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The trouble with computer science today is an obsessive concern with form instead 
of content. 

No, that is the wrong way to begin. By any previous standard the vitality of 
computer science is enormous; what other intellectual area ever advanced so far in 
twenty years? Besides, the theory of computation perhaps encloses, in some way, 
the science of form, so that  the concern is not so badly misplaced. Still, I will argue 
that an excessive preoccupation with formalism is impeding our development. 

Before entering the discussion proper, I want to record the satisfaction my col- 
leagues, students, and I derive from this Turing award. The cluster of questions, 
once philosophical but  now scientific, surrounding the understanding of intelli- 
gence was of paramount  concern to Alan Turing, and he along with a few other 
thinkers--notably Warren S. McCulloch and his young associate, Walter P i t t s - -  
made many of the early analyses tha t  led both to the computer itself and to the 
new technology of artificial intelligence. In recognizing this area, this award should 
focus attention on other work of my  own scientific family--especially Ray Solomo- 
noff, Oliver Selfridge, John McCarthy,  Allen Newell, Herbert Simon, and Seymour 
Papert, my closest associates in a decade of work. Papert 's views pervade this essay. 

This essay has three parts, suggesting form-content confusion in theory of compu- 
tation, in programming languages, and in education. 

1. Theory of Computation 

To build a theory, one needs to know a lot about the basic phenomena of the sub- 
ject matter. We simply do not know enough about these, in the theory of computa- 
tion, to teach the subject very abstractly. Instead, we ought to teach more about 
the particular examples we now understand thoroughly, and hope that  from this 
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we will be able to guess and prove more general principles. I am not saying this 
just to be conservative about things probably true that haven't been proved yet. 
I think that many of our beliefs that seem to be common sense are false. We have 
bad misconceptions about the possible exchanges betweeu t.ime and memory, trade- 
offs between time and program complexity, software and hardware, digital and ana- 
log circuits, serial and parallel computations, associative and addressed memory, 
and so on. 

It is instructive to consider the analogy with physics, in which one can organize 
much of the basic knowledge as a collection of rather compact conservation laws. 
This, of course, is just one kind of descrip~ion; one could use differential equations, 
minimum principles, equilibrium laws, etc. Conservation of energy, for example, 
can be int.erpreted as defining exchanges between various forms of potential and 
kinetic energies, such as between height and velocity squared, or between tempera- 
ture and pressure-volume. One can base a development of quantum theory on 
trade-off between certainties of position and momentum, or between time and 
energy. There is nothing extraordinary about this; any equation with reasonably 
smooth solutions can be regarded as defining some kind of trade-off among its vari- 
able quantities. But there are many ways to formulate things and it is risky to be- 
come too attached to one particular form or law and come to believe that it is the 
real basic principle. See Feynman's [i] dissertation on this. 

Nonetheless, the recognition of exchanges is often the conception of a science, if 
quantifying them is its birth. What do we have, in the computation field, of this 
character? In the theory of recursive functions, we have the observation by Shan- 
non [2] that any Turing machine with Q states and R symbols is equivalent to one 
with 2 states and nQR symbols, and to one with 2 symbols and n~QR states, where 
n and n ~ are small numbers. Thus the state-symbol product QR has an almost in- 
variant quality in classifying machines. Unfortunately, one cannot identify the 
product with a useful measure of machine complexity because this, in turn, has a 
trade-off with the complexity of the encoding process for the machines--and that 
trade-off seems too inscrutable for useful application. 

Let us consider a more elementary, but still puzzling, trade-off, that between 
addition and multiplication. How many multiplications does it take to evaluate the 
3 X 3 determinant? If we write out the expansion as six triple-products, we need 
twelve multiplications. If we collect factors, using the distributive law, this reduces 
to nine. What is the minimum number, and how does one prove it, in this and in 
the n X n case? The important point is not that we need the answer. It is that we 
do not know how to tell or prove that proposed answers are correct ! For a particular 
formula, one could perhaps use some sort of exhaustive search, but that wouldn't 
establish a general rule. One of our prime research goals should be to develop meth- 
ods to prove that particular procedures are computationally minimal, in various 
senses. 

A startling discovery was made about multiplication itself in the thesis of Cook 
[3], which uses a result of Toom; it is discussed in Knuth [4]. Consider the ordinary 
algorithm for multiplying decimal numbers: for two n-digit numbers this employs 
n ~ one-digit products. It is usually supposed that this is minimal. But  suppose we 
write the numbers in two halves, so that the product is N = ( ~ A  + B)((~C + D), 
where ~ stands for multiplying by 10~/~. (The left-shift operation is considered to 
have negligible cost.) Then one can verify that 
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N = @ @ A C  -q- BD + @(A + B)(C + D) - @(AC -t- BD). 

This involves only three half-length multiplications, instead of the four that one 
might suppose were needed. For large n, the reduction can obviously be reapplied 
over and over to the smaller numbers. The price is a growing number of additions. 
By compounding this and other ideas, Cook showed that for any ~ and large enough 
~, multiplication requires less than n ~+' products, instead of the expected 'n ~. Sim- 
ilarly, V. Strassen showed recently that to multiply two m X m matrices, the num- 
ber of products could be reduced to the order of m ~°~ 7, when it was always believed 
that the number must be cubie~because there are rn 2 terms in the result and each 
would seem to need a separate inner product with m multiplications. In both eases 
ordinary intuition has been wrong for a long time, so wrong that apparently no 
one looked for better methods. We still do not have a set of proof methods adequate 
for establishing exactly what is the minimum trade-off exchange, in the matrix 
ease, between multiplying and adding. 

The nmltiply-add exchange may not seem vitally important in itself, but if we 
cannot thoroughly understand something so simple, we can expect serious trouble 
with anything more complicated. 

Consider another trade-off, that  between memory size and computation time. 
In our book [5], Papert  and I have posed a simple question: given an arbitrary col- 
lection of n-bit words, how many references to memory are required to tell which 
of those words is nearest ~ (in number of bits that  agree) to an arbitrary given word? 
Since lzhere are many ways to encode the "l ibrary" collection, some using more 
memory than others, the question stated more precisely is: how must the memory 
size grow to achieve a given reduction in the number of memory references? This 
much is trivial: if memory is large enough, only one reference is required, for we can 
use the question itself as address, and store the answer in the register so addressed. 
But if the memory is just large enough to store the information in the library, then 
one has to search all of i t - -and we do not know any intermediate results of any value. 
I t  is surely a fundamental theoretical problem of information retrieval, yet no one 
seems to have any idea about how to set a good lower bound on this basic trade-off. 

Another is the serial-parallel exchange. Suppose that we had n computers instead 
of just one. How much can we speed up what kinds of calculations? For some, we 
can surely gain a factor of n. But  these are rare. For others, we can gain log n, but  
it is hard to find any or to prove what are their properties. And for most, I think, we 
can gain hardly anything; this is the case in which there are many highly branched 
conditionals, so that  look-ahead on possible branches will usually be wasted. We 
know almost nothing about this; most people think, with surely incorrect optimism, 
that parallelism is usually a profitable way to speed up most computations. 

These are just a few of the poorly understood questions about computational 
trade-offs. There is no space to discuss others, such as the digital-analog question. 
(Some problems about local versus global computations are outlined in [5].) And 
we know very little about trades between numerical and symbolic calculations. 

There is, in today's computer science curricula, very little attention to what is 
known about such questions; almost all their time is devoted to formal classifica- 
tions of syntactic language types, defeatist unsolvability theories, folklore about 

For identifying an exact match, one can use hash-coding and the problem is reasonably well 
undemtood. 
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systems programming, and generally trivial fragments of "optimization of logic 
design"--thc latter often in situations where the art of heuristic programming has 
far outreached the special-case "theories" so grimly taught and tested--and in- 
vocations about programming style almost sure to be outmoded before the student 
graduates. Even the most seemingly abstract courses on recursive function theory 
and formal logic seem to ignore the few known useful results on proving facts about 
compilers or equivalence of programs. 5Iost courses treat the results of work itl 
artificial intelligence, some now fifteen years old, as a peripheral collection of special 
applications, whereas they in fact represent one of the largest bodies of empirical 
and theoretical exploration of real computational questions. Until all this preoccupa- 
tion with form is replaced by attention to the substantial issues in computation, a 
young student might be well advised to avoid much of the computer science curricula, 
learn to program, acquire as much mathematics and other science as he can, and 
study the current literature in artificial intelligence, complexity, arid optimization 
theories. 

2. Programming Languages 

Even in the field of programming languages and compilers, there is too much con- 
cern with form. I say "even" because one might feel that this is one area in which 
form ought to he the chief concern. But let us consider two assertions: (1) languages 
are getting so they have too much syntax, and (2) languages are being described 
with too much syntax. 

Compilers are not concerned enough with the meanings of expressions, assertions, 
and descriptions. The use of context-free grammars for describing fragments of 
languages led to important advances in uniformity, both in specification and in 
implementation. But although this works well in simple eases, attempts to use it 
may be retarding development in more complicated areas. There are serious prob- 
lems in using grammars to describe self-modifying or self-extending languages that 
involve executing, as well as specifying, processes. One cannot describe syntac- 
t ical ly- that  is, statically--the valid expressions of a language that is chaI~ging. 
Syntax extension mechanisms must be described, to be sure, but if these are given 
in terms of a modern pattern-matching language such as SNOBO~, CONV~BT [6], or 
MATCHLESS [7], there need be no distinction between the parsihg program and the 
language description itself. Computer languages of the future will be more con- 
cerned with goals and less with procedures specified by the programmer. The follow- 
ing arguments are a little on the extreme side but, in view of today's preoccupation 
with form, this overstepping will do no harm. (Some of the ideas are due to 
C. I-Iewitt and T. Winograd.) 

2.1. SYNTAX Is OFTEN UNNECESSARY. One can survive with much less syntax 
than is generally realized. Much of programming syntax is concerned wil~h suppres- 
sion of parentheses or with emphasis of scope markers. There are alternatives that 
have been much underused. 

Please do not think that I am against the use, at the human interface, of such 
devices as infixes and operator precedence. They have their place. But their impor- 
tance to computer science as a whole has been so exaggerated that it is beginning to 
eorruvg the youth. 

Consider the familiar algorithm for the square root, as it might be written in a 
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modern algebraic language, ignoring such matters as declarations of data typos. One 
asks for the square root of A, given an initial estimate X and an error limit E. 

.DEFINE SQRT(A,X,E)  : 
if ABS(A - X* X) < E then X elso SQRT(A, (X + A + X) + 2, E). 

II1 an imaginary but recognizable version of LisI, (see Levin [8] or Weissman [9]), 
this  same procedure might be written: 

(DEFINE (SQRT A X E) 
(IF (LESS (ABS (-  A (, X X))) E) THEN X 
ELSE (SQRT A (+ (+ X (+ A X)) 2) E))) 

Here, the function names come immediately inside their parentheses. The clumsi- 
ness, for humans, of writing all the parentheses is evident; the advantages of not 
h~ving to learn all the conventions, such as that  (X "4- A + X) is (-4- X (+ A X)) 
a n d  not (+  (-6 X A) X), is often overlooked. 

It remains to be seen whether a syntax with explicit delimiters is reactionary, or 
whether it is the wave of the future. I t  has important advantages for editing, inter- 
preting, and for creation of programs by other programs. The complete syntax of LIsP 
c a n  be learned in an hour or so; the interpreter is compact and not exceedingly com- 
plicated, and students often can answer questions about the system by reading the 
interpreter program itself. Of course, this will not answer all questions about a real, 
practical implementation, but neither would any feasible set of syntax rules. Further- 
more,  despite the language's clumsiness, many frontier workers consider it to have 
outstanding expressive power. Nearly all work on procedures that solve problems 
b y  building and modifying hypotheses have been written in this or related lan- 
guages. Unfortunately, language designers are generally unfamiliar with this area, 
a n d  tend to dismiss it as a specialized body of "symbol-manipulation techniques." 

Much can bc done to clarify the structure of expressions in such a "syntax-weak" 
language by using indentation and other layout devices that are outside the language 
proper. For example, one can use a "postponement" symbol that belongs to an input 
preprocessor to rewrite the above as 

DEFINE (SQRT A X E) J~ . 
IF J~ THEN X ELSE ~ . 

LESS (ABS ~ ) E. 
- A (, X X). 

sQi~T A ,~ E. 

+ x (+ A X) 

where  the dot means ")("  and the arrow means "insert here the next expression, 
delimited by a dot, that  is available after replacing (recursively) its own arrows." 
T h e  indentations are optional. This gets a good part of the effect of the usual scope 
indicators and conventions by two simple devices, both handled trivially by reading 
programs, and it is easy to edit because subexpressions are usually complete on each 
l i n e .  

'To appreciate the power and limitations of the postponement operator, the reader 
s h o u l d  take his favorite language and his favorite algorithms and see what happens. 
I - I e  will find many choices of what to postpone, and he exercises judgment about 
w, ha t  to say first, which arguments to emphasize, and so forth. Of course, ~ is not 
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the answer to all problems; one needs a postponement device also for list fragments, 
and that requires its own delimiter. In any case, these are but steps toward more 
graphical program-description systems, for we will not forever stay confined to 
mere strings of symbols. 

Another expository device, suggested by Dana Scott, is to have alternative brack- 
ets for indicating right-to-left functional composition, so that one can write (((x>h)g)f 
instead of f(g(h(x))) when one wants to indicate more naturally what happens to a 
quantity in the course of a computation. This allows different "accents," as in 
f((h(x))g), which can be read: "Compute f of what you get by first computing h(x) 
and then applying g to it." 

The point is better made, perhaps, by analogy than by example. In their fanatic 
concern with syntax, language designers have become too sentence oriented. With 
such devices as ~ ,  one can construct objects that are more like paragraphs, without 
falling all the way back to flow diagrams. 

Today's high level programming languages offer little expressive power in the 
sense of flexibility of style. One cannot control the sequence of presentation of ideas 
very much without changing the algorithm itself. 

2.2. EFFICIENCY AND ~J'NDERSTANDING PROGRAMS. What is a compiler for? 
The usual answers resemble "to translate from one language to another" or "to 
take a description of an algorithm and assemble it into a program, filling in many 
small details." For the future, a more ambitious view is required. Most compilers 
will be systems that "produce an algorithm, given a description of its effect." This 
is already the case for modern picture-format systems; they do all the creative work, 
while the user merely supplies examples of the desired formats: here the compilers 
are more expert than the users. Pattern-matching languages are also good examples. 
But except for a few such special cases, the compiler designers have made little prog- 
ress in getting good programs written. Recognition of common subexpressions, 
optimization of inner loops, allocation of multiple registers, and so forth, lead but to 
small linear improvements in efficiency--and compilers do little enough about even 
these. Automatic storage assignments can be worth more. But the real payoff is in 
analysis of the compulational content of the algorithm itself, rather than the way the 
programmer wrote it down. Consider, for example: 

D E F I N E  FIB(N) :  if N=I  then 1, if N=2 then 1, 
else F I B ( N - l )  4- F I B ( N - 2 ) .  

F(6) 

F(5) 

"~ /~F(3) 
/~k F(2) F(2) F(1) 

F(2) F(1) 
FIG. 1 

F(4) 

F(3) F(2) 

F(2) F(1) 
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This reeursive definition of the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, ..- can be 
given to any respectable algorithmic language and will result in the branching tree 
of evaluation steps shown in Figure 1. 

One sees that the amount of work the machine will do grows exponentially with N. 
(More precisely, it passes through the order of FIB(N) evaluations of the definition [) 
There are better ways to compute this function. Thus we can define two temporary 
registers and evaluate FIB(N 1 1) in 

D E F I N E  F I B ( N  A B): if N = I  then  A else F I B ( N - 1  A + B  A). 

which is singly recursive and avoids the branching tree, or even use 

LOOP 

A = O  
B = I  
SWAP A B 
i[ N= 1 return A 
N = N - 1  
B = A+B 
gore LOOP 

Any programmer will soon think of these, once he sees what happens in the branch- 
ing evaluation. This is a case in which a "course-of-values" recursion can be trans- 
formed into a simple iteration. Today's compilers don't recognize even simple cases 
of such transformations, although the reduction in exponential order outweighs any 
possible gains in local "optimization" of code. I t  is no use protesting either that 
such gains are rare or that such matters are the programmer's responsibility. If  it is 
important to save compiling time, then such abilities could be excised. For programs 
written in the pattern-matching languages, for example, such simplifications are 
indeed often made. One usually wins by compiling an efficient tree-parser for a BNF 
system instead of excuting brute force analysis-by-synthesis. 

To be sure, a systematic theory of such transformations is difficult. A system will 
have to be pretty smart to detect which transformations are relevant and when it 
pays to use them. Since the programmer already knows his intent, the problem 
would often be easier if the proposed algorithm is accompanied (or even replaced) 
by a suitable goal-declaration expression. 

To move in this direction, we need a body of knowledge about analyzing and 
synthesizing programs. On the theoretical side there is now a lot of activity studying 
the equivalence of algorithms and schemata, and on proving that procedures have 
stated properties. On the practical side the works of W. A. Martin [10] and J. h~loses 
[11] illustrate how to make systems that know enough about symbolic transforma- 
tions of particular mathematical techniques to significantly supplement the applied 
mathematical abilities of their users. 

There is no practical consequence to the fact that the program-reduction problem 
is recursively unsolvable, in general. In any case one would expect programs even- 
tually to go far beyond human ability in this activity, and make use of a large body 
of program transformations in formally purified forms. These will not be easy to 
apply directly. Instead, one can expect the development to follow the lines we have 
seen in symbolic integration, e.g. as in Slagle [12] and Moses [11]. First a set of 
Simple formal transformations that correspond to the elementary entries of a Table 
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of Integrals was developed. 0n top of these Slagle built a set of heuristic techniques 
for the algebraic and analytic transformation of a practical problem into those 
already understood elements; this involved a set of characterization and matching 
procedures that might be said to use "pattern recognition." In the system of Moses 
both the matching procedures and the transformations were so refined that, ill most 
practical problems, the heuristic search strategy that played a large part in the 
performance of Slagle's program became a minor augmentation of the sure knowl- 
edge and its skillful application comprised in Moses' system. A heuristic compiler 
system will eventually need much more general knowledge and common sense than 
did the symbolic integration systems, for its goal is more like making a whole mathe- 
matician than a specialized i~rtegrator. 

2.3. DESC~BING PROGRAMMING SYSTEMS. NO matter how a language is de- 
scribed, a computer must use a procedure to interpret it. One should remember that 
in describing a language the main goal is to explain how to write programs in it and what 
such programs mean. The main goal isn't to describe the syntax. 

Within the static framework of syntax rules, normal forms, Post productions, and 
other such schemes, one obtains the equivalents of logical systems with axioms, 
rules of inference, and theorems. To design an unambiguous syntax corresponds 
then to designing a mathematical system in which each theorem has exactly one 
proof! But in the computational framework, this is quite beside the point. One has 
an extra ingredient--control--that lies outside the usual framework of a logical 
system; an additional set of rules that specify when a rule of inference is to be used. 
So, for many purposes, ambiguity is a ~seudoproblem. If we view a program as a 
process, we can remember that our most powerful process-describing tools are pro- 
grams themselves, and they are inherently unambiguous. 

There is no paradox in defining a programming language by a program. The 
procedural definition must be understood, of course. One can achieve this under- 
standing by definitions written in another language, one that may be different, 
more familiar, or simpler than the one being defined. But it is often practical, con- 
venient, and proper to use the same language! For to understand the definition, one 
needs to know only the working of that particular program, and not all implications 
of all possible applica.tions of the language. If, is this particularization that makes 
bootstrapping possible, a point that often puzzles beginners as well as apparent 
authorities. 

Using BNF to describe the formation of expressions may be retarding develop- 
ment of new languages that smoothly incorporate quotation, self-modification, and 
symbolic manipulation into a traditional algorithmic framework. This, in turn, 
retards progress toward problem-solving, goal-oriented programming systems. 
Paradoxically, though modern programming ideas were developed because pro- 
cesses were hard to depict with classical mathematical notations, designers are 
turning back to an earlier form~the equation-in just the kind of situation that 
needs program. In Section 3, which is on education, a similar situation is seen in 
teaching, with perhaps more serious consequences. 

3. Learning, Teaching, and the "New Mathematics" 

Education is another area in which the computer scientist has confused form and 
content, but this time the confusion concerns his professional role. He perceives his 
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principal function to provide programs and machines for use irl old and new educa- 
tional schemes. Well and good, but I believe he has a more complex responsibility--. 
to work out and communicate models of the process of education itself. 

In the discussion below, ] sketch briefly the viewpoint (developed with Seymour 
I)apert) from which this belief stems. The following statements are typical of our 

view: 

---~o help people learn is to help them build, in their heads, various kinds of 
computational models. 

--This can best be done by a teacher who has, in his head, a reasonable model of 
what is in the pupil's head. 

--For the same reason the student, when debugging his own models and proce- 
dures, should have a model of what he is doing, and must know good debugging 
techniques, such as how to formulate simple but critical test cases. 

- - I t  will help the student to know something about computational models and 
programming. The idea of debugging ~ itself, for example, is a very powerful con- 
cept--in contrast to the helplessness promoted by our cultural heritage about gifts, 
talents, and aptitudes. The latter encourages "I'm not good at this" instead of "How 
can I make myself bet ter  at i t?"  

These have the sound of common sense, yet they are not among the basic prin- 
ciples of any of the popular educational schemes such as "operant reinforcement," 
"discovery method~," audio-visual synergism, etc. This is not because educators 
have ignored the possibility of mental models, but  because they simply had no 
effective way, before the beginning of work on simulation of thought processes, to 
describe, construct, and test such ideas. 

We cannot digress here to answer skeptics who feel it too simpleminded (if not 
impious, or obscene) to compare minds with programs. We can refer many such 
critics to Turing's paper [13]. For those who feel that  the answer cannot lie in any 
machine, digital or otherwise, one can argue [14] that machines, when they become 
intelligent, very likely will feel the same way. For some overviews of this area, see 
Feigenbaum and Feldman [15] and Minsky [16]; one can keep really up-to-date in 
this fast-moving field only by reading the contemporary doctoral theses and con- 
ference papers on artificial intelligence. 

There is a fundamental pragmatic point in favor of our propositions. The child 
needs models: to understand the city he may use the organism model; it must eat, 
breathe, excrete, defend itself, etc. Not  a very good model, but  useful enough. The 
metabolism of a real organism he can understand, in turn, by comparison with an 
engine. But to model his own self he cannot use the engine or the organism or the 
city or the telephone switchboard; nothing will serve at all but  the computer with 
its programs and their bugs. Eventually, programming itself will become more im- 
portant even than mathematics in early education. Nevertheless I have chosen 
mathematics as the subject of the remainder of this paper, partly because we under- 
stand it better but  mainly because the prejudice against programming as an aca- 
demic subject would provoke too much resistance. Any other subject could also do, 
I suppose, but  mathematical  issues and concepts are the sharpest and least confused 
by highly charged emotional problems. 

2 Turing was quite good at debugging hardware. He would leave the power on, so as not to lose 
the "feel" of the thing. Everyone does that today, but it is not the same thing now that the 
circuits all work on three or five volts. 
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3.1. I~ATHEMATICAL IDORTRAIT OF A SMALL C H I L D ,  Imagine a small child of 
between five and six years, about to enter the first grade. If we extrapolate today's 
trend, his mathematical education will be conducted by poorly oriented teachers 
and, partly, by poorly programmed machines; neither will be able to respond to 
much beyond "correct" and "wrong" answers, let alone to make reasonable inter- 
pretations of what the child does or says, because neither will contain good models 
of the children, or good theories of children's intellectual development. The child 
will begin with simple arithemtic, set theory, and a little geometry; ten years later 
he will know a little about the formal ~heory of the real numbers, a little about linear 
equations, a little more about geometry, and almost nothing about continuous and 
limiting processes. He will be an adolescent with little taste for analytical thinking, 
unablc to apply the ten years' experience to understanding his new world. 

Let us look more closely at our young child, in a composite picture drawn from 
the work of Piaget and other observers of the child's mental construction. 

Our child will be able to say "one, two, th ree , . . . "  at least up to thirty and prob- 
ably up to a thousand. He will know the names of some larger numbers but will not 
bc able to see, for example, why ten thousand is a hundred hundred. He will have 
serious difficulty in counting backwards unless he has recently become very inter- 
ested in this. (Being good at it would make simple subtraction easier, and might be 
worth some practice.) He doesn't have much feeling for odd and even. 

He call count four to six objects with perfect reliability, but he will not get the 
same count every time with fifteen scattered objects. He will be annoyed with this, 
because he is quite sure he should get the same number each time. The observer will 
therefore think the child has a good idea of the number concept but that he is not 
too skillful at applying it. 

However, important aspects of his concept of number will not be at all secure by 
adult standards. For example, when the objects are rearranged before his eyes, his 
impression of their quantity will be affected by the geometric arrangement. Thus 
he will say that there are fewer x's than y's in: 

X X X X X X Z 

Y Y Y Y Y Y Y 
and when we move the x's to 

X X X X T • X 

Y Y Y Y  Y Y Y  
he will say there are more z's than y's. To be sure, he is answering (in his own mind) 
a different question about size, quite correctly, but this is exactly the point: the 
immutability of the number, in such situations, has little grip on him. He cannot 
use it effectively for reasoning although he shows, on questioning, that he knows 
that the number of things cannot change simply because they are rearranged. 
Similarly, when water is poured from one glass to another (Figure 2(a)), he will 
say that there is more water in the tall jar than in the squat one. He will have poor 
estimates about plane areas, so that we will not be able to find a context in which 
he treats the larger area in Figure 2(b) as four times the size of the smaller one. 
When he is an adult, by the way, and is given two vessels, one twice as large as the 
other, in all dimensions (Figure 2(c)), he will think the one holds about four times 
as much as the other: probably he will never acquire better estimates of volume. 

As for the numbers themselves, we know little of what is in his mind. According 
to Galton [17], thirty children in a hundred will associate small numbers with deft- 
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nite visual locations in the space in front of their body image, aiTanged in some 
idiosyncratic manner such as that  shown in Figure 3. They will probably still retain 
these as adults, and may use them in some obscure semiconscious way to remember 
telephone numbers; they will probably grow different spatio-visual representations 
for historical dates, etc. The teachers will never have heard of such a thing and, if a 
child speaks of it, even the teacher with her own number form is unlikely to respond 
with recognition. (My experience is that  it takes a series of carefully posed questions 
before one of these adults will respond, "Oh, yes; 3 is over there, a little farther 
back.") When our child learns column sums, he may keep track of carries by setting 
his tongue to certain teeth, or use some other obscure device for temporary memory, 
and no one will ever ]<now. Perhaps some ways are better than others. 

His geometric world is different from ours. He does not see clearly that  triangles 
are rigid, and thus different from other polygons. He does not know that a 100-line 
approximation to a circle is indistinguishable from a circle unless it is quite large. 
He does not draw a cube in perspective. He has only recently realized that squares 
become diamonds when put on their points. The perceptual distinction persists in 
adults. Thus in Figure 4 we see, as noted by Attneave [18], that  the impression of 
square versus diamond is affected by other alignments in the scene, evidently by 

FiG. 3 

¢ ¢ ¢ ¢  
¢ 

¢ 
¢ 

¢ 
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determining our choice of which axis of syrnmet~T is to bc used in the subjective 
description. 

Our child understands the topological idea of enclosure quite well. Why? This is 
a very complicated concept in classical mat.hematics but in terms of computational 
processes it is perhaps not so difficult. ]hit our child is almost sure to be muddied 
about the situation in Figure 5 (see Papert [19]): "When the bus begins its trip 
around the lake, a boy is seated on the side away from the water. Will he be on the 
lake side at some time in the trip?" Difficulty with this is liable to persist through 
the child's eighth year, and perhaps rclates to his difficulties with other abstract 
double reversals such as in subtracting negative numbers, or with apprehending 
other consequences of eontinuity--"At what point in the trip is there any sudden 
change?'~--or with other bridges between local and global. 

Our portrait is drawn in more detail in the literature on developmental psychology. 
But no one has yet built enough of a computational model of a child to see how these 
abilities and limitations link together in a structure compatible with (and perhaps 
consequential to) other things he can do so effectively. Such work is beginning, 
however, and I expect the next decade to see substantial progress on such models. 

If we knew more about these matters, we might be able to help the child. At 
present we don't even have good diagnostics: his apparent ability to learn to give 
correct answers to formal questions may show only that he has developed some 
isolated library routines. If these cannot be called by his central problem-solving 
programs, because they use incompatible data structures or whatever, we may get 
a high rated test-passer who will never think very well. 

Before computation, the community of ideas about the nature of thought was too 
feeble to support an effective theory of learning and development. Neither the finite- 
state models of the Behaviorists, the hydraulic and economic analogies of the Freud- 
ians, nor the rabbit-in-the-hat insights of the Gestaltists supplicd enough ingre- 
dients to understand so intricate a subject. It needs a substrate of already debugged 
theories and solutions of related but simpler problems. Now we have a flood of such 
ideas, well defined and implemented, for thinking about thinking; only a fraction 
are represented in traditional psychology: 

symbol table 
pure procedure 
time-sharing 
calling sequence 
functional argument 
memory protection 
dispatch table 
error m e s s a g e  
function-call trace 
breakpoint 
languages 
compiler 
indirect address 
m a c r o  
property list 
data type 
hash coding 
microprogram 
format matching 

closed subroutines 
pushdown list 
interrupt 
communication cell 
common storage 
decision tree 
hardware-software trade-off 
serial-parallel trade-off 
time-memory trade-off 
conditional breakpoint 
asynchronous processor 
interpreter 
garbage collection 
list structure 
block structure 
look-ahead 
look-behind 
diagnostic program 
executive program 
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These are just a few ideas from general systems programming and debugging; we 
have said nothing about the many more specifically relevant concepts in languages 
o r  in artificial intelligence or in computer hardware or other advanced areas. All 
these serve today as tools of a curious and intricate craft, programming. But just 
a s  astronomy succeeded astrology, following Kepler's regularities, the discovery of 
principles in empirical explorations of intellectual process in machines should lead 
t o  a science. (In education we face still the same competition! The Boston Globe has 
a n  astrology page in its "comics" section. Help fight intellect pollution !) 

To return to our child, how can our computational ideas help him with his number 
.concept? As a baby he learned to recoguize certain special pair configurations such 
a s  two hands or two shoes. Much later he learned about some threes--perhaps the 
]ong gap is because the environment doesn't have many fixed triplets: if he happens 
t o  find three pennies he will likely lose or gain one soon. Eventually he will find some 
procedure that  manages five or six things, and he will be less at the mercy of finding 
~tnd losing. But for more than six or seven things, he will remain at the mercy of 
f()rgetting; even if his verbal count is flawless, his enumeration procedure will have 
defects. He will skip some items and count others twice. We can help by proposing 
better procedures; putting things into a box is nearly foolproof, and so is crossing 
them off. But for fixed objects he will need some mental grouping procedure. 

First one should t ry to know what the child is doing; eye-motion study might 
help, asking him might be enough. He may be selecting the next item with some 
unreliable, nearly random method, with no good way to keep track of what has 
been counted. We might suggest: sliding a cursor; inventing easily remembered groups; 
drawing a coarse mesh. 

In each case the construction can be either real or imaginary. In using the mesh 
method one has to remember not to count twice objects that  cross the mesh lines. 
The  teacher should show that  it is good to plan ahead, as in Figure 6, distorting the 
mesh to avoid the ambiguities! Mathematically, the important concept is that  
"every proper counting procedure yields the same number." The child will under- 
s tand that any algorithm is proper which (1) counts all the objects, (2) counts none of 
them twice. 

Perhaps this procedural condition seems too simple; even an adult could under- 
stand it. In any case, it is not the concept of number adopted in what is today 
generally called the "New Math ,"  and taught in our primary schools. The following 
polemic discusses this. 
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3.2. THE "NEW MATHEMATICS." By the "new math" I mean certain primary 
school attempts to imitate the formalistic outputs of professional mathematicians. 
Precipitously adopted by many schools in the wake of broad new concerns with 
early education, I think the approach is generally bad because of form-content 
displacements of several kinds. These cause problems for the teacher as well as for 
the child. 

Because of the formalistic approach the teacher will not be able to help the child 
very much with problems of formulation. For she will feel insecure herself as she 
drills him on such matters as the difference between the empty set and nothing, or 
the distinction between the "numeral" 3-t-5 and the numeral 8 which is the "com- 
mon name" of the number eight, hoping that he will not ask what is the common 
name of the fraction ,~-~, which is probably different from the rational s~ and differ- 
ent from the quotient ~ and different from the "indicated division" s~ and differ- 
ent from the ordered pair (8, 1). She will be reticent about discussing parallel lines. 
For parallel lines do not usually meet, she knows, but they might (she has heard) 
if produced far enough, for did not something like that happen once in an experiment 
by some Russian mathematicians? But enough of the problems of the teacher: let 
us consider now three classes of objections from the child's standpoint. 

D~elopmental Objections. It  is very bad to insist that the child keep his knowl- 
edge in a simple ordered hierarchy. In order to retrieve what he needs, he must have 
a multiply connected network, so that he can try several ways to do each thing. He 
may not manage to match the first method to the needs of the problem. Emphasis 
on the "formal proof" is destructive at this stage, because the knowledge needed 
for finding proofs, and for understanding them, is far more complex (and less useful) 
than the knowledge mentioned in proofs. The network of knowledge one needs for 
understanding geometry is a web of examples and phenomena, and observations 
about the similarities and differences between them. One does not find evidence, in 
children, that such webs are ordered like the axioms and theorems of a logistic 
system, or that the child could use such a lattice if he had one. After one under- 
stands a phenomemon, it may be of great value to make a formal system for it, to 
make it easier to understand more advanced things. But even then, such a formal 
system is just one of many possible models; the New Math writers seem to confuse 
their axiom-theorem model with the number system itself. In the ease of the axioms 
for arithmetic, I will now argue, the formalism is often likely to do more harm than 
good for the understanding of more advanced things. 

Historically, the "set" approach used in New Math comes from a formalist 
attempt to derive the intuitive properties of the continuum from a nearly finite set 
theory. They partly succeeded in this stunt (or "hack," as some programmers 
would put it), but in a manner so complex that one cannot talk seriously about the 
real numbers until well into high school, if one follows this model. The ideas of 
topology are deferred until much later. But children in their sixth year already 
have well-developed geometric and topological ideas, only they have little ability 
to manipulate abstract symbols and definitions. We should build out from the 
child's strong points, instead of undermining him by attempting to replace what 
he has by structures he cannot yet handle. But it is just like mathematicians~ 
certainly the world's worst expositors--to think: "You can teach a child anything, 
if you just get the definitions precise enough," or "If we get all the definitions right 
the first time, we won't have any trouble later." We are not programming an 
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empty machine in FORTRAN: we are meddling with a poorly understood large sys- 
tem that, characteristically, uses multiply defined symbols in its normal heuristic 
behavior. 

Intuitive Objections. New Math  emphasizes the idea that  a number can be 
identified with an equivalence class of all sets that can be put into one-to-one cor- 
respondence with one another. Then the rational numbers are defined as equiva- 
lence classes of pairs of integers, and a maze of formalism is introduced to prevent 
the child from identifying the rationals with the quotients or fractions. Functions are 
often treated as sets, although some texts present "function machines" with a 
superficially algorithmic flavor. The definition of a "variable" is another fiendish 
maze of complication involving names, values, expressions, clauses, sentences, 
numerals, "indicated operations," and so forth. (In fact, there are so many different 
kinds of data in real problem-solving that real-life mathematicians do not usually 
give them formal distinctions, but  use the entire problem context to explain them.) 
In the course of pursuing this formalistic obsession, the curriculum never presents 
any coherent picture of real mathematical phenomena of processes, discrete or 
continuous; of the algebra whose notational syntax concerns it so; or of geometry. 
The "theorems" that  are "proved"  from time to time, such as, "A number x has 
only one additive inverse, - x , "  are so mundane and obvious that  neither teacher 
nor student can make out the purpose of the proof. The "official" proof would add 
y to both sides of x + (--y)  -- 0, apply the associative law, then the commutative 
law, then the y + ( - y )  = 0 law, and finally the axioms of equality, to show that  
y must equal x. The child's mind can more easily understand deeper ideas: " In  
x + ( - y )  = 0, if y were less than x there would be some left over; while if x were 
less than y there would be a minus number left--so they must be exactly equal." 
The child is not permitted to use this kind of order-plus-continuity thinking, pre- 
sumably because it uses "more advanced knowledge," hence isn't part of a "real 
proof." But in the network of ideas the child needs, this link has equal logical status 
and surely greater heuristic value. For another example, the student is made to 
distinguish clearly between the inverse of addition and the opposite sense of distance, 
a discrimination tha t  seems entirely against the fusion of these notions that would 
seem desirable. 

Computational Objections. The idea of a procedure, and the know-how that 
comes from learning how to test, modify, and adapt procedures, can transfer to 
many of the child's other activities. Traditional academic subjects such as algebra 
and arithmetic have relatively small developmental significance, especially when 
they are weak in intuitive geometry. (The question of which kinds of learning can 
"transfer" to other activities is a fundamental one in educational theory: I empha- 
size again our conjecture tha t  the ideas of procedures and debugging will turn out 
to be unique in their transferability.) In algebra, as we have noted, the concept of 
"variable" is complicated; but  in computation the child can easily see "z  + y + z" 
as describing a procedure (any procedure for adding!) with "x," "y," and "z" as 
pointing to its "da ta . "  Functions are easy to grasp as procedures, hard if imagined 
as ordered pairs. If you want a graph, describe a machine that draws the graph; if 
you have a graph, describe a machine that  can read it to find the values of the func- 
tion. Both are easy and useful concepts. 

Let  us not fall into a cultural trap:  the set theory "foundation" for mathematics 
is popular today among mathematicians because it is the one they tackled and mas- 
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tered (in college). These scientists simply are not acquainted, generally, with compu- 
tation or with the Post_Turing-McCulloch-Pitts-:\ 'IcCarthy-Ncwell-Simon-.. .  fam- 
ily of theories that  will be so much more important  when the children grow up. 
Set theory is not, as the logicians and publishers would havc it, the only and true 
foundation of mathematics; it is a viewpoint that  is pre t ty  good for investigating 
the transfinite, but undistinguished for comprehending the real numbers, and quite 
substandard for learning about arithmetic, algebra, and geometry. 

To summarize my objections, the New i~:[ath emphasizes the use of formalism 
and symbolic manipulation instead of the heuristic and intuitive content of the 
subject matter. The child is expected to learn how to solve problems but  we do no~ 
teach him what we know, either about the subject or about  problem-solving. 3 

As an example of how the preoccupation with form (in this case, the axioms for 
arithmetic) can warp one's view of the content, let us examine the weird compulsion 
to insist that  addition is ultimately an operation on just  two quantities. In New 
Math, a + b + c  must "real ly" be one of (a+(b-~c)) or ( (a+b)+c) ,  and a+b-~c+d 
can be meaningful only after several applications of the associative law. Now this 
is silly in many contexts. The child has already a good intuitive idea of what it 
means to put several sets together; it is just as easy to mix five colors of beads as 
two. Thus addition is already an n-ary operation. But  listen to the book trying to 
prove that  this is not so: 

Addition i s . . .  always performed on two numbers. This may not seem reasonable 
at first sight, since you have often added long strings of figures. Try an experiment on 
yourself. Try to add the numbers 7, 8, 3 simultaneously. No matter how you attempt 
it, you are forced to choose two of the numbers, add them, and then add the third to 
their sum. 

--From a ninth-grade text 

Is the height of a tower the result of adding its stages by  pairs in a certain order? 
Is the length or area of an object produced that  way from its parts? Why did they 
introduce their sets and their one-one correspondences then to miss the point? 
Evidently, they have talked themselves into believing tha t  the axioms they selected 
for algebra have some special kind of t ru th!  

Let  us consider a few important and pret ty  ideas tha t  are not discussed much in 
grade school. First consider the sum ~ + ~ + ~/~ ~ . . . .  Interpreted as area, 
one gets fascinating regrouping ideas, as in Figure 7. Once the child knows how to 
do division, he can compute and appreciate some quanti tat ive aspects of the limit- 
ing process .5, .75, .875, .9375, .96875, . . . ,  and he can learn about  folding and cut- 
ting and epidemics and populations. He could learn about  x ~ px  -~ qx, where p 

q = 1, and hence appreciate dilution; he can learn that  ~ ,  ~ ,  5/~, ~ ,  ~ ,  . . .  
1 and begin to understand the many colorful and common-sense geometrical and 

topological consequences of such matters. 
But  in the New Math, the syntactic distinctions between rationals, quotients, 

and fractions are carried so far that  to see which of ~ and ~ is larger, one is not 

3 In a shrewd but hilarious discussion of New Math textbooks, Feynman [20] explores the con- 
sequences of distinguishing between the thing and itself. "Color the picture of the ball red," 
a book says, instead of "Color the ball red." "Shall we color the entire square area in which 
the ball image appears or just the part inside the circle of the ball?" asks Feynman. (To "color 
the balls red" would presumably have to be "color the insides of the circles of all the members 
of the set of balls" or something like that.) 
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permitted to compute and compare .375 with .4444. One must cross-multiply. Now 
cross-multiplication is very cute, but it has two bugs: (1) no one can remember 
which way the resulting conditional should branch, and (2) it doesn't tell how far 
apart the numbers are. The abstract concept of order is very elegant (another set 
of axioms for the obvious) but the children already understand order pretty well 
and want to know the amounts. 

Another obsession is the concern for number base. I t  is good for the children to 
understand clearly that  223 is "two hundred" plus " twenty"  plus "three," and I 
think that this should be made as simple as possible rather than complicated. 4 1 do 
not think that the idea is so rich that  one should drill young children to do arith- 
metic in several bases! For there is very little transfer of this feeble concept to 
other things, and it risks a crippling insult to the fragile arithmetic of pupils who, 
already troubled with 6 -+- 7 = 13, now find that 6 ~ 7 = 15. Besides, for all the 
attention to number base, I do not see in my children's books any concern with even 
a few nontrivial implications--concepts that  might justify the attention, such as: 

Why is there olfly one way  to wr i te  a decimal integer? 
W h y  does cas t ing  ou t  nines  work? ( I t  i sn ' t  even ment ioned . )  
W h a t  happens if we use a r b i t r a r y  nonpowers ,  such  as a ~ 37b -Jr 2Ac -{- l l d  -~- . - .  i n s t ead  

of the usual a ~ 10b k- 100c + 1000d ~ . . .  ? 

If they don't discuss such matters, they must have another purpose. My con- 
jecture is that  the whole fuss is to make the kids better understand the procedures 
for multiplying and dividing. But from a developmental viewpoint this may be a 
serious mistake--in the strategies of both the old and the "new" mathematical 
curricula. At best, the standard algorithm for long division is cumbersome, and 
most children will never use it to explore numeric phenomena. And, although it is 
of some interest to understand how it works, writing out the whole display suggests 
tha t  the educator believes that  the child ought to understand the horrible thing 
every time! This is wrong. The important idea, if any, is the repeated subtraction; 
the  rest is just a clever but not vital programming hack. 

If we can teach, perhaps by rote, a practical division algorithm, fine. But in any 
ease let us give them little calculators; if that  is too expensive, why not slide rules. 
Please, without an impossible explanation. The important thing is to get on to the 
real numbers[ The New Math 's  concern with integers is so fanatical that it reminds 
me, if I may mention another pseudoscience, of numerology. (How about that, 
Boston Globe/) 

The Cauchy-Dedekind-Russell-Whitehead set-theory formalism was a large ac- 
complishment-another  (following Euclid) of a series of demonstrations that many 

4 Cf.  'Tom Lehre r ' s  song ,  " N e w  M a t h "  [21]. 
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mathematical ideas can be derived from a few primitives, albeit by a long and 
tortuous route. But the child's problem is to acquire the ideas at  all; he needs to 
lea T M  about reality. In terms of the concepts available to him, the entire formalism 
of st:t, theory cannot hold a candle to one older, simpler, and possibly greater idea: 
the ~honterminating decimal representation of the intuitive real number line. 

There is a real conflict between the logician's goal and the educator's. The logician 
wants to minimize the variety of ideas, and doesn't mind a long, thin path. The educator 
(rightly) wants to make the paths short and doesn't m i n d - i n  fact, prefers--connecgons 
to many other ideas. And he cares almost not at all about the directions of the links. 

As for better  understanding of the integers, countless exercises in making little 
children draw diagrams of one-one correspondences will not help, I think. I t  will 
help, no doubt, in their learning valuable algorithms, not  for number but  for the 
important topological and procedural problems in drawing paths without crossing, 
and so forth. I t  is just that  sort of problem, now treated entirely accidentally, that 
we should attend to. 

The computer scientist thus has a responsibility to education. Not,  as he thinks, 
because he will have to program the teaching machines. Certainly not because he 
is a skilled user of "finite mathematics." He knows how to debug programs; he 
must tell the educators how to help the children to debug their own problem-solv- 
ing processes. He knows how procedures depend on their data  structures; he can 
tell educators how to prepare children for new ideas. He knows why it is bad to 
use double-purpose tricks that  haunt one later in debugging and enlarging pro- 
grams. (Thus, one can capture the kids' interest by associating small numbers with 
arbitrary colors. But what will this trick do for their later a t tempts  to apply number 
ideas to area, or to volume, or to value?) The computer scientist is the one who 
must study such matters, because he is the proprietor of the concept of procedure, 
the secret educators have so long been seeking. 
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