with P = {

A — a(B+e),
B — b(AA+0),
C — ¢ (xsd:int)

}

All used simple and complex data types result in non-
terminal symbols (written in capital letters or prefixed with
xsd:). All possible element names result in terminal symbols
(small letters). The set of start symbols contains all non-

terminals belonging to elements that are declared on top-level
of the XML Schema document. Please follow this mapping
by means of figure 1.

The generated production rules reflect the structure of valid
documents. The right hand side of such a rule consists of
an element name followed by a regular expression which
describes the content model of this element, i.e. types of child
elements it may have. Each regular expression maps to non-
terminals, which occur as left hand side symbols of other rules.
The rules in this example have the following meaning: an
element a contains an element b or (+) nothing (¢), whereas b
contains either two a elements or a ¢ element, which contains
an integer value. Hence, G is equivalent to the Schema in
figure 1.

Fig. 2. Set of finite state automata generated from the regular tree grammar.

These regular expressions are then converted into a set of
FSAs (see figure 2). A detailed description of the underlying
conversion algorithm is given in [20]. For each element of
the grammar the according FSA describes which direct child
elements may follow in what sequence.

Finally, we construct the PDA. It accepts an input word by
emptying the stack, i.e. initially there is a special symbol Z on
the stack. If this is popped and not pushed again immediately,
the PDA terminates. For each complex type two states are
created, an opening one and a closing one. Additionally, one
start state is created and one state for each simple type (like
xsd:int, xsd:string etc.).

Then, the transitions are created. Each of them is labeled
with a 3-tupel (read,pop,push) where read is the tag to be
read from the input and pop is the top stack symbol. Both
are required for the transition to fire. The push value, which
can consist of zero, one or more symbols, is then written onto
the stack. Note that, if multiple values are written, they are
specified in inverse order.

From the start state there are transitions to all opening states
that belong to an n; € S. They are labeled with the opening tag
that belongs to the destination state, the stack start symbol Z
and the start state of the FSA belonging to the destination state
type as an additional push value. Correspondingly, a transition
from all closing states which belong to n; € S to themselves is
added. It reads an empty string (#) from the input and pops Z
from the stack, which terminates the PDA. All other transitions
are created following the algorithm shown in figure 3.

The resulting PDA is depicted in figure 4. The basic idea
behind this type of automaton is that the stack operations
emulate the execution of the FSAs. That way the automaton
checks for each element in the document if it has the correct
number and sequence of child elements.

At this point, the automaton is ready for parsing. Finally,
we add the core feature that is used for data compression: For
all states with more than one outgoing transition we tag the

IHJCE:E

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

for all fsa € FSAs do
for all state € fsa.states do

for all t;, € state.transitionSincoming 0
for all toye € state.transitionSougoing d0O
label = (
tout-type.tagopen,
state,
(FSAs.getFSA(tou.type).startState, toue.destState));
createPDATransition(
PDAStatesjose -get(tin .type),
PDAStatesopen - get(tout.type),
label);
end for
end for

if state € fsa.finalStates then
for all t € state.transitionsincoming d0
label = (fsa.type.taggjose, state, null);
createPDATransition(
PDAStates jose - get(t.type),
PDAStatesjosc -get(fsa.type),
label);
end for
end if

if state = fsa.startState then
for all t € state.outgoingTransitions do
label = (
t.type.tagopen
state,
(FSAs.getFSA(t.type).startState, t.destState));
createPDATransition(
PDAStatesopen . get(fsa.type),
PDAStatesopen . get(t.type),
label);
end for
end if

if state € ({fsa.startState} () fsa.finalStates) then:
label = (fsa.type.taggjose, state, null);
createPDATransition(
PDAStatesopen.get(fsa.type),
PDAStatesjose . get(fsa.type),
label);
end if

end for
end for

Fig. 3. Constructing the PDA transitions from a set of FSAs.

transitions with unique binary identifiers (depicted as circled
values in figure 4).

The core idea of our compression scheme is to represent a
document as a sequence of traversed transitions on the path
through the PDA. Of course, the code words used for tagging
the transitions must be decodeable in an unambiguous manner.
An advantageous scheme for generating suitable codes is the
Huffman algorithm [21]. Here, for each state a Huffman table
is created which maps code words to outgoing transitions. Cur-
rently, we do not infer any heuristic about transition traversal
probabilities from the Schema but apply equal probabilities
for each transition instead.

Besides the path through the PDA, which represents the
markup of the encoded document, we must encode the simple
type values. For all possible simple types our compressor
provides functionalities for encoding, decoding and validating.

Fig. 4. Pushdown automaton constructed from the XML grammar.

For each simple type we use an appropriate binary encoding,
e.g. a 32-bit value for xsd:int. If a transition labeled with
a simple type is executed, the binary encoded value is directly
placed at the current position into the output bit stream. This
makes this data format ideal for XML streaming, since no
data must be buffered during compression or decompression.
This is a major advantage over container-based approaches
like XMill.

<?xml version="1.0" encoding="ISO-8859-1"?>
<a>

<a>

<a>

<Cc>64382739</c>

 . .
(a) Text encoding using 119 bytes.

xsd:int=Close C

Close C=+Close B

Close B=Close A
Close A—+Close B

oooo0011110101100110011100010011

Open B—+Open C
Open A= Open B
Close A+ Open A

Open A —Close A Open C-xsd:int

Open B=Open A Close B=Close A
Open A +Open B Close A= Close A
Start—+Open A

(b) Binary encoding using 42 bits = 6 bytes.

Fig. 5. Example XML document before and after compression.

Figure 5 shows an example instance document and its
encoding generated with the automaton in figure 4. The
markup is encoded as the path through the PDA (using zero
bits for unambiguous transitions) while simple types are inline
encoded using compact binary representations.

The decompression process works vice versa: The receiver
uses the bit stream generated during compression to control
the path through its instance of the PDA. For each traversed
transition it writes the tag parts of the according labels into
the output document. For transitions labeled with simple types
it reads either a fixed number of bits from the bit stream (e.g.

IEE l-:

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

32 bits for xsd:int) or reads a number of bytes until it
encounters a stop byte sequence (this is done for all character
encoded datatypes like xsd: string).

For the sake of simplicity and compactness we did not show
the handling of namespaces and attributes in our example.
Anyhow, both features are supported. Namespace informa-
tion is fully acquired from the XML Schema document and
incorporated into the PDA, i.e. each transition label carries
information about the namespace of the tag to be processed.
Since we do not encode the namespace prefixes of the in-
put document this information is lost during compression.
The decompression step comprises the generation of new
generic namespace prefixes. Attributes are handled just like
elements but marked with a special flag avoiding naming
ambiguities. For example d is processed
like <a><bsir>c</bare>d.

With our approach we can address the main requirements
formulated by the W3C. The binary representation can be
written (or read) directly by using an API like SAX. In such
a case an application interacts with the automaton instead of
working with the XML text representation. In any case the
generated encoding is independent of transport mechanisms
and can be processed very efficiently. An evaluation of the
achieved compactness is conducted in the following section.

B. Performance Evaluation

We evaluated the compression performance of our compres-
sor, which we call “Xenia”, using the two benchmark web
services described in section II-C.

We evaluated Xenia with three different settings for en-
coding xsd: string data. First, we used the “none” coding
style, which means that the UTF-8 representation of the string
is written byte by byte into the output stream. A unique byte
sequence is used for indicating the end of a string. This in
particular means that string data is not compressed here. The
second variant works like the first one but additionally uses
the adaptive Huffman algorithm [22] for compressing the byte
representation of the string. The third setting uses the Predic-
tion by Partitial Match (PPM) algorithm which is one of the
best approaches available for compressing string data. Since
single strings are typically rather short and the PPM algorithm
needs at least a few hundred bytes for reasonable compression
results we grouped all xsd: string values occurring in the
input document into a so called string container. In the output
stream we do not encode the string data itself but an integer
value which denotes the position of the particular string in the
string container. After the processing of the input document
has ended the container is compressed and the resulting byte
sequence is appended at the end of the output stream. This
technique has been introduced by LIEFKE in [4]. Note that
placing the compressed container as a whole into the output
stream prevents direct stream processing because the container
must be decompressed prior to accessing string data. However,
this is just an implementation issue. As shown in [5] it is
possible to avoid this problem by splitting up the PPM output

600

W doNothing (Request)
ﬁ OdoNothing (Response)
500 . M
Oincrement (Request)
j Eincrement (Response)
£} 400 Nadd (Request) M
) — [Aadd (Response)
& 300 M add6ints (Request)
7} [add6ints (Response)
o
iL 200 i
100
o il
XML Gzip Xmill Xmlppm Fast Xebu Diff. Xenia
Infoset Encoding
Encoding
Fig. 6. Compression results for the calculator web service.
11
1] W Amazon "small" (Request)
OAmazon "small" (Response)
0.9 1 0 Amazon "medium" (Request)
2 081 [T || @Amazon "medium" (Response)
g 0,7 1 Il B Amazon "large" (Request)
.g 0,6 | E1Amazon "large" (Response)
8 05
a
€ 04
o
© 03
0,2 4
0,1 4
0 4
XML Gzip Xmill Xmlppm Fast Diff. Xenia Xenia Xenia
Infoset Encoding (None) (Huffman) (PPM)
Encoding
Fig. 7. Compression results for the Amazon web service.

and multiplexing it with the markup stream which preserves
the streaming option.

Figure 6 shows the resulting file sizes for the different
types of request and response messages exchanged by the
calculator web service. It is clearly visible that Xenia performs
best by far. Since the calculator web service does not take
any xsd:string values as input, all three string encoding
variants of Xenia are producing the same compression results.
Hence, only one set of results is shown in this figure.

Figure 7 depicts the results for the Amazon web service.
Since the file sizes of the uncompressed documents vary in a
wide range from 680 to 229,619 bytes, the depiction of the file
sizes would render small byte values nearly invisible. Hence,
we depicted the compression ratio A instead.

All three variants of Xenia compress the requests to about
10% of their original sizes. This is because they contain a
number of short strings that generally can hardly be com-
pressed. As a result, it does not make any difference which
of the three Xenia string encoding variants is chosen. For
messages that contain a lot of string data, like the three
responses, it is clearly visible that the three variants perform
quite differently. The “none” variant yields compression ratios
of 0.48, 0.37 and 0.38 for the small, medium and the large

IEE l-:

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

response respectively. Note that this implies that the markup
is compressed to nearly zero since the amount of string data
remains unchanged (c.f. section II-C: the fraction of string
content in the original documents is 46.9%, 35.4% and 36.9%).
When Huffman coding or PPM are used, the compression
ratio for the large response improves to roughly 0.2 and 0.1
respectively.

IV. CONCLUSION AND FUTURE WORK

Due to the talkative nature of XML recent research and
standardization efforts concentrated on more compact binary
XML representations. The main contribution of this paper is a
Schema-aware binary XML encoding algorithm. It complies to
the requirements that the W3C Binary XML Working Group
agreed on to be most important.

We showed how to construct a pushdown automaton (PDA)
from a publicly available XML Schema document (typically
included in a WSDL description). This type of PDA can not
only be used for parsing and validating but also enables a
new compression approach. The path through the automaton
during parsing fully represents the document structure and
can be encoded extremely compact. Because type information
is incorporated into the PDA during construction, simple
type values can also be encoded using optimized binary
representations. For string data we presented three different
encoding variants ranging from a very simple uncompressed
inline encoding to sophisticated PPM compression.

The performance evaluation of our implementation called
Xenia showed that markup is compressed to nearly zero.
Together with the PPM string encoding algorithm Xenia can
even compress SOAP data with a high amount of character
data very effectively. All XML files regardless of their size
and structure were compressed to sizes between one and fifteen
percent of the original.

Although our implementation does currently not fully sup-
port all features of the XML Schema language it is power-
ful enough to process most SOAP documents. In particular,
constraint checking for the ID/IDREF feature has not been
implemented, yet.

Therefore, we are currently working on the completion of
our Java implementation. Because PDAs can be implemented
even in resource constrained environments, SOAP processing
on embedded devices is a natural application domain of Xenia.
Hence, we are working on a code generation module for Xenia
that produces C code, which embodies a Schema specific
XML compressor. This idea can be extended to application
specific XML compression hardware: To reach this goal future
work might include code generation for hardware description
languages like VHDL or Verilog.

Web services technology started out to address the prob-
lems resulting from heterogeneity in distributed environments.
However, it has not yet found its way into the field of
ubiquitous computing, which is considered to be a major

development in information technology. From our point of
view a main reason for this is that processing, storage and
transmission of XML are very resource demanding. Hence,
the advent of efficient techniques for dealing with XML is a
prerequisite for bridging the gap between web services and
ubiquitous information technology.

REFERENCES

[1] C. Werner, C. Buschmann, and S. Fischer, “WSDL-Driven SOAP
Compression,” International Journal of Web Services Research, vol. 2,
no. 1, 2005.

[2] W3C, “Working group note: XML binary characterization,” Mar. 05.
[Online]. Available: http://www.w3.org/TR/xbc-characterization/

[3] ——, “Charter of the efficient XML interchange working group,” Nov.
2005. [Online]. Available: http://www.w3.0rg/2005/09/exi-charter-final.
html

[4] H. Liefke and D. Suciu, “XMill: an efficient compressor for XML data,”
in Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, USA, 2000, pp. 153-164.

[5] J. Cheney, “Compressing XML with multiplexed hierarchical PPM
models,” in Data Compression Conference, 2001, pp. 163—173. [Online].
Auvailable: http:/citeseer.ist.psu.edu/cheney0lcompressing.html

[6] P. Sandoz, A. Triglia, and S. Pericas-Geertsen, “Fast infoset,” jun 2004.
[Online]. Available: http://java.sun.com/developer/technical Articles/xml/
fastinfoset/

[7]1 V. Toman, “Syntactical compression of XML data,” in Proceedings of
the International Conference on Advanced Information Systems Engi-
neering, Riga, Latvia, June 2004.

[8] [Online]. Available: http://wbxmllib.sourceforge.net/

[9] M. Girardot and N. Sundaresan, “Millau: An encoding format for

effcient representation and exchange of XML over the web,” in 9th

International World Wide Web Conference, Amsterdam, Netherlands,

May 2000, pp. 747-765.

U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A. Kaup,

“An MPEG-7 tool for compression and streaming of XML data,” in

Proceedings of the IEEE International Conference on Multimedia and

Expo, Lusanne, Switzerland, Aug. 2002, pp. 521-524.

P. Tolani and J. R. Haritsa, “XGRIND: A query-friendly XML compres-

sor,” in Proceedings of the International Conference on Data Engineer-

ing, San Jose, California, USA, Feb. 2002, pp. 225-234.

J. Kangasharju, S. Tarkoma, and T. Lindholm, “Xebu: A binary format

with schema-based optimizations for xml data.” in Proceedings of the

International Conference on Web Information Systems Engeneering,

New York City, New York, USA, Nov. 2005, pp. 528-535.

J. Clark and M. Makoto, “Definitive specification for RELAX

NG using the XML syntax,” Dec. 2001. [Online]. Available:

http://www.relaxng.org/spec-20011203.html

Intelligent Compression Technologies, Inc., “XML Xpress.” [Online].

Available: http://www.ictcompress.com/products_xmlxpress.html

“Amazon E-Commerce Service.” [Online]. Available: http://webservices.

amazon.com/AW SECommerceService/ AW SECommerceService.wsdl

“Sun Relax NG converter.” [Online]. Available: http://www.sun.com/

software/xml/developers/relaxngconverter/

“Trang: Multi-format schema converter based on RELAX NG.”

[Online]. Available: http://www.thaiopensource.com/relaxng/trang.html

L. Segoufin and V. Vianu, “Validating streaming xml documents,” in

Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems. New York, NY, USA: ACM Press,

2002, pp. 53-64.

M. Murata, D. Lee, and M. Mani, “Taxonomy of XML schema

languages using formal language theory,” in Proceedings of Extreme

Markup Languages, Montreal, Canada, Aug. 2001.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1988.

D. A. Huffman, “A method for the construction of minimum-redundancy

codes,” Proceedings of the Institute of Radio Engineers, vol. 40, no. 9,

pp. 1098-1101, Sept. 1952.

K. Sayood, Introduction to data compression (2nd ed.).

CA, USA: Morgan Kaufmann Publishers Inc., 2000.

(11]

[12]

[14

[15]
[16]
[17]

[18]

San Francisco,

IEE l-:

COMPUTER
SOCIETY

|IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

