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"Everyone should firmly persuade himself that none of the sciences, however ab- 
struse, is to be deduced from lofty and obscure matters, but that they all proceed only 
from what is easy and more readily understood."--Deseartes. 

1. Introduction 

The principal purpose of this paper is to offer a theory which is closely related 
to Turing's [1] but  is more economical in the basic operations. I t  will be proved 
that  a theoretically simple basic machine can be imagined and specified such tha t  
all partial recursive functions (and hence all solvable computation problems) 
can be computed by  it  and tha t  only four basic types of instruction are employed 
for the programs: shift left one space, shift right one space, mark a blank space, 
conditional transfer. In particular, erasing is dispensable, one symbol for marking 
is sufficient, and one kind of transfer is enough. The reduction is somewhat 
similar to the realization of, for instance, the definability of conjunction and im- 
plication in terms of negation and disjunction, or of the definability of all these in 
terms of Sheffer's stroke function. As a result, i t  becomes less direct to prove that  
certain things can be done by  the machines, but  a little easier to prove that  
certain things cannot be done. 

This serf-contained theory will b e  presented, as far as possible, in a language 
which is familiar to those who are engaged in the use and construction of large- 
scale computers. 

Turing's theory of computable functions antedated but  has not much in- 
fluenced the extensive actual construction of digital computers. These two aspects 
of theory and practice have been developed almost entirely independently of each 
other. The main reason is undoubtedly that  logicians are interested in questions 
radically different from those with which the applied mathematicians and elec- 
trical engineers are primarily concerned. I t  cannot, however, fail to strike one as 
rather strange that  often the same concepts are expressed by very different terms 
in the two developments. One is even inclined to ask whether a rapprochement 
might not produce some good effect. This paper wiU, it is believed, be of use to 
those who wish to compare and connect the two approaches. 

Extensive use of Turing [1] and Kleene [2] (Chapter XI I I )  will be made, al- 
though the exposition is sufficient in itself. 

* Presented at the meeting of the Association, June 23-25, 1954. The work for this paper 
was partly supported by the Burroughs Corporation, Research Center, Paoli, Pa. Thanks 
are due to Professors A. W. Burks and G. W. Patterson for useful suggestions and comments. 
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2. The basic machine B 

No physically realizable general-purpose machine is truly general-purpose in 
the sense that all theoretically solvable computation problems can be solved by 
the machine. In each case, the storage unit is necessarily finite: the length of 
each instruction word is finite, and there are only a definite finite number of 
addresses in the storage. Given any actual machine, it is easy to find computation 
problems which require more than its storage capacity. 

Indeed, it seems reasonable to agree that  given any uniform method of repre- 
senting positive integers and an arbi t rary number no, there exist integers not 
representable by less than no symbols. We shall refrain from philosophical dis- 
cussions on this question, such as the possibility of infinitely many isolated 
atomic symbols, etc., but take this for granted. If we accept this reasonable 
assumption, it follows that,  in order to discuss a machine which computes all 
computable problems, or even a machine which computes just all problems of a 
given kind, such as the addition of two positive integers, we have to use the 
fiction of an infinite or indefinitely expandable storage unit, which may consist 
of a (fictitious) tape, or a (fictitious) internal store, or both. 

Consider first a fictitious machine B which has an indefinitely expandable 
internal (parallel) storage and which uses in addition a tape (a serial storage) 
that  is divided into a sequence of squares (cells) and could be extended both 
ways as much as we wish. In addition, the machine has a control element and a 
reading-writing head which, at each moment, is supposed to be scanning one and 
only one square of the tape. The head can, under the direction of the control 
element and in conformity with the program step under attention, move one 
square to the left or right or mark the square under scan, or "decide" to follow 
one of two other preassigned program steps according as the square under scan 
is marked or blank. At each moment,  the next operation of the machine is de- 
termined by the step of the program under attention of the control element, to- 
gether with the content (blank or marked) of the square under scan. The machine 
can perform four kinds of operation in accordance with these two factors: (i) the 
reading-writinghead moves one square to the left, (ii) it moves one square to the 
right, (iii) it marks the square under scan, (iv) the control element shifts its at- 
tention to some other program step. 

Suppose that  the addresses in the internal storage can be any positive integers. 
Corresponding to the four types of operation, there are four types of basic in- 
structions: 

(1) ---~: shift the head one square to the right, i.e., shift to scan the next 
square to the right of the square originally under scan; the same 
purpose can be accomplished by shifting the tape one square to 
the left. 

(2) ~ - - :  shift the head one square to the left. 
(3) . :  mark the square of the tape under scan. 
(4) Cn: a conditional transfer. 

Of these, (1)-(3) are three single instructions, while the conditional transfer 
really embodies an infinite bundle of instructions. A conditional transfer is of the 
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form m. Cn, according to which the m-th instruction word (i.e., the instruction 
word at the address m) is a conditional transfer such that  if the square under 
scan is marked, then follow the n-th instruction; otherwise (i.e., if the square 
under scan is blank), follow the next instruction (i.e., the (m + 1)-th instruction). 
The numbers m and n can be any positive integers that are not greater than the 
total number of instructions of the program in which m. Cn occurs. When n = 
m + 1, the instruction is wasteful; but  we need not exclude such cases. There 
is nothing to prevent the occurrence of program steps which would instruct the 
reading-writing head to mark a square already marked, even though we can 
usually so construct the programs that  when operating on inputs which interest 
us no such wasted actions will arise. To preclude the marking of already marked 
squares in the definition of' programs would introduce unnecessary complications 
into the general considerations: e.g., replace every step m. .  by two steps 
m.C(rn + 2), rn -t- 1.* and renumber all steps m + i in the original program by 
r e + i + 1 .  

Since there is no separate instruction for halt (stop), it is understood that  the 
machine will stop when it has arrived at a stage that  the program contains no 
instruction telling the machine what to do next. For uniformity and explicitness, 
however, we shall agree tha t  every program has as its two last lines N - 1.---~, 
N.~-. To illustrate, we give a simple program: 1.., 2.--~, 3.C2, 4.--~, 5.~--. This 
program enables the reading head to find and stop at the nearest blank to the 
right of the square initially under scan. 

More exactly, a program or routine on the machine B can be defined as a set of 
ordered pairs such that  there exists a positive integer k(k > 2) for which (a) for 
every n, n occurs as the first member of exactly one pair in the set if and only if 
1 =< n ~ k; (b) the second member of each pair is either • or ~ or ~-- or a number 
n, 1 ~ n ~ k - 1; (e) there are the pairs (k -- 1,--~), (k,~--). We can, according 
to this definition, represent the example above by: { (1, *), (2, ---~), (3,2), (4, --~), 
(5,~-)I. 

In contrast with Turing who uses a one-way infinite tape that  has a beginning, 
we are following Post in the use of a 2-way infinite tape. This is considered a 
reduction because we are deprived of the privilege of appealing to the beginning 
of the tape. As it turns out, for the purpose of computation, there is little dif- 
ference in the capacity of the machine whether we use a l -way or a 2-way in- 
finite rope. So far as the general theory is concerned, the 1-way tape tends to 
rule out certain programs as meaningless when they instruct the reading head to 
go beyond the beginning of the tape. This would introduce unnecessary compli- 
cations. 

We have defined the totali ty of all possible programs on the machine B. For 
each program, what the machine B will do is determined by the initial tape con- 
tent and the initial position of the reading head relative to the tape, both of 
which can be given arbitrarily. To simplify our further considerations, we shall 
assume, once for all, that  (i) the initial (input) tape contains only finitely many 
marked squares, and that  (ii) at  the beginning of each program, the reading 
head scans the sixth blank square to the right of the rightmost marked square. 
On the other hand, subroutines begin on any square within the minimum tape 
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portion containing all the initially marked squares and six blanks to the right, 
and end similarly. From (i), it follows that  at each moment there are only finitely 
many marked squares on the tape. 

We note that  given any program H, its behaviour at each moment is com- 
pletely determined by: the content of the tape at the moment, the position and 
content of the square under scan, the instruction of the program that  is being 
attended to at the moment. The three factors plus the given program determine 
the complete instantaneous state of the machine B. To be precise, we can represent 
these states by numbers in the following manner. We represent --b ~--, * by 
1, 2, 3 respectively and n by n + 3, the i-th program step by a power of the 
i-th prime, so that, for example, 2 a. 31 . 5 5. 71.11 s represents the program 

{(1,.) ,  (2,--*), (3,2), (4,--~}, (5,~--}} 

given above. The length of a program II is represented by the number lh(~r) of 
distinct prime factors in its representing number r and the i-th line of H is repre- 
sented by the number (Tr)~ which is the exponent of the i-th prime number (2 
being the first prime number) in the factorization of ~. The funetions lh(~r) and 
(Tr)~ are well-known recursive functions (el. e.g., Kleene [2]). The tape content 
and the square under scan can be represented by a number of the form 3 ~. 5 b. 7 c, 
where b = 0 or 1 according as the square under scan is blank or marked, a and c 
represent respectively the tape contents to the left and to the right of the square 
under scan, in such a way that  the i-th digit (from right to left) of a (resp. b) 
is 0 or 1 according as whether the i-th square to the left (resp. right) is blank or 
marked. Since only finitely many squares are marked at  each moment, a and c 
are at each time definite numbers. If, for instance, the only marked portion of 
the tape is 

and the head scans the fourth (from left) of these squares, the number 
is 31°1.5.7 n~. Using these numbers, we represent the complete instantaneous 
state at a moment by the number 

2". 3 ~. 5 b. 7 c. 11~, 

when the program has number ~', the tape content with the square under scan 
has at the moment the number 3 ". 5 b. 7 c, and the program step attended to is i. 
From this number, we can also recover ~, a, b, c, i in a unique manner, on account 
of the unique factorization of a number into prime factors. 

Since we assume that  one program step is performed at each moment, the 
complete instantaneous state of the machine at each moment is determined by 
that  at the preceding moment in a fairly simple manner. Thus, if the number at 
one moment is 2".3~.5b.7C.ll ~ and i < lh(~r), then the number at  the next 
moment is given as follows: 

(i) if (~)~ is 1, it is 2".3~°~+b.5~'.7~/I°.11 ~+~ (C' being the remainder of 
dividing c by 10); 
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(ii) if (~)~ is 2, it is 2".3a/10.5a'.710c+b.lli+~; 

(iii) if (~)~ is 3, it is 2~.3a.5.7°.11~+1; 

(ix') if (r)~ is 3 W j, it is 2".3°.5b.7C.ll ~+1, ff b = 0, and 2T.3a.5b.7C.ll j, 
f f b = l .  

Hence, given the complete instantaneous state at  the moment when the machine 
begins to perform a program, all later states will be determined. The begining 
state is in turn entirely determined by the program and the input tape. I t  follows 
from these facts that  for each given program ~r, there is a recursive function 
0f(L, t) which gives, for any given input tape content represented by ~, the 
number of the complete instantaneous state of the machine B at  moment t. 
Then we can define a recursive function r,(,) = ~t[(0,(~, t))6 = /h(~-)], which 
gives the smallest number t such that,  for given L, the machine will be attending 
the last line of the program II at  time t, provided the machine does get to tha t  
stage for the given ~. For values of ~ which would make the machine run forever 
according to the program II, r~(~) is not defined. I t  seems reasonable to call the 
function r,(L) the speed function of the program II or of the function which II 
determines. We may call the recursive function 0,(~, t,(~))/(2T.11 ~(')) the 
function determined by the program II, since it gives for each input ~, the cor- 
responding output that  results from a performance of the program II. We omit 
the explicit definitions for these functions which are similar to those of Kleene 
[2], pp. 374-376. 

I t  follows that  the function determined by any program of the machine B is 
a recursive function. We can state the result by saying that  all functions com- 
putable by the machine B are recursive. This is a slight generalization of the 
counterpart of the known theorem that  all functions computable in Turlng's 
sense are recursive (Kleene [2], p. 374). 

The generalization consists in the waiving of the restriction tha t  the initial 
input and final output tape contents must be of certain preassigned forms which 
are taken according to an ad hoc convention as representing positive integers 
(arguments or values of functions) or n-tuples of integers (arguments of non- 
singulary functions). For instance, in Kleene [2], the input tape is supposed to 
consist of a string of l 's, or a string of several strings of l 's  any two of which are 
separated by a 0. What  the restriction amounts to is to select effectively from all 
possible tape situations a suitable subset to represent all positive integers and 
their n-tuples. In terms of our numerical representation of tape situations, this 
means that  ~ is not to range over the set of all integers which represent tape 
situations but only over some simple recursive subsets of it. Moreover, in our 
representation of tape situations, we have included information about the square 
under scan; this is not needed when we are primarily interested only in interpret- 
ing initial and final tape contents as questions and answers for evaluating certain 
functions of positive integers. 

When we wish to show that  a program II of the machine B represents a function 
(say f(x)) of positive integers, the natural thing to do would seem to be, (i) 
represent by a uniform method the argument of the function on the input tape, 



6 8  H. WANG 

(ii) read out by a uniform method the final value of the function from the final 
output tape for a given input by the program II, (iii) show that the values thus 
obtained aLvays agree with the values of the functionf(x) for the given argument. 
What uniform methods of representation we choose is more or less arbitrary 
although they must be effective and indeed "simple" in some intuitive sense. 
While our considerations thus far are independent of how we choose these 
effective methods of representation, in order to prove our main theorem, we find 
it necessary to fix some simple specific method of putting questions on and 
reading answers from the tape. We shall not consider the general question as to all 
the possible methods of representing questions and answers by which all re- 
cursive functions are computable on the machine B. 

We assume the particular method, to be described in the next section, of repre- 
senting positive integers and strings of them and define computability relative 
to the representation. A function f(x) of positive integers is said to be B-com- 
putable if, and only if, we can find a program such that when x is represented on 
the tape and when the machine is scanning the representation, the program leads 
the machine to print more marks on the tape so that when the machine has 
performed all the instructions of the program, the rightmost portion of the 
printed part of the tape represents the value of f(x), provided f(x) is defined for 
the given argument x. A similar definition is obtainable for functions of two or 
more variables. For example, it is possible to show that the funct~nn~ 

f(x) = 2x, 

g(x, y) = xy 

are B-computable by the above definition. 
The main result, to be established in the next section, is that all (partial) 

recursive functions are B-computable. The proof depends essentially on the 
known fact (Kleene [2], p. 331) that all recursive functions can be obtained by a 
few (six, in fact) simple types of schemata. Since each schema, as we shall prove, 
can be handled by the machine B, the general result follows. 

The result is a little stronger than the known fact that all recursive functions 
are computable in the sense of Turing, because Turing permits additional basic 
instructions (besides., --% ~--, Cx) such as erasing a mark, marking a square by 
other symbols, unconditional transfer, and other types of conditional transfer. 
While it is obvious that not all these additional instructions are indispensable, it 
is by no means obvious that all of them are dispensable. Indeed, the actual proof 
of the adequacy of . ,  --~, ~-- and Cx, which will be presented in the next section, 
is quite complex. 

It is also known that all Turing computable functions are recursive. As all 
B-computable functions are obviously Turing computable, so all B-computable 
functions are recursive. This last conclusion also follows directly from the more 
general statement, previously established, that all functions computable by the 
machine B are recursive. 

These results will establish the equivalence or coextensiveness of Turing com- 
putability and B-computability in the sense that a function is Turing computable 
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if and only if it is B-computable. The main result that all recursive functions are 
B-computable yields also, for example, a somewhat simpler proof of the recursive 
unsolvability of Thue's  problem (the word problem for semi-groups) (Kleene 
[2], p. 382), since fewer types of basic operations need to be considered. 

We interrupt the general discussion to give details of our proof of the main 
theorem. Readers not interested in technical matters may wish to skip the more 
formal parts of the next section. 

3 .  A l l  r e c u r s i v c  f u n c t i o n s  a r e  B - c o m p u t a b l e  

We possess fairly simple inductive characterizations of the class of recursive 
functions: certain simple initial functions are recursive; given a class of reeursive 
functions, certain simple schemata will yield new recursive functions; and these 
provide us with all recursive functions. To prove that  all recursive functions 
are B-computable, we use induction accordingly: the initial recursive functions 
are B-computable; given a class of B-computable functions, functions got from 
them by the recursion schemata are again B-computable. 

We shall follow Turing in making a distinction between principal and aux- 
iliary squares on the tape. While this is merely a mat ter  of dispensable convenient 
convention in Turing's approach, it is not clear that  we can get what  we want 
without some form of the distinction, in view of the fact tha t  we do not permit 
erasing. We shall call one sequence of alternate squares the P-squares (principal 
squares) and the other sequence A-squares (auxiliary squares). Questions and 
answers on a tape are determined by the contents of the P-squares alone. 

In general, between two marked consecutive P-squares, there is an A-square 
which may be either blank or marked. We shall represent each positive integer 
n by a string of n pairs of squares (called a "number expression") which begins 
with (i.e., at the left end) a P-square and ends with an A-square such that  all 
P-squares in the string are marked and that  the P-squares which immediately 
precede and follow the string are both blank. Incidentally, this leaves the number 
0 unrepresented. We shall deliberately consider only positive integers. We 
could, if we wished to include the number 0, represent n by a string of (n + 1) 
pairs of squares with all P-squares marked. But  there is no need to do so. We 
shall call a number expression clean if all the A-squares in it are blank. In general, 
we always introduce at  first clean number expressions. We begin to mark the 
A-squares in a number expression only when we operate on it  (as we shall see, 
this means: copy it). 

Our purpose is to prove that  for each recursive function f ( x l ,  • • • , x m ) ,  we can 
construct a program which, when fed into the machine B, wil! compute the values . 
of the function. This task we interpret as follows. Given any constant argument 
values xl ,  " .  , x~, we represent them anywhere on the tape from left to right, 
first the number x l ,  followed by one blank P-square and one blank A-square, 
followed by the liumber x : ,  etc. Once the argument values are given, it is deter- 
mined which squares on the tape are the P-squares, since the beginning square 
of xl is a P-square. Our program for the function f ( x ~ ,  • • • , x ~ )  is to enable us so 
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to operate the machine B that  for any given positive integers x~, . . .  , x,~, the 
machine B will eventually stop and then there is a number expression on the tape 
to the right of which all squares are blank, and which represents the number that  
is the value of f for the given argument values x~, • -- , x,~, provided f is defined 
for these particular argument values. I f f (x~,  • • • , xm) is not defined, the machine 
may either never stop (circular) or stop at  a stage when there is no number ex- 
pression on the tape such that  all squares to its right are blank (blocked). In 
other words, for each recursive function, we t ry  to find a program such that  for 
each given array of argument values (or for each argument value, when we have 
a function of one variable), the machine B makes a separate calculation on a 
separate tape. If  f ( x ~ ,  . . .  , x ~ )  is defined for all x~, . . .  , x~ (i.e., not 0nly 
partial recursive but  general recursive), we could use the same tape to calculate 
all values successively since each calculation uses up only a finite portion of the 
infinite tape. We shall, however, to simplify the picture, prefer to think that  each 
time we use a new blank tape. We are not  interested in what the machine does 
with the program when the initial tape content does not represent exactly a string 
of m integers. 

We shall so construct our programs for recursive functions that each recursive 
function is not only B-computable but  tha t  each of the programs will satisfy 
several additional conditions. We assume that  the initial tape contains a question 
of the right form. According to the definition of number expressions, any two 
number expressions must be separated by at  least one blank P-square. The pro- 
gram will be such that  in the process of operating the machine, (a) there are 
never more than two blank P-squares between two number expressions; (b) 
every marked P-square is always part  of a number expression; (c) we shall never 
mark an A-square which lies outside the minimum tape portion that  contains all 
the printed marks at the moment;  (d) for any values x~, . . .  , Xm, either the 
machine will never stop or the final tape will contain a number expression to the 
right of which there is no marked square (i.e., either the function is defined or the 
operation of the machine is circular, but  never blocked). From (a) and (c) it 
follows that  at every stage of operating the machine, there never appear more 
than 5 blank squares between two marked squares. We shall call a string of 
5 (resp. 3) blank squares lying between two marked squares a big gap (resp. a 
gap). I t  follows from (a) and (c) tha t  each gap or big gap always begins with an 
A-square and ends with an A-square. We shall eliminte a big gap by marking the 
A-square in the middle. The programs also satisfy the following conditions: (e) 
if the machine does stop for given arguments x~, - . .  , x,~, the last number 
expression will be clean (i.e., no A-square in it is marked); (f) on stopping, all 
big gaps will be eliminated; (g) on stopping, the reading head will always end up 
scanning the 5-th blank square to the right of the last number expression, i.e., the 
6-th blank square beyond the last marked square (we shall say that the reading 
head ends up scanning the open). Condition (e) assures that  we can immediately 
use the value of one function in calculating the value of some other function. 
Condition (f) helps to locate previous number expressions on the tape. 
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Since there are never more than 5 blanks between two marked squares, we can, 
beginning with the reading head scanning a square within the minimum region of 
the tape which contains all marked squares, easily find its beginning and its end: 
go left (resp. right) until a string of 6 blank squares is found. 

We introduce a subroutine Y such that  if the reading head is scanning a square 
which falls within the minimum tape region which contains all marked squares 
and 6 blanks to the right of the last marked square, carrying out Y will enable 
the reading head to find the last marked square and end up scanning the open, 
provided there are initially no more than 5 blanks between any two marked 
squares. We note tha t  this is useful because at the beginning of each of the 
programs we are actually going to use below, the square initially under scan 
always falls within the region just specified. We introduce first a subroutine X 
which enables us to find the nearest marked square to the left of the square 
initially under scan (or itself, if it is marked) and end up one square to the right. 

Subroutine X: l .C14, 2.,--, 3.C14, 4.~--, 5.C14, 6.~ m, 7.C14.8.,-,  9.C14, 10.~-, 11 .C14, 
12.~-, 13.C14, 14.--,, 15.--~, 16.~--. 

Using X, we can define Y: 

(i) Subroutine Y: 1 .X, 2.~--, 3.-~, 4.C3, 5.-~, 6.C3, 7.-~, 8.C3, 9.-~, 10.C3, 11.--~, 
12.C3, 13.-,, 14.C3, 15.-~, 16.~-. 

Next we introduce a subroutine which enables us to add 1 to the last number  
on the tape and end up with the reading head scanning the last marked square. 
We use the obvious notation ~-~ ( resp . - -~)  when ~-- (resp.-~) is repeated n 
times: 

(ii) Subroutine A:i .Y ,  2.~ --4, 3.*, 4.-*, 5.~-; or simply Y, ~_4,., __~, ~_.; or even 
just Y, ~_4, ,. 

This subroutine can be reiterated to enable us to add any given constant k to 
the last number. In general, for any subroutine or program II, we shall use the 
notation IIk to represent tha t  II is repeated ~: times, and lII 1 is identified with II. 
In the case of A, the purpose of A k could be achieved more directly by using 
(A, --~:, .),  (A, --~:,., __2, .),  etc. But  it is preferable to use reiterations of whole 
subroutines, when possible. 

Similarly x~dth Subroutine Y, we can also introduce a subroutine H which 
enables us to find the nearest big gap to the left of the square under scan (if 
there is such a big gap) and end up with the reading head scanning the middle 
square of the big gap. Note tha t  if the square initially under scan is not  marked, 
we have to find a marked square first. 

(iii) Subroutine H: 1.C4, 2.~-, 3.C1, 4.~-, 5.C4, 6.~, 7.C4, 8.~--, 9.C4, 10.~--, 
11.C4, 12.~-, 13.C4, 14.-% (15.-~, 16.~-.) 

The success of the subroutine again depends on the fact that  we do not  allow 
more than 5 blanks between two marked squares. We could also get one in- 
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dependently of this fact  if we replace "14.---~" by the following: 14.*--, 15. C19, 
16,~--, 17.C4, 18.C16, 19.--~ 3. 

To  give direction to our  procedure,  we recall tha t  our purpose is to prove 
tha t  all recursive functions are B-computable ,  and tha t  our proof depends on the 
possibility of get t ing all recursive functions from six schemata.  Of these six, 
the first three are direct schemata  telling us uncondit ional ly tha t  funct ions 
defined by them are recursive, the remaining three are conditional ones. We 
pause to state the first three schemata ,  which are simpler, and explain where we 
are going. 

Schema (I). ,p(x) = x % 1. 

Schema (II). ~,(x~ , . . .  , x , , )  = q, q a given constant. 

Schema (III). v(xi , . . .  , x,,) = x~ , i a given constant among 1, --. , n. 

To prove, for instance, t ha t  the funct ion defined by (I) is B-computable ,  we 
find a program such tha t  when the a rgument  value x is given on the tape and 
tbe machine begins by having  its reading head scanning a square within the 
minimum tape port ion which contained all initially marked squares and 6 
blanks to the right of the last marked  square, the reading head will find the last 
marked square in the representat ion of the number  x, move right six squares  
(leaving thereby a big gap), s tar t  to  copy the number  x in the consecutive P-  
squares, add 1 after the copying is finished, and indicate tha t  the operat ion is 
completed. We shall then have the answer since the last number  on the tape  
will be x -t- 1. 

To obtain such a program, the mos t  difficult par t  is to do the copying whose 
result of course has t o  va ry  with the number  to be copied. Let  us assume for the 
moment  tha t  we have obtained a subrout ine  for copying:  

(iv) Subroutine I~ : this enables us, beginning at the square under scan, to copy" in 
successive alternate squares the m-th number (counting from right to left) 
which lies to the left of the nearest big gap which precedes (is to the left of) 
the square under scan, and end up with the reading head scanning the open. 

The closing steps of el iminating the last big gap and having the machine  
scan the open are combined in one subrout ine:  

(v) Subroutine Z: 1 .H, 2. *, 3. Y; or, since there is no conditional transfer, simply, H, 

Using Z, the subroutines ,4, Y al ready introduced, plus the subrout ine I , ,  

(to be introduced formally below), we can now prove tha t  all functions defined 
by the schemata (I), ( I I ) ,  ( I I I )  are B-computable .  

The programs needed are: 

(I) Y, I~ , .4, Z. 

(II) Y. *, A q-L, Z; when q = l ,  simply, Y, *, Z. 

(III) Y ,  I . - . . ~  , Z .  
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Hence, to complete this part  of our proof, we only have to construct the sub- 
routine I ~ .  We shall deliberately make it more complicated than necessary in 
order that  the same number expression can be copied more than once. In order 
to copy a number expression, we have to mark the A-squares between the marked 
P-squares of the original number expression as we go along, in order to keep 
track of how far we have advanced. If we use up all these auxiliary squares in 
the first copying, we shall not be able to make a second copy from the original 
and we do not wish to make a second copy f rom the first copy since we wish to 
operate on it. In general, we contrive to allow the possibility of copying a given 
number twice, so that  we can operate on one copy and reserve one clean copy 
for future "reference" (i.e., further copying). 

These complications are of course only necessitated by our decision not to 
permit erasing. Indeed, this is a crucial step of the whole proof. Since we may 
wish to copy a number expression an indefinite number of times and since with 
each copying we have to mark some squares to keep track of how far we are 
along in our action, we may feel that  erasing is indispensable. The difficulty is 
solved by the simple trick just described: copy the same expression twice, copy 
one of the copies twice, etc. 

We introduce a few subroutines. 

(vi) Subroutine D: 1.C4, 2., --~, 3.C6, 4.~ J ,  5.C1, 6.-~, 7.~---. 

This enables the reading head, when scanning a P-square, to find and scan the 
last P-square of the nearest preceding number expression. The process can be 
repeated so that  D ~ gives us the last (marked) P-square of the m-th (counting 
from right to left.) number expression which precedes the square under scan. 

(vii) Subroutine G: 1 .-*, 2.~ --~, 3.C2, 4., ---~, 5.C2, 6.-~. 

When scanning a P-square, this enables the reading head to find the nearest 
two successive blank A-squares to its left and end up scanning the P-square 
between tbem. 

(viii) Subroutine K:  1.C3, 2.C5, 3.~--, 4.C1, 5.,--. 

When scanning a marked square, find the nearest blank square to its left and 
end up scanning the square immediately preceding that  blank. 

(ix) Subroutine M(a):  1.C3, 2.Ca, 3., --~, 4.C6, 5.A, Ca, 6.--% 7.C6, 8.*, A e. 

When scanning a P-square, if it is blank, this asks the machine to follow in- 
struction a (which "plugs" this subroutine into a larger routine or program), 
if marked, then scan the immediately preceding P-square: if it is blank, then 
add one to the last number expression on the tape and then follow instruction a; 
if it is marked, find and mark the nearest blank square to its right, add 2 to the 
last number expression on the tape and stop. 

We are ready to define I,,  : 

(x) Subroutine 1,,, : l .*, 2.H, ~--, D", G, M(4), 3.C2, 4.Y. 

To illustrate how this works, we give a diagram of a simple example (copying 
the single number 6), with J~ indicating the square under scan, • for marked, 
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- for blank squares: 

in i t ia l  t ape  s i t u a t i o n :  

s t ep  1 : 

s t e p  2, H :  

+---~ O l ;  

M(4) : I, 3 

4, 6 

7 , 8  
s t e p  3, t r ans fe r  to:  

s t e p  2, H :  

+-, Dl :  

G: 1, 2 

3, 4 

5, 2 

3, 4 

5, 6 

M(4) : 
s t ep  3, t r ans fe r  to :  

s t e p  2, H :  

G: 

M(4) :  1, 3 

4 , 5  

$ . $ . $ ~ $ . $ - $  . . . . . .  

$ ° $ . $ . $ . $ . $  . . . . .  $ 

$ . $ . $ ~ $ - $ - $  . . . . .  $ 

£ 
$ - $ - $ ~ $ ° $ ~ $  . . . . .  $ 

$ o $ o $ ~ $ . $ . $  . . . . .  & 

$ . $ . $ ~ $ - $ - $  . . . . .  $ 

$ . $ . $ o $ - $ ° $  . . . . .  $ 

$ ° $ - * ~ * $ * - $  . . . . .  $ - $ - $ ~  

* - $ - $ . $ * $ - $  . . . . .  $ - $ o $ ~  

$ . * . * ~ * $ $ - $  . . . . .  $ . $ - $ j  

$ - $ - $ . * * $ - $  . . . . .  $ o $ - $ ~  

$ - $ - * ~ $ $ $ . $  . . . . .  $ - $ - $ ~  

$ ° $ o $ ~ $ $ $ - $  . . . . .  $ - $ ° $ ~  

$ ° $ o $ o $ $ $ - $  . . . . .  $ o $ - $ ~  

$ o $ ° $ . $ $ $ - $  . . . . .  $ - $ o $ ~  

$ - $ $ * - $ * $ ° $  . . . . .  $ ° $ ~ $ - $ - $ ~  

* - * $ $ . $ ~ $ o $  . . . . .  $ . $ ~ $ . $ . $ ~  

£ 
$ - $ $ $ - $ $ $ o $  . . . . .  $ - $ ~ $ . $ . $ ~  

. $ - $ $ $ ° $ $ $ - $  . . . . .  $ . $ ° $ ° $ - $ ~  

- - $ - $ $ a ~ ° * $ $ ° $  . . . . .  $ - $ ° $ ° $ ° $ ~  

o o * . $ $ * - * $ $ - $  . . . . .  $ - $ ° $ ° $ ° $ - $ ~  

s t ep  4 : - , - * * * - * * * - ,  . . . . .  , - , - , - , - , - ,  . . . . . .  . 

This example should make a little clearer the subroutines G, M(a), and I ~ .  
The primary purpose of M(a) is to enable the machine to copy two units at  a 
time and use up only at most half of the available A-squares in the number 
expression to be copied, in order to leave room for the making of a second copy, 
I t  leads to three different courses of action according as (1) no more left to copy; 
(2) only one more unit left; and (3) at  least 2 more units yet  to be copied. 

Once we possess Ira, our proof tha t  all functions defined by the schemata 
( I ) - ( I I I )  are B-computable is complete. I t  remains to be shown that  from 
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g iven  B - c o m p u t a b l e  f u n c t i o n s  o n l y  B - c o m p u t a b l e  f u n c t i o n s  can  be  g e n e r a t e d  

by  t h e  o t h e r  t h r e e  s c h e m a t a .  F o r  th i s  pu rpose ,  a few m o r e  s u b r o u t i n e s  a re  

necessary ,  n o t a b l y  t h e  ones  for  m a k i n g  t h e  second  c o p y  of a g i v e n  n u m b e r  

express ion.  

(xi) Subroutine J~  : 1.*, H 2, ~--, D'% ~2, 2.M(4), H 2, ,--, D",  K, 3.C2, 4.Y. 

Th i s  enab les  t h e  m a c h i n e  t o  m a k e  a second  c o p y  of t he  m - t h  ( c o u n t i n g  f r o m  

r igh t  to  lef t)  n u m b e r  express ion  to  t h e  le f t  of t he  second  ( c o u n t i n g  f r o m  r i g h t  

to  lef t)  b ig  gap  w h i c h  p r ecedes  t h e  s q u a r e  u n d e r  scan.  T o  i l l u s t r a t e  it ,  we  t a k e  

the  l as t  l ine of t h e  p r e c e d i n g  e x a m p l e  as t h e  in i t i a l  t a p e  s i t u a t i o n  ( t a k i n g  m = 1) : 

- - $ - x t  ~ $ - $ $ $ - $  . . . . .  $ - I - * - $ - : ¢ - $  . . . . . .  

step 1 : --*-***-***-* . . . . .  *-*-*-*-*-* . . . . .  *, 

step 2, M(4) : --*-***-***** . . . . .  *-*-*-*-*-* . . . . .  *-*-*, 

H$, ,--, Dl :  --*-***-***** . . . . .  *-*-*-*-*-* . . . . .  *-*-*, 

K: --*-***-***** . . . . .  *-*-*-*-*-* . . . . .  *-*-*. 
step 3, transfer to 

step 2: --*-********* . . . . .  *-*-*-*-*-* . . . . .  *-*-*-*-*, 
step 3, transfer to 

step 2, M(4) : --*-********* . . . . .  *-*-*-*-*-* . . . . .  *-*-*-*-*-*, 

step 4 : --*-********* . . . . .  *-*-*-*-*-* . . . . .  *-*-*-*-*-* . . . . . .  . 

W e  shal l  o f ten  wish  to  c o p y  n o t  on ly  a s ingle n u m b e r  express ion  b u t  a succes -  

s ion of n u m b e r  express ions .  W e  eas i ly  ge t  t w o  ex t ens ions  of  I,~ a n d  J ~ .  

(xii) l , :  1 ,  , ~--~, I~,_1 , ,._.2 , . . .  , ~__~, 11 . For example, 1: is merely Is , ~--~, I1 ; lea is 

I , ,  ,--~, I :  , ~ , 11 ; etc. 

(xiii) 3 ,  : J,~ , ,---~, J~ - i  , ~_2, . . .  , ~.-, J1 . 

W e  shal l  a lso use,  a t  one  place ,  t he  n o t a t i o n  ,7,, - J~ for  t h e  s u b r o u t i n e  ob -  

t a i n e d  f r o m  J,~ b y  o m i t t i n g  ~--:, J~ a t  t he  end.  

A s l igh t  v a r i a n t  of I,~ is to  copy  y - 1 i n s t ead  of y, t h e  m - t h  n u m b e r  to  t h e  

le f t  of t h e  n e a r e s t  b ig  g a p  p r e c e d i n g  t h e  s q u a r e  u n d e r  scan.  

(xiv) Subroutine L~ : 1.*, 2.H, D m, ,---~, G, M(4), 3.C2, 4.Y. 

T h i s  differs f r o m  I,~ o n l y  in t he  inse r t ion  of  ~ - :  in s t ep  2. I t  is of  course  o n l y  

app l i c ab l e  w h e n  y > 1. 

W e  are  n o w  r e a d y  to  dea l  w i th  t h e  th ree  r e m a i n i n g  s c h e m a t a .  

(IV) If x~ , " "  , x~ and ¢ are recursive (resp. B-computable),  then the function ,p de- 
fined by the following schema is also recursive (resp. B-computable) :  

¢(x, , . . . ,  x~) = ¢[x,(x, , ' - . ,  x~), . . . ,  x~(x, , " . ,  x~)]. 

W e  a s s u m e  t h a t  t h e  p r o g r a m s  for ¢,  x~,  " "" , x~  a re  r e s p e c t i v e l y  P(~b), P(x~),  

" ' "  , P ( x . ) ,  we  a re  to  f ind  a p r o g r a m  P(~a) for  t h e  func t i on  ~. I n t u i t i v e l y  t h e  
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p r o g r a m  P ( ~ )  wil l  d o  t h e  f o l l o w i n g :  c o p y  t h e  a r g u m e n t  v a l u e s  x~,  . . . ,  x ,  

twice,  k e e p  t h e  f i r s t  c o p y  c l e a n  a n d  f ind  t h e  v a l u e  of x ~ ( x t ,  " -"  , x , )  w i t h  t h e  

s econd  c o p y  a n d  t h e  p r o g r a m  P ( x , 0 ,  t h e n  m a k e  t w o  copies  f r o m  t h e  c l e a n  c o p y  

of x~,  - .  • , x . ,  a n d  ge t  t h e  v a l u e  of  x , . -~(x~ ,  • • • , x , )  w i t h  one  c o p y  a n d  P ( x m - t )  ; 

r e p e a t i n g  t h e  p rocess ,  we g e t  t h e  v a l u e s  of  x ,~ (x t ,  . - -  , x , ) ,  • • • , x~(x~, • .  • , x . ) ;  

copy  all  of t h e m  in  t h e  o r d e r  x~(x~, . . .  , x~), . . .  , xm(x~, . . -  , x , )  a n d  t h e n  

a p p l y  t h e  p r o g r a m  P ( ~ ) ,  we g e t  t h e  v a l u e  of ~ (x~ ,  . - .  , x , ) .  T h e  p r o g r a m  P(~,) 

is as  fo l lows ( t a k i n g  for  i l l u s t r a t i o n ,  m = 2 ) :  

Y, i ,  , , ] . ,  H ~, . ,  Y, P(×2), ~__3,., ._~3, i~ , J , ,  H ' - , . ,  Y, P(xL), I t  , Z, ~---*, I,+~ , H , . ,  
Y, P(~) .  

S l igh t  c o m p l i c a t i o n s  a re  n e e d e d  in  t h e  p r o g r a m  to  a s s u r e  t h a t  t h e  d i s p e r s e d  v a l u e s  

of x ~ ( x ~  , . .  • , x , ) ,  . .  • , x ~ ( x ~  , • • • , x , )  c a n  be  co l l ec ted  t o g e t h e r .  W e  i l l u s t r a t e  

t h i s  p r o g r a m  w i t h  a s i m p l e  e x a m p l e  w i t h  n = 2, x~ = x2 = 1 ( i n c i d e n t a l l y ,  t h e  

use  of Y be fo re  P ( x ~ )  or  P ( ~ )  is r e d u n d a n t  b u t  m a k e s  t h e  i l l u s t r a t i o n s  c l e a r e r ) :  

Y: .-_-. . . . . . .  

i n  : , - - - *  . . . . .  , - - - ,  . . . . . .  

,i~ : . _ _ _ ,  . . . . .  , - - - ,  . . . . .  , - - - ,  . . . . . .  

H ~, *, Y :  . - - - . - - . - - . -_- .  . . . . .  .___. . . . . . .  

P(x.,) : . . . . . . .  * . . . . . . . . . . . .  * . . . . . . .  x~(l, 1) . . . . . .  

' J ,  * ,  - ' ~ ,  i ,  , J .  : * - - - * - - *  . . . . . .  * . . . . .  * - - - *  " ' "  x.,.(1, 1 ) - - * - - * - - - *  . . . . . . . . .  * . . . . . .  . 
.f 

H 2 ,  *, Y ,  P ( X I ) :  . . . . . . . . . . . . . .  *--*--* . . . . . . .  x ~ ( l ,  1) . . . . . . . . .  * . . . . .  *---* --" xz(1. 1) . . . . . .  , 

I ,  , Z ,  ~__2. I . . ~  : " - - - ' - - ' - - ' - - - ' - - ' - - ' - - - "  " x : ( 1 ,  1)--*--*---* . . . . .  *---*.- .  x ~ ( 1 , 1 ) - - - x . : ( 1 , 1 /  

H, *, Y, P(¢)  : " - - - ' - - ' - - ' - - - ' - - ' - - ' - - - "  • x~(1, " - - , - - , - - - , - - , - - , - - - ,  . . .  xl(1, l , - - -  

xe(l, 1) . . .  ¢ ~ [ x ~ ( 1 ,  1), x..(1, 1)] . . . . . .  . 

N e x t  we h a v e  t h e  s c h e m a  for  p r i m i t i v e  r e c u r s i o n :  

( V )  / ' ¢ ( 1 '  z :  , - . . .  z , , )  = ¢ ( ~ :  , . . .  , z , , ) ,  
[ ¢ ( z  4 -  l ,  x ~  , " . .  , x , )  = X [ z ,  s o ( z ,  x... . " "  , x , , ) .  x.., " "  , x , , ] .  

G i v e n  p r o g r a m s  P(~b) a n d  P ( x ) ,  we a r e  to  o b t a i n  a p r o g r a m  P ( ~ )  for  t h e  

f u n c t i o n  ~(y,  x,. ,  - - .  , x , ) .  I n t u i t i v e l y ,  t h e  n u m b e r  of a p p l i c a t i o n s  of P ( x )  in  

e v a l u a t i n g  ~(y,  x~,  . - .  , x , )  is u n b o u n d e d ;  for  a g i v e n  g, we h a v e  to  a p p l y  

P ( x )  y - 1 t i m e s .  T h i s  is a c c o m p l i s h e d  b y  t e s t i n g  succe s s ive ly  as  we go a l o n g  
w h e t h e r  y is 1, y - l is 1 

P(¢~) a n d  t e s t  w h e t h e r  y 

if y is n o t  1, we e v a l u a t e  

[ s l .  I f y  - l i s n o t l ,  we 

or  y - 2 is 1 or  e tc .  T h u s  we e v a l u a t e  ~ ( x : ,  - • - , x , )  b y  

is 1. I f  y is 1, we  c o p y  ¢~(x~, . . .  , xn) as  a n s w e r  to  P ( ~ ) ;  

x[1, ¢ ( x 2  , • • • , x n ) ,  x , ,  , • • • , x , , ]  a n d  t e s t  w h e t h e r  y - J 

e v a l u a t e  

X{2, X[1, &(xe,  . . .  , x~), x2 ,  " "  , xn], xe ,  - ' -  , x,,l 
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and test  whether  y - 2 is 1. And so on. The program P(~) is: 

1. Y, i ~ ,  ~_3, *, _ 6 ,  J , -1 , H ~, . ,  Y, P(~), ~__s, In+l ,  ~--~, 

2. 2 ,  C4, 

3. __.~s, C5, 

4. --~, i n ,  A, Y, L1, I~ .~ ,  J ,  - J1, H ~, . ,  Y, P(X), ~--~, L~+i, ~--~, C2 , 

5. ---~, Is ,  Z. 

We give an example with n = 2, y = 3, x2 = 2. 

1. Y :  . - * - * - - - * - *  . . . . . .  
$ 

] . ,  ~__,, , ,  _-~e, j . _ , ,  H ~, . ,  y :  ***. .___,  . . . .  .__ ._ ,_ .___._ ,___,  . . . . .  , . ,  . . . . . .  ( cop) ,  y ,  

x . . ,  . . .  , x .  , t h e n  w r i t e  1, t h e n  b i g  g a p ,  t h e n  cop5,  x :  , . . -  , x .  a g a i n ,  a n d  t h e n  

m a r k  f i r s t  b i g  g a p ,  e n d  u p  s c a n n i n g  t h e  o p e n ) .  

p ( , ) ,  ~__2, I,~+, , ~--~: [** . . . . . .  *-*--*--*** . . . . .  ] . . . . . . . . . . . . . . . . . .  , ( x )  . . . . . . . .  ( e v a l u a t e  

y x y x 1 x y 

¢(x~ , • • - , x~) t h e n  c o p y  y a n d  e n d  u p  s c a n n i n g  t h e  e n d  o f  y ) .  

2. ~__2, C4 ( w h e n  f o l l o w i n g  s t e p  1, t h i s  t e s t s  w h e t h e r  y is  1. I f  y , i s  1, t h e n  f o l l o w  s t e p  3 

a n d  s t e p  5 a n d  c o p y  , ( x :  , • • - , x . ) ,  t h e  c a l c u l a t i o n  is  c o m p l e t e .  I f  y i s  n o t  1, f o l l o w  

s t e p  4 :  t h i s  is  t h e  c a s e  in  t h e  p r e s e n t ,  e x a m p l e ) .  

4.  ~ e ,  I~  , A ,  Y,  L1 , In+ .  , ,]~ - -  J1  , H 2, *, Y :  [* -* - - -* - -* - -* -*  " ' "  , ( x ) - - - ] * - * - * - - - * - *  

,~ x 1 x y x 

- - -* -*  . . . . .  * - - - , ( x ) - - - . - .  . . . . . .  (cop)"  x , ,  . . .  , x,, , a n d  r e p l a c e  1 b y  2,  l e a v e  b i g  g a p ,  

2 1 x 

t h e n  cop)"  2 - 1, ~ ( x :  , - -- , x , ) ,  x :  , -- - , x,, , a n d  m a r k  e a r l i e s t  b i g  g a p ,  a n d  e n d  u p  

s c a n n i n g  t h e  o p e n ) .  

P ( X ) ,  ~-- ' ,  L~+,  , ~__6, C 2 :  [*-*-*--- ]*  . . . . . . .  * . . . . .  *- - -  , ( x ) - - - * - *  . "  x[1 ,  , ( x ) ,  x ] - - - * - *  

y x 2 1 x y ~ ' l  

( e v a l u a t e  x [1 ,  , ( x 2  , - - .  , xn ) ,  x :  . . -  , x . ]  a n d  w r i t e  d o w n  y - 1, r e a d y  t o  t r a n s f e r  

t o  s t e p  2 f o r  t e s t i n g  w h e t h e r  y - 1 is  1) .  

2. T h i s  n o w  t e s t s  w h e t h e r  y - 1 = 1. S i n c e  y - 1 ~ 1 in  o u r  e x a m p l e ,  w e  r e p e a t  s t e p  4 

f o r  y - 2 :  

4. ~ , i ,  , A ,  Y ,  L1 ,I,,+_. , 2 ,  - J l  , H  ~, *, Y :  , . - . - - - . - . - - . - - ' - - - , , , ,  . . . . .  * . ' .  x[1 ,  g , (x ) ,  x ,  

x 2 j, 1 x 

- - - " - ' - - - ' - ' - - - ' - ' - "  . . . . . . .  *- - -  X[1, , ( x ) ,  z ] - - - * - *  . . . . . .  ( cop)"  x ~ ,  - ' .  , x~ a n d  r e p l a c e  

y - - 1  x 3 2 x 

2 b y  3,  l e a v e  b i g  g a p ,  t h e n  c o p y  3 - 1, × l l ,  , ( x . .  , . . -  , x~) ,  x :  , . - -  , x,~], x2 , - . -  , 

x~ , m a r k  e a r l i e s t  b i g  g a p  a n d  e n d  u p  s c a n n i n g  t h e  o p e n ) .  

P(x), ~ ,  L,+,, ~ ,  C2: [ . . . . . .  ] . . . . . . . . . . . . . . . . . . . . . .  x{1, ,(z),  z]---,-. --. x[2, x[1, 
y - - 1  x 3 2 z 

, ( z ) ,  x ] ,  x ] - : - *  ( e v a l u a t e  x [2 ,  ~ (2 ,  x_. , . . -  , x , ) ,  z.. , . . .  , x . ]  a n d  w r i t e  d o w n  y - 2 
1 

y - 2  

r e a d y  t o  t r a n s f e r  t o  s t e p  2 f o r  t e s t i n g  w h e t h e r  y - 2 is 1) .  



78 H. WANG 

2.  T h i s  n o w  t e s t s  w h e t h e r  y - 2 ffi 1. S i n c e  y - 2 = 1 i n  o u r  e x a m p l e ,  w e  t r a n s f e r  to  
s t e p  3 a n d  t h e n  to  s t e p  5.  

5 .  T h i s  n o w  m e r e l y  g i v e s  x [ 2 ,  ~ ( 2 ,  z , ,  . . .  , x ~ ) ,  x.~ , . . .  , x,.] as  f ina l  a n s w e r ,  m a r k s  
r e m a i n i n g  b i g  g a p ,  a n d  e n d s  u p  s c a n n i n g  t h e  o p e n :  , , - , - - - , - , - , - - , - - , - , - - -  x [1 ,  ~b(x), 

x 3 I 2 

x]---*-* ...  x[2, x[1, ~(x), x], x] . . . .  I---x[2, x[1, ¢ ( z ) ,  x], x] . . . . . .  . 

x y--2 

Finally, we have to deal with the schema about  the at-operator ("the smallest 
number  such tha t" ) :  

(VI) ,~(x~, ..- , x,) = D,[x(x,, -.. , x, , y) = I]. 

The construction of P(~) from P(x)  is somewhat  similar to that  in the case of 
schema (V) but simpler. For any given x~, . - .  , x , ,  we evaluate first x(x~, 
• • • , x~, 1) and see whether its value is 1. I f  yes, we stop; if no, we evaluate 
x(x~, - ' "  , x~, 2). And so on. The program P(~) is as follows: 

1. Y, In , ~_.2,., ___~6, Jn , +_2,., 

2. H ' , . ,  P(x), ~ ,  *, ~s, C4, 

3. --~', C5, 

4. --,', i~+l , A ,  .___,6, Jn+l , A ,  C2, 

5. ___,4, I t ,  Z. 

This completes the proof of the theorem tha t  all recursive functions are 
B-computable.  Thus, every recursive function is defined by  a finite succession of 
conditions such tha t  each condition is of one of the forms ( I ) - (VI)  and, if it is 
not of one of the forms ( I ) - ( I I I ) ,  the function symbols involved on the right- 
hand side of the condition are introduced in previous conditions. Hence, we 
are to assemble the programs for these conditions in a corresponding order to 
get the program for the final recursive function introduced by  the set of con- 
ditions. Since this assembling process is mechanical, we could, ff we wish, design 
a program to assemble the subroutines ( I ) - (VI)  for any given definition of some 
recursive function• Tha t  would be a fairly simple form of "automatic  program- 
ming".  We shall, however, not delay over this. 

We shall call a function a B-computable complete function if the function is 
defined for all argument values. I t  follows from the coextensiveness of B-com- 
putable and (partial) recursive functions tha t  B-computable complete functions 
are exactly the general recursive functions. 

We digress to comment on recursive definitions as they are given in mathe- 
matical  logic. Just  as we define speed functions for programs of B and their 
corresponding functions in terms of the time taken (number of steps needed) 
to evaluate any  given input tapes, we can also define speed functions for re- 
cursive functions introduced by the schemata ( I ) - (VI)  according to the number 
of steps needed to evaluate the function from a given definition, by certain 
s tandard rules (Kleene [2], p. 264, p. 326). Corresponding to each set of equa- 
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tions E which defines a recursive function f(n), there is some speed function 
f , ( n )  which, for each constant no, gives an upper bound to the number of lines 
(derived equations) needed for deriving logically the value of f ( n o )  from E. 
Obviously each recursive function has many definitions and each definition 
(set of equations E) has many corresponding speed functions. I t  is a rather 
simple matter  to give a corresponding speed function for each function defined 
by the schemata (I)-(VI). Call them (I,)-(VI,). 

(I,) ¢,(z) = 1, 
(II,) 4 ~ , ( z l , . . . , x , )  = 1, 

(III.) ¢,(x, , . . .  , x.) = 1, 
(IV,) ¢,(z~,- . .  , z,) = (×O,(z~,... , z,) + ... + (×~)o(X~, ... , z,) + m + 1 + 

~ , [ x , ( z ~ ,  " .  , z , ) ,  . . .  , x ~ ( z ~ ,  " .  , x,)], 
f ¢ . ( l ,  Z~ , " ' "  , x . )  = ¢ . ( x ,  , - - -  , x . )  -}- i ,  

(V,) ~¢°(z + 1, z2, .-. , z,) = ¢.(z, z2, --. , x,) + 1 + x ,[z ,  ~(z, z : ,  ... , z~), z~ , 
• . . ,  z.] + 1, 

~ ' ~ / l y [  X (Z I, "° ,zn y ) = l ] ,  , (VI,) ¢,(zt,  -.. , z,) = 1 + . L . . , ~ - ~  t x , t xx  , . . "  , x ,  , i)  + 3]. 

This digression brings out the point that  in many cases although a function is 
B-computable or recursive, we have no idea in advance how long it bill take 
before the machine grinds out the answer, or the equations yield the desired 
line for each given argument. This is so even if we are only concerned with 
B-computable complete functions or general recursive functions. With regard 
to recursive functions, the indeterminate element is concentrated in schema 
(VI) and in the corresponding (VI,). In order that  a recursive function defined 
by (VI) be general recursive, there is the requirement that  for all xl,  . . .  , z , ,  
there  e x i s t s  y ,  such that x(xl,  • • • , x , ,  y) = 1. The condition, however, gives in 
general no information as to how big a number y could satisfy the equation 
x(z l ,  . "  , x , ,  y) = 1, for given xl ,  . . .  , x , .  

The definitions for speed functions are of course not directly apphcable to 
digital computers actually in use. I t  is, nonetheless, thought  that  these idealized 
definitions might give some clue to the study of more practical cases. 

4.  B a s i c  i n s t r u c t i o n s  

From our definition of a program, if we write only a single instruction in each 
line, there are clearly, for every n, n "+~ possible (n + 2)-lined programs, since 
in each line, the instruction can be any one of: -% ~--,. ,  C1,  - . .  , C ( n  -{- 1) , 
and the last two lines are always n + 1.-% n + 2. ~-. 

There are other possible basic instructions which we have avoided to use. 
Chief among them are erasing E, the unconditional transfer U x  which instructs 
the machine to follow instruction x independently of the content of the square 
under scan, and the dual conditional transfer C ' x  which instructs the machine 
to follow the instruction x when the square under scan is blank and to follow 
the next instruction otherwise. Of these, erasing introduces a new basic act while 
the transfers do not. If we leave out E, there are theoretically 16 possible types 
of basic instruction: if the square under scan is marked, we can do four different 
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kinds of things, viz., --% ~--,. ,  follow instruction x for some given x; similarly 
if the square under scan is blank. Accordingly we have: 

1 2 3 4 5 I 6 7 [ 8 9 10 11 12 13 14 15 16 
] I ~ 

. . . . . . . . . . . . . . . .  i l l  J - -  * ~ U I 

The variables x, y, z, w, u can in turn take indefinitely many different values. 
Given N, there will be (3 -t- N) ~ possible different basic instructions in any 
program with N lines and hence N (3+M)' possible N-lined programs. The basic 
steps - % . ,  ~ are respectively 1, 6, 11 in the above table, while the unconditional 
and the two conditional transfers are special cases of 16. In general, if we use 
M basic symbols (instead of just the single symbol .),  we shall have M + 2 
basic acts (~---, ~ and printing each symbol), M + 1 possible square contents, 
(M -t- 3) M+~ possible types of basic instructions, (M + 1 %  N) ~+1 possible 
basic instructions for programs with N lines. If we allow erasing, the numbers 
will be M -t- 3, M + 1, (M + 4) M+I, (M + 2 % N) M+~ respectively. 

We shall confine our attention to the machine B and the seven simple types of 
instructions Cx, C'x, Ux, ---~, ~--,., E applicable to it. A corollary of what we 
have proved could be described very roughly as: computations which can be 
performed with the help of C'x, Ux, E can already be done with -% ~--,. ,  Cx 
alone. This of course does not mean that given -% ~--, , ,  Cx, everything which 
can be done with C'x, Ux, E can also be done without them. 

Indeed, there are many things which we can do when we permit erasing but  
which we cannot do otherwise. Erasing is dispensable only in the sense that all 
functions which are computable with erasing are also computable without 
erasing. For example, if we permit erasing, we can set up programs in such a way 
that  if the machine begins by scanning the argument values of a function on 
the tape, by carrying out the program, only the function value (the answer) 
appears on the tape at the end of the operation, everything else having been 
erased. Such is obviously impossible in general, if we do not permit erasing. 
For example, if the answer happens to be shorter than the question. 

There are simple things which can be done with the help of C'x or Ux, but 
which Cx, -% ~--, • alone cannot do. Suppose we know there is a marked square 
somewhere to the left of the square under scan but  do not know how far away it is. 
We cannot construct a program with Cx, ----~, ~--, • which will always enable us 
to find the nearest marked square on the left without introducing new marked 
squares, because given any explicit program with (say) n lines, the reading head 
cannot arrive at any marked square if there are n or more blank squares between 
the square under scan and the nearest marked square. This is so because only 
~-- can carry the reading head leftward, Cx cannot produce any periodic action 
unless some marked square were encountered. Yet it is easy to do the thing 
either with C'x alone or with Ux and Cx. Thus: 1.~--, 2. C'i ,  this will stop when 
and only when a marked square is encountered. Or: 1.~---, 2.C4, 3. U1, 4 . -% 
5.~--; the steps 4 and 5 are of course just to say "stop".  Similarly, using C'x 
only we cannot always find the nearest preceding blank if we do not know how 
far away it is. 
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Given Ux and Cx, C'x is dispensable; given Ux and C'x, Cx is dispensable; 
given Cx and C'x, Ux is dispensable. Suppose we have a program with k lines 
and there is a line: rn. Crn(m, n _-< k). We can eliminate C'n by modifying the 
line m .C'n and the lines following it: if n => m, replace m.C'n by m.C(m ~ 2), 
rn -b 1. U(n + 1), and increase the index of every later line by  1 (replace m ~ i 
by m + i -t- 1); if n < m, replace m.C'n by m.C(m ~ 2), m + 1.Un,  and 
increase the index of every later line by 1. In  the unusual case when k = m, 
we have to add two more lines: m -b 2 .--b m -b 3 .~--. Similarly, we can eliminate 
Cx by using Ux and C'x. The elimination of Ux by Cx and C'x is also similar: 
we simply replace m.Un by rn.Cn, m + 1.Ctn (or m.C(n + 1), m + 1.Cl(n + 1)) 
and readjust  later lines accordingly. 

I t  is of interest to know tha t  there are simple things which we cannot do 
even with C, C', and U. Assume we know tha t  there is somewhere on the tape a 
marked square and the reading head is scanning a blank square on the tape; we 

• wish to find a program which will always enable us to find a marked square and 
stop there, but  introduce no new marked squares. The natural  thing to suggest 
would, for example, be: -% ~_2, __3, ~_4, etc.; in other words, look left and right 
in alternation. We wish to prove tha t  no program using Cx, C'x, ---~, ¢--,., Ux 
can do this. Clearly, • should be left out since we do not  allow the introduction 
of new marked squares. We need not consider Ux, since we can replace its appli- 
cations by  applications of Cx and C'x. Assume there is a given arbi trary N-lined 
program with --~, ~--, Cx and C'x. We wish to prove t ha t  i t  cannot  do what  we 
want.  Suppose it does not contain a line of the form m. C'n with n < m. If  there 
are more than N squares between the nearest marked  square and the square 
initially under scan, then such a program cannot carry us to a marked square. 
Hence, the only interesting case is a program which contains a line of the form 
rtLC~n, rt ~ m .  

Let P be an arbi trary such program. We proceed to prove tha t  there is an 
initial tape situation such tha t  the initial tape contains a marked square but  P 
does not enable us to find it. Assume P contains N lines among which K are of 
the form m.C'n, n < n~. We consider first how P would behave when facing 
initially a completely blank tape. There are two possibilities. In  carrying out 
the program P, either there is one of the K lines of the form m.Crn (n < m) 
which we encounter more than once, or there is none. In  the second case, since 
only such lines enable us to return to previous lines, the whole program will be 
carried out in no more than (K ~ 1)N steps. Hence, if there are more than 
(K --{- 1)N squares between the square initially under scan and the marked 
square, the program P does not enable us to find the marked square. In the 
other case, let m~.Crnl (nl < m~) be the line which, in carrying out the program, 
we encounter a second time at  the earliest stage. We have taken no more than 
(K + 1)N steps before we encounter m~.C'n~ for the second time. Moreover, 
since we are assuming a tape initially blank, the steps from the first visit of the 
line m~.C'n~ to the second will forever repeat  themselves completely. Call the 
square under scan a t  the first visit the origin. In  the process of carrying out the 
program between the two visits, there will be (say) scanned N1 squares to the 
left of the origin, N :  to the right, and the reading head will be scanning a t  the 
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second visit a square (the '~new origin"), N3 squares to, say, the right of the 
origin. We know that  N1, N2,  N ,  < (K -Jr 1)N. Since the "origin" will keep on 
shifting to the right, we see that  if the initially marked square is more than 
2(K T 1)N to the left of the square initially under scan, the program P does 
not  enable us to find the square. 

If  erasing is permitted, then we have much more freedom. For example, we 
can design a program wi th . ,  --~, ~--, Cx, E only which will enable us to find some 
marked square if there is anywhere a marked square on the tape. Essentially, we 
begin with the square under scan and go left and right in alternation (~-, -% 
~_~, _2 ,  ~_3, __3, etc.), marking each blank square on the left (resp. right) side 
if the square immediately preceding (resp. succeeding) it is also blank. When 
we find a marked square beyond the portions we have marked, we eliminate the 
marks we introduce and go back to the marked square. The routine has 42 lines: 

1.C41, 2.~--, 3.C41, 4.--~, 5.--~, 6.C41, 7.~--, 8.. ,  9.~--, 10.~--, 11.C24, 12.~, 13.., 
14.-% 15.C14, 16.-% 17.C33, 18.~--, 19.., 20.~--, 21.C20, 22.-% 23.C9, 24.-~, 
25.7--~, 26.C25, 27.~-, 28.E, 29.~-, 30.C28, 31.~--, 32.C41, 33.~--, 34.~-, 35.C34, 
36.--% 37.E, 38.-% 39.C37, 40.-% 41 .-% 42.~--. 

Given erasing, we can also derive Cx and C'x from each other. We prove how 
it is possible tha t  given any program using --~, ~-- , . ,  Cx, C'x, Ux, E we can 
find a program using --,, ~ - , . ,  Cx, E which performs the same function. As we 
have shown before, we can eliminate Ux by Cx and C'x. Now we wish to elimi- 
nate also C~x. Take the first occurrence of C'x in the given program. Suppose 
the line is m. C~n and suppose n ~ m. We construct the new program by (i) 
leaving the lines 1 to n - 1 unchanged; (ii) replace lines n and n -t- 1 by: 
n.C(n ~ 2), n W 1.E;  (iii) renumber the original lines n to m - 1 as n -t- 2 
to m ~ 1 respectively; (iv) replace the original line m by: m ~ 2.C(m ~ 5), 
m W 3.. ,  m + 4.C(n + 1); (v) renumber all the original lines m + i 
as m -{- i W 4; (vi) adjust references to these lines in other conditional transfers 
accordingly. We leave it to the reader to verify tha t  the new program does the 
same thing as the original. If n >- m, similar constructions can be made. Repeat- 
ing the process, we can eliminate all occurrences of C'x. 

I t  appears unlikely that  we could delete any of the four types of basic opera- 
tions • , Cx, -% ¢- without adding other operations instead, and still compute all 
recursive functions. To give an exact proof of the indispensability of each of 
the four types of instruction, we could proceed as in §2: represent all possible 
tape contents by  positive integers, consider all the possible programs obtained 
by using only three of the four basic types of instruction, survey all the possible 
transformations which these programs can perform on initial input tapes, and 
prove tha t  they do not include all recursive functions. For instance, suppose we 
use only , ,  Cx, and --~. Consider, for simplicity, just functions of one argument. 
First, we use a simple function g(x) which maps the set of all possible input tape 
contents (or a simple recursive subset of it) into the set of positive integers. Then 
we need another simple function h(x) which maps all the possible final output  
tape contents into the set of positive integers. Analogously with the functions 
0 . ,  r .  in §2, we can define a function ~.(x) such tha t  ~.(g(~)) gives the number 
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of the output  content for an arbitrary program made out of *, Cx, -~, with 
number ~r, and an arbitrary input tape content with number L. I t  then follows 
that,  for every program II (with number ~-) on such a machine, h[A,(g(~))] is the 
function computed by it. I t  could then be shown, on account of the form of 
A,(x), that  only very simple recursive functions can be represented in the form 
h[A,(g(L))]. For example, if h, g are primitive recursive, then all one-placed 
general recursive functions which can be expressed in the form h[A,(g(L))] are 
primitive recursive. Instead of trying to work out  details of the argument, we 
present intuitive arguments relative to the particular way of representing 
questions and answers we use. 

The necessity of * can be argued on perfectly general ground. Thus, it seems 
reasonable to represent the same argument values in the same way even when we 
are concerned with different functions. Moreover, to be unambiguous, we must 
not interpret the same final tape output  as different answers for different ques- 
tions. This excludes the possibility of reading answers directly from the questions 
(data) initially given on the tape. For example, given 3 and 5, we may wish to 
get the value of 3 -t- 5 or the value of 3 ~. If  the programs for addition and ex- 
ponentiation yielded the same final tape situation for the given argument values 
3 and 5, we would not be allowed to say, "well, it  depends on how you read the 
result, it is 3 W 5 if you read it one way, etc ."  This condition is sufficient to 
indicate that  • is indispensable. W i t h o u t . ,  the answers must always be the same 
as the questions are the same as one another for the same argument values. 

If  we use only --~, ¢ - , . ,  we would get the same changes from the initial tape 
content for all different argument values of the same function, as we exercise no 
judgment over the initial question and make no choice from the possible alter- 
native courses. Roughly then a program for a function would only serve as a 
name for the function rather than provide a method for computing its values. 
Take, for example, the function m X n. There is no program for it, because 
given any program made out of --~, ~-- , . ,  i t  has only a fixed number N of oc- 
currences of the i n s t ruc t ion . ,  and, for any given m and n, no more than 
m W n --t- N . ' s  can occur on the final tape, although we can easily find ml and 
nl such tha t  ml X nl > m q- n q- N. 

To prove that  ~-- is indispensable, we assume tha t  we have only --~, . ,  Cx 
on the machine. Such a machine would have a rather restricted memory since 
the reading-writing head cannot go back (leftwards) and consult what  it did 
to previous squares. Assume a given program ~r. At  each square, the head can 
only do two things: • and --~. Since we assume tha t  the initial tape contains only 
finitely many marked squares, if we let the head begin by  scanning a square 
within the marked region, the result of performing II will either have the head 
stop within the marked region of the input tape or have it continue to go in 
some periodic manner or have it operate on an additional portion which has a 
bound that  depends only on II but  is independent of the initial tape situation 
(i.e., the given argument values). Consider again the function m X n. Suppose a 
program II of N lines is given which is intended to compute it, the head begins 
by scanning a square in the printed portion of the input tape. If the head stops 
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within the initially printed portion, we of course do not get the value of m X n. 
Assume, therefore, the head has left that  region and is scanning a blank to the 
right of tha t  region and is going to perform line k of the program II. The in- 
teresting point is that ,  once the head is scanning the open, no single conditional 
transfer Cx in II can function twice without introducing a circular loop. Thus, 
if the i- th line is Cx and it is to function twice, then each time it must  be scanning 
the rightmost marked  square and goes to the x-th line in II. Since there is no ~--, 
if the machine comes back to the i-th line again and the square under scan is 
again marked,  it mus t  repeat  the whole process and come back to the i- th line 
once more scanning a marked  square. If  no conditional transfer can function 
twice, then since there are a t  most N conditional transfers in H which has only 
N lines, and since transfer can at  most make the machine repeat  N lines, there 
can be a t  most  N 2 steps and at  most N 2 new . ' s  can be marked in the new region 
of the tape, provided we wish to exclude circular loops. Since no circular loop 
should occur in a program for m × n and since we can always find ms,  n~ such 
tha t  the value of ms X n~ is greater than N 2, there is no program with --~, . ,  
Cx only which can compute the function m X n. 

For similar reasons, --~ is indispensable; and also we cannot compute all 
recursive functions with just Ux --~, *---, • (replacing Cx by the unconditional 
transfer). I t  is, however, not known to the author  whether C'x, -% ~----, * are 
sufficient in some nontrivial  sense. For instance, if we use the method of repre- 
senting computat ions developed in the preceding section, it is not clear how 
C'x can enable us to go through an indefinitely long string of marked squares 
or whether tha t  is not necessary. One might wish to reverse the roles of blanks 
and marked squares; but  then we have to replace • by  E. Rather  tri~dally, E, 
--% ~--, C'x give a sufficient set from duality considerations. 

We note tha t  there is an interesting machine (call it "machine W")  which is 
closely related to machine B but  much easier to use: add erasing, so that  W has 
five types of basic operations, viz. -% ~-- , . ,  Cx, E.  As  we have shown above, 
the instructions Ux and C'x can be derived from these so tha t  we can freely 
use them too. T h a t  all recursive functions are computable on such a machine 
follows directly from our result on B-computabil i ty.  Indeed, from Kleene [2] 
and our constructions in the preceding section, it is fairly obvious that  for ma- 
chine W, we do not need the auxiliary squares, and we can so arrange the mat ter  
that  in computing a recursive function for given arguments,  if the machine 
stops at  all, it will stop with a string of marked squares whose number  is exactly 
the answer sought. In  this way, we get a more or less unique natural  normal 
representation of questions and answers. For most  purposes, it would seem more 
at t ract ive to use machine W than  machine B. 

I t  remains an open question whether we can dispense with auxiliary squares 
and still be able to compute all recursive functions by programs consisting of 
only basic steps -% ~-- , . ,  Cx. Of course, it is not necessary to use every other 
square as the auxiliary square. I f  we do not mind complications, we can take 
any fixed n and use every n-th square as the auxiliary square. 
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5. Universal Turing machines 

The basic machine B (or the machine W) is fictitious not only in tha t  it as- 
sumes an indefinitely expandable tape (which may be viewed as a serial storage), 
but  also because no finite internal storage (a parallel storage) is adequate for 
storing every program that  is involved in proving that  all (partial) recursive 
functions are B-computable. In the proof, we allow ourselves the privilege of 
using, for every n, programs with more than n instruction words. To many, this 
assumption of an indefinite parallel storage whose units all are accessible at any 
moment is even more repulsive than permitting the tape to expand as needed. 

One way to get around this difficulty about  storage units is to use, instead of 
the general-purpose machine B for all recursive functions, one special-purpose 
machine M~ for each recursive function f~. Thus, for each function f~, we have 
available a program for the machine B which will compute values of the function 
by following the program. Instead of using the storage unit to keep the instruc- 
tions, we can construct a machine M~ which will carry out the particular program 
automatically every time it is scanning a tape. Such special-purpose machines 
could be machines for doing just addition, machines for doing just multiplica- 
tion, and so on. These correspond more closely than B to what are known as 
Turing machines. 

There is also a method of using a single machine with a finite internal storage 
unit on which all B-computable functions can be computed. This is by using 
what Turing calls a universal machine. Intuit ively it is very plausible tha t  we 
can design such universal machines, because, since we have one infinite serial 
storage (the tape) anyway, we can trade the unbounded internal storage for 
additional tape by having programs for particular functions stored on the tape. 

On the basic machine, B several different programs can, of course, compute 
the same function in the sense tha t  confronted with the same initial argument 
values, the programs always yield the same rightmost number on the tape. 
TherefOre, since we can build a corresponding special-purpose machine for each 
program, we may also have many structurally different machines which corre- 
spond to the same function. 

Roughly, a universal machine is one which can do what every special-purpose 
machine does. This it does by imitating in a uniform manner each special- 
purpose machine M~ and is therefore, different from the basic machine B which 
permits flexibility in the programs. A universal machine is a machine built 
specially for the purpose of imitation. We may either store a fixed program 
in the internal storage of machine B once and for all or build the program into 
the machine and dispense with the internal storage unit altogether. The uni- 
versal machine is like a special-purpose machine in that  it has only a serial 
storage (the tape); it is, nevertheless, general-purpose by having the programs 
for individual functions transported to the tape. 

I t  is possible to construct a universal machine U which is again only capable 
of the four types of basic instructions. Or to put  it differently, it is possible to 
write up a program for the machine B such tha t  when scanning a tape which 
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contains in addition to the argument values of a function, also a number which 
represents (a program or its corresponding special-purpose machine for) the 
function, the machine B, by following the program, will imitate the behavior of 
the particular machine for the function and compute the value of the function 
for the arguments given on the tape. 

Since many special-purpose machines may correspond to one function, it is 
desirable to distinguish a functional universal machine and a structural one: the 
former is able to imitate all special-purpose machines in the sense that  there is an 
effective method of representing every special-purpose machine (or even just  at 
least one machine for each function) on the tape such that  afterwards it will 
yield the same answer for the same question, while the latter is able to do more 
in that  it also imitates the moves (or the carrying out of the program steps) of the 
special-purpose machine in question. I t  follows that  a functional universal 
machine need only imitate at  least one of the many possible special-purpose 
machines (or programs) for each function to the extent of yielding the same 
answers to the same questions. For instance, on a functional universal machine 
it is permissible to represent all different special-purpose machines corresponding 
to the same function by the same initial tape situation. Every  structural uni- 
versal machine is a functional one, but  not vice versa. Actually it is a tittle 
harder to construct a structural universal machine, while a functional universal 
machine can be derived more or less as an immediate corollary of the results of 
§3 and known results in recursive function theory. We shall leave the former 
which is quite complex for a separate paper and discuss merely the lat ter  here. 
Either of these will yield a positive solution to the question which Professor G. W. 
Patterson raised in conversation: is it possible to design a one-tape nonerasing 
universal Turing machine? As a mat ter  of fact, he probably had in mind a 
direct construction of a structural universal machine. 

Since the B-computable functions are all and only the partial recursive 
functions, it seems sufficient to use the following result of recursive function 
theory:  there is an effective correlation of all definitions for recursive functions 
with positive integers (called their GSdel numbers) such that  for every n, there 
is a recursive function V,~(z ,  x~, - . .  , x~), often written U ( ~ y T n ( z ,  x~, . .  • , x~, y)), 
which has the property that  for  every n-placed recursive function f ~ ( x l ,  • • • , x , )  

with the GSdel number e, V , ( e ,  x l ,  • • • , x , , )  coincides with f , ( x l ,  • • • , xn), for 
all the argument values x l ,  . . .  , x~ for which f ,  is defined (Kleene [2], p. 330). 
Since the functions V n ( z ,  x l ,  . . .  , x n )  are recursive, they are B-computable. 
We can therefore find a program on the machine B or alternatively construct a 
special-purpose machine for each V , ( n  = 1, 2, . . - )  which will compute every 
n-placed recursive function once we put  its GSdel number on the input tape. 

An obvious defect of this is tha t  we do not have a really functional universal 
machine, but  one for all singulary B-computable functions, one for all binary 
functions, etc: I t  is, however, known that  every recursive function can be 
reduced to a singulary function because we can effectively enumerate for every 
n all n-tuples of positive integers and introduce recursive functions [ ]i, " '"  , 
[ ]n, so that  [x]~ is the i-th number of the x-th n-tuple, and we can reduce an 
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n-placed function f ( x l ,  . . .  , xn) to the one-placed function f([x]l,  . . .  , Ix]a). 
One might, therefore, wish to say that  Vl(z ,  x )  is already a universal function 
except for the slight drawback that  functions with different arguments, which we 
ordinarily regard as different, may become indistinguishable. Thus, for example, 
two different functions g(x,  y) and h(x ,  y ,  z)  may satisfy the conditions 
g([z]l, Ix]2) = f ( z )  and h([x]l, [x]2, Ix]3) = f ( x ) ,  for the same function f(x);  then 
f ( x ) , g ( x ,  y) ,  h(x ,  y, z) become indistinguishable. 

To remedy this, we seem to need a recursive or B-computable function with 
indefinitely many arguments. This is a rather natural notion if we think in 
terms of the machines (say, the machine B). Given an input containing a se- 
quence of number expressions, the machine will first count the number of number 
expressions and then proceed in a uniform manner to calculate the function 
value, taking into consideration the number of arguments initially given. On 
the other hand, it is also not unnatural  to reconstrue the schemata (II)-(VI) for 
defining recursive functions to include cases with indefinitely many arguments, 
For  instance, we may wish to use ~1~ x~ or ~[I1 ~ x~ for indefinite n. Indeed. 
it  can be proved exactly that  if we allow for functions with indefinitely many 
arguments, recursiveness and B-computability are still coextensive. Thus, if we 
permit each function in the schemata ( I I ) - (VI)  to contain indefinitely many 
parameters, we can still, with some extra care, prove that  all recursive functions 
in the extended sense are B-computable in the sense that  for each such function 
f ( x ~ ,  . . .  , x,), we can get a program of machine B so that  given x~, . . .  , x~ 
for arbitrary n on the tape, we can get by the program the value off(x~, . . .  , z,) .  
Since this is not important for our principal result, we shall not enter into details. 
In the paper on the structural universal machine, we shall have occasion to see 
'more explicitly how a function with indefinitely many arguments can be com- 
puted. 

Meanwhile, we assume given a recursive function gn(x l ,  . . . ,  x,,) (and a 
program for computing it). whose value is k if and only if for every n, x~, • • • , x . ,  
(x~, . . . ,  x,) is the k-th n-tuple (of positive integers). Then we define 
V(z ,  x~ , . . .  , x~) = V~(z, gn(x~ , . . .  , xn)) .  There is then a program on the 
machine B for computing V, since we have programs for V~ and g. The special- 
purpose machine realizing the program for V is then a functional universal 
machine. 

Each special-purpose machine, including the functional universal machine for 
V, as well as the structural universal machine not described here, can be realized 
physically, for example, by modifying the specification of an idealized computer 
in Burks and Copi [3]. In each case, we can either construct the machine B (or 
the machine W) with its internal storage suitably restricted and store the pro- 
gram for the particular machine in the internal storage once and for all, or simply 
construct a physical realization of the program and dispense with an internal 
storage altogether. So far as the physical realization of a universal Turing ma- 
chine is concerned, the one proposed by Moore [4] requires much less physical 
equipment than either of the two universal machines we envisage. Ours are of 
interest in tha t  we have reduced the number  of different types of basic in- 
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structions to a bare minimum. It should be clear that any actual general-purpose 
digital computer could be viewed as a realization of the machine B (or W), 
provided we iraagine that the internal storage could be expanded as much as we 
wish. 

6. Proving machines 

In conclusion, we permit ourselves to speculate a bit wildly and make a few 
idle general comments. 

While mathematical logic had often been criticized for its uselessness, most 
professional logicians do not seem to have been overwhelmed by the extensive 
application of logic to the construction and use of computing machines in recent 
years. There is a strong feeling that the useful part of logic does not coincide 
or even overlap with the interesting part; or even a suspicion that what is 
interesting in logic is not useful, what is useful is not interesting. Yet it cannot be 
denied that there is a great deal of similarity between the interests and activities 
of logicians on the one side and designers and users of computers on the other. 
Both groups are interested in making thoughts articulate, in formalization and 
mechanization of more or less vague ideas. Certainly logicians are not more 
precise and accurate than the machine people who are being punished for their 
errors more directly and more vividly. Just as logicians speak of theorems and 
metatheorems, there are programs and metaprograms. Just as logicians dis- 
tinguish between using and mentioning a word, automatic coding must observe 
the distinction between using an instruction and talking about it. Just as logicians 
contrast primitive propositions with derived rules of inference, there is the 
distinction between basic commands and subroutines. Shouldn't there be some 
deeper bond between logic and the development of computers? 

What strikes the eye but is probably not of much theoretical interest is the 
possibility of using machines to perform known decision procedures. 

I t  is known that in a number of domains of logic and mathematics, there are 
decision procedures, i.e., effective procedures by which, given any statement in 
these domains, we can decide in a finite number of steps whether or not it is a 
theorem. Examples include elementary geometry and algebra, arithmetic with 
merely addition or merely multiplication, theory of truth functions, monadic 
predicate calculus. Intutitively, to have an effective procedure for decision 
amounts to the possibility of constructing a machine to make the decision. It is 
theoretically possible, for each of the known decision procedures, to construct 
one machine to perform it. For example, this has been done for the theory of 
truth functions. And it is only economic and engineering considerations which 
have thus far prevented the construction of machines to perform the other 
decision procedures. There is, therefore, the fairly interesting problem of con- 
structing, for instance, a machine for monadic predicate calculus. This would be 
more properly a "logic machine" because, as is often asserted, all syllogistic 
inferences can be carried out in monadic predicate calculus. 

A related, and probably more practical, problem is to try to program these 
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decision procedures on the ordinary general-purpose computers. These can 
perhaps lead to two kinds of useful results: (a) a library of subroutines for all or 
most of the known decision procedures that  is ready for use, sometimes with slight 
modifications, for most ordinary computers now in existence; (b) certain opera- 
tions which are often needed in programming the decision procedures may lead 
to the addition or modification of the basic operations ill computing machines; 
for example, it may lead to the replacement of one or more operations by a more 
useful new operation. 

The trouble with these questions is not that  they are inhumanly difficult but  
rather that  they are neither urgent for practical purposes nor intellectually 
sufficiently exciting. In contrast, the questions involved in the imitation of mind 
by machine or in the a t tempt  to study the philosophy of mind by comparing 
mind with machine are surely fascinating but  quite often we cannot even formu- 
late the problems clearly, or, when we have more specific problems such as 
mechanical translation or chess-playing, there is little basic conceptual difficulty 
but  a good deal of "engineering" tasks which require a large amount of skilled 
labour. 

What  has been discussed less frequently is the possibility of using machines 
to aid theoretical mathematical research on a large scale. One main contribution 
of mathematical logic is the setting up of a standard of rigour which is, at  least 
by intention, in mechanical terms. Thus, we learn from mathematical logic tha t  
most theorems of mathematics can be proved mechanically within certain axiom 
systems which are formalistically rather simple. I t  follows that  most mathe- 
matical problems can be viewed as inquiring whether certain statements follow 
from certain axioms, or, since proofs and theorems of any given axiom system 
can be enumerated effectively, whether certain statements occur in such enumera- 
tions. In other words, while in a computation problem, we ask what the value 
of a computable complete function f(x) is, for some given value of x; in a prova- 
bility problem, we ask whether there exists some x, such that  f(x) is the given 
number. In other to answer the first question for a given number no, we need 
only carry out the procedure for f(x) as applied to no ; in order to answer the 
second question for a given no, we have to compute f(1), f(2), f(3), etc., until 
we arrive, by luck, at  a number x0 such that  f(xo) = no. If it happens tha t  
no is not a theorem, we shall never be able to stop in our search for no from the 
values of f(1), f(2), etc. In terms of recursive function theory, our question is to 
ask whether a number belongs to a given recursively enumerable set (i.e., the 
set of all numbers y such that  there exists some x, f(x) = y, where f is a given 
general recursive function). 

Incidentally, in our previous considerations, we have assumed that  a t  each 
stage only finitely many squares are marked. If we permit arbitrary distributions 
of infinitely many initially marked squares on the tape, we can, roughly speaking, 
compute values of a function recursive relative to the arbitrary function deter- 
mined by the initial tape situation (we have, in Turing's terminology, an oracle 
machine). 

To come back to the function f(x) which enumerates theorems, since it  is 
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general recursive, it is by our main theorem a B-computable complete function 
and has a program II(f) on the machine B. I t  is not hard to devise a new program, 
using II(f), which will test for every given number no whether there exists some 
x, such that  f(x) = no. Roughly the program does this: write down the number 
n~ on the tape and, after a big gap, the number 1, apply II(f), and then compare 
its result with no, if same, stop and write 1, otherwise, write 2 (in general, copy 
preceding argument value and add 1), and apply H(f), compare result with no, 
if same, stop and write 1, otherwise, etc. Since we can define a procedure on the 
machine B for comparing two numbers, we can get the desired program. In this 
way we get a partial recursive function re(y) such that  f,(y) = 1 if and only if 
there exists a number x, f(x) = y; otherwise, re(y) is undefined. Thus, given any 
axiom system (e.g., for arithmetic, or for set theory, or for analysis), we can 
devise a program or construct a special-purpose machine so that  feeding any 
statement in the notation of the system into the machine will 'eventually produce 
an answer 1, if and only if the statement happens to be a theorem. 

The standard objections against studying mathematics by such machines 
are twofold: since our interest is to decide whether a particular s tatement is a 
theorem, the method is in general futile as we can never run through the in- 
finitely many arguments for the function f and unless we happen to be fortunate 
to get a positive result, we shall never know the answer no matter  how long we 
run; secondly, even when the answer happens to be yes, it will be usually a long, 
long time before we hit upon the answer, since we have to examine all the possible 
proofs. In reply, we may observe that  there are often rather modest aims of 
research which can be aided more directly, and even in the questions of dis- 
covering more ambitious theorems, there is no reason why shortcuts in the testing 
procedure, elimination of superfluous cases, and technological advancement will 
not bring the tasks within the range of practical feasibility. 

So far as modest research goals are concerned, we may give a few examples. 
A good deal of brain power has been spent on studying the independence of 
axioms in the propositional calculus. Apparently there is in general no decision 
method for such questions. Yet in most cases the independence could be proved 
by matrices of a few rows and columns (usually less than 5 rows and 5 columns), 
or disproved by rather short derivations from the initial axioms and rules of 
inference. Since the matrices and the derivations can be listed and tested mechan- 
ically, there is httle doubt machines can greatly aid such researches. More 
generally, we often wish to test whether an alleged proof is correct. If  the proof 
were presented in full detail as in some books on mathematical logic, a machine 
test would be immediate. The problem becomes more interesting when, as is 
usual, the alleged proof is only presented in sketch. The situation is rather like 
(say) picking 20 lines from a proof of 1000 lines. The problem is more or less 
one of reconstructing 1000 lines from the 20 lines which are given. When an 
alleged proof is wrong, we can no longer reconstruct a proof out of the 20 hnes. 
Yet, if, for example, we can handle all proofs in a system with less than 100 
lines, then it is very probable that  we can handle most proofs with 1000 lines 
when we are given a summary of 20 lines for each proof. Or again, sometimes 
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we suspect that a statement is either a theorem with a short proof or not a 
theorem at all. Sometimes we feel that a certain statement is a theorem and that 
certain statements are necessary in its proof. In such cases, the machine usually 
only has to accomplish a more restricted task in order to confirm and disprove 
our hunches. In many cases, we should not ask the machine to check all possible 
cases, but just to perform certain "crucial experiments" in order, for example, 
to disentangle a few exceedingly confusing steps when we are convinced that 
our main direction is correct. 

A fundamental result of Herbrand has the effect that any derivation of a 
theorem in a consistent axiom system corresponds to a truth-functional tautology 
of a form related to the statement of the theorem and the axioms of the system 
in a predetermined way. This and the possibility already mentioned of viewing 
axiom sys~ms as proof-grinding machines can both be used to bring about 
the application of computing machines to the investigation of the question of 
derivability in general, and inconsistency (i.e., derivability of contradictions) in 
particular of axiom systems. There is, of course, no reason why we should wish 
to deny ourselves the privilege of introducing ingenious devices to reduce the 
great complexity of the combinatorial problems involved in such applications of 
machines. When machines are extensively used as aids to mathematical dis- 
coveries, we shall have a more objective standard of originality of ideas in terms 
of the magnitude of labour required for a machine to discover them. 

If we compare, for example, such possible applications with programming 
machines to play chess or checkers, the proving machines or proving programs 
have at least this much advantage on their side: our opponent is Nature or, 
i f  one prefers, the platonic world of ideas whose predominant purpose is not, 
as far as we know, to defeat us at the game. 

Surely the dimension of magnitude which we are initially concerned with is 
staggering: there are so many possible proofs in any interesting axiom system, 
there are so many truth-functional tautologies. But how do we know whether 
significant assistance to mathematical research will or will not emerge from such 
application of machines until preliminary probing has been undertaken on a 
fairly large scale? If it were thought that such application would have direct 
bearing on military or business activities, more incentive for looking into it 
would undoubtedly have been manufactured to direct major effort to the ques- 
tion. Who knows but that such combined application of machines and mathe- 
matical logic will not, in the long run, turn out to be more efficient aid to the 
advance of science, even for the purpose of bigger bombs, longer range missiles, 
or more attractive automobiles? The logicians on their part will certainly feel 
happy when other mathematicians find logic an indispensable tool for their own 
researches. Or perhaps applications of logic in the theory and use of machines 
will generate interesting new logic just as physics generates important new 
mathematics. 

We often feel that we cannot design machines which are more clever than 
their designers. We feel that there is an essential difference between such a task 
and that of designing machines which are physically stronger than their designers. 
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The concept of proving machines shows that  this is not so. If, for example 
Fermat 's  or Goldbach's conjecture is indeed provable in one of the usual formal 
systems of mathematics, there is nothing absurd about the befief that  a proof 
will be first discovered by a machine. The important point is that  we are trading 
qualitative difficulty for quanti tat ive complexity. On account of the great 
restriction on the mind's ability to handle quantitative complexities, we find it 
more necessary to rely on insight, ingenuity, and vague intuition. Using ma- 
chines, we find our abifity in this respect increased tremendously and it is but  
natural to expect that we can then go a longer way even with less ingenuity. 
The grinding out of proofs and the selection of the right ones (i.e., the com- 
parison of their conclusions with proposed conjectures) are both mechanically 
simple procedures. There is no difficulty in imagining that such machines will be 
more clever than man in performing the tasks of discovery of theorems and 
confirmation of conjectures faster and more reliably. 

We can instruct a proving machine to select and print out theorems which are 
short but require long proofs (the "deep" theorems). We can also similarly 
instruct machines to generate interesting conjectures: e.g., short statements 
which are neither provable nor refutable by proofs of a preassigned high upper 
bound of complexity; presumably Fermat 's  and Goldbach's conjectures will occur 
in some such class with a fairly high bound. 

There is a reasonable sense in which the basic machine B or a universal Turing 
machine can solve all solvable mathematical problems and prove all provable 
mathematical statements. Thus, if there is a proof for a mathematical statement, 
it must be, as a proof, expressible in exact terms, beginning with accepted 
statements and continuing in a systematic manner. We have therefore a program 
on the machine B which will lead from the initial statements (axioms) to the 
conclusion. 

If we compare Gauss with a universal Turing machine in regard to their 
mathematical abilities, we have to admit that  Gauss, unfike the imagined 
machine, did not have an infinite mind or an infinite memory. But  then he did not 
have to solve all problems either. What  is peculiar is rather that  he could create 
so much more mathematics with a brain by no means proportionally larger than 
that  of an average man. One would have to be considerably more clever if he 
were to design a machine of a given size to imitate Gauss (in his mathematical 
activities) rather than an average college mathematics student. But  at the 
present stage, we may feel that  the difference is relatively small compared with 
the gap between a "student mathematics machine" and any digital computer 
currently in operation. 
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