
J. Paul Roth

Diagnosis of Automata Failures:
A Calculus and a Method

Abstract: The problem considered is the diagnosis of failures of automata, specifically, failures that manifest themselves as
logical malfunctions. A review of previous methods and results is first given. A method termed the “calculus of &cubes” is then
introduced, which allows one to describe and compute the behavior of failing acyclic automata, both internally and externally.
An algorithm, called the D-algorithm, is then developed which utilizes this calculus to compute tests to detect failures. First
a manual method is presented, by means of an example. Thence, the D-algorithm is precisely described by means of a program
written in Iverson notation. Finally, it is shown for the acyclic case in which the automaton is constructed from AND’S, NAND’S,
OR’S and NOR’S that if a test exists, the D-algorithm will compute such a test.

Introduction

This paper describes a notation and calculus for represent-
ing the behavior of failing acyclic automata,* and gives
an algorithm-the D-algorithm-for the computation
of tests for failures. It is established for acyclic automata
(i.e., without feedback) constructed from AND’S, OR’S,

NAND’S and NOR’S that if a test for any given logical failure
exists, the D-algorithm will compute such a test. It is
estimated that the algorithm will be about as efficient as
the best of previously known techniques, which could not,
however, guarantee that a test would be computed even
if one existed.

Section 1 begins the treatment by providing a resume of
the various methods, including that of the D-algorithm.
Section 2 advances the notion and calculus of D - C U ~ ~ S ,

which are used to describe failure phenomena in circuits.
Section 3 describes, via example, a manual procedure for
executing the D-algorithm, while Section 4 presents a
program, written in the Iverson notation, for the principal
procedure of the algorithm and, as well, a verbal elucida-
tion of that program. Section 5 gives a proof of the princi-
pal contention that if a test for failure exists, the
D-algorithm will find such a test.

We approach the discussion by defining four terms that
will be frequently used:
A failure In a logical circuit (strictly, a Boolean

graph, Refs. 2, 3) any transforma-
tion of hardware that changes the
logical character of the function
realized by the hardware.

278
* References l a & l h show techniques such as SCAN for adapting

such methods to circuits with feedback.

A primary input In a logical circuit, a line that is not
fed by any other line in that circuit.

A primary output In a logical circuit, a line whose signal
output is accessible to the exterior
of the circuit.

A test (for a failure) A pattern of signals on primary
inputs such that the value of the
signal on some primary output will
differ according to the presence or
absence of that failure. Also, test
will often be extended to mean the
total pattern of signals on all lines
of the circuit.

1. Review of methods

The truth-table method.

In this method and others, let G denote the function de-
scribed by the circuit. If it is a multiple output circuit, G
might be thought of as several Boolean functions, one
for each output. Let F denote the function described by
the circuit with a given failure. To find a test to determine
whether or not this particular failure has occurred, it is
“merely” necessary to compare the truth-tables for these
two functions. This, of course, requires that the truth
tables for each function actually be constructed and then
compared to ascertain those inputs for which the output
differed. Presumably, this process would be necessary for
every failure of interest. Then, to determine a subset of
these tests to ascertain whether or not any failure occurs,
one might go through some sort of covering procedure

IBM JOURNAL JULY 1966

(e.g., the extraction algorithm, Ref. 4). Clearly, this method
would be effective only for small problems, certainly not
for problems in 100 variables.

The method by complements

Suppose that we compute the function G, which is defined
by the good circuit and G, the complement of G (the set
of complements, if there are many outputs). This computa-
tion may be done, e.g., by the a*-algorithm (Ref. 5). This
computation gives, for each output, a normal form expres-
sion for the function and its inverse. Then to determine the
set of all tests to detect the given failure, where F again
denotes the function of the failing circuit, it would be
necessary only to form the intersections G n F and G n F.
This method is superior to the truth-table method in that
it works with normal form expressions rather than with
canonical terms. However, the formation of the inter-
section can be a formidable problem; for instance, if F
and G each were expressed by a thousand terms (a thou-
sand cubes), then a million intersections would be required.
Notwithstanding, the method is in many cases a sub-
stantial improvement over the truth-table method. A
procedure similar to that for the truth-table method might
be used to find a set of tests to detect whether a failure
has occurred and a second set of tests to ascertain, know-
ing that a failure has occurred, just which it is.

Pruning

This method is described in Reference 5. Its basic innova-
tion is that in one step it accomplishes the process of
computing F: F, G and G and forming their intersections,
as described above, in roughly the same amount of compu-
tation as to form F alone. The method amounts to the
following: At the point in the circuit where the failure
would occur, it is “cut” and the a* procedure is used to
compute the output in terms of the standard inputs and the
“pseudo-input” at the point of cut. That is to say, the
circuit is replaced by another which has the point of cut
as an input (the branch above the point of cut is discarded).
The branch remaining after “pruning” is then substituted,
in the arrays produced, for the pseudo-input, to obtain
a set of all tests to detect the given failure. Pruning is con-
siderably more efficient than the method by complements,
yet it frequently shares with the latter a need for a large
memory and, possibly, a very large amount of computing
time, for the so-called owarrays and owarrays generated
can be very large. The program of a considerably refined
version of this algorithm, written by P. N. Sholtz, J. L.
Sanborn, and J. M. Galey, has seen interesting use in IBM.

The effective computability of the pruning algorithm is
limited chiefly by the size of its storage requirements for
problems with a large number of inputs. For example, it
was calculated that one problem in 115 variables would
require 10’ reels of IBM magnetic tape to record a mini-

mum normal form expression for the complement of the
function, yet the circuit itself comprised only 65 logical
blocks.

Tracing

This method has been developed and brought to a high
point of efficiency by C. B. Stieglitz.* A failure at a given
point in the circuit is assumed. Then one computes the
signals that are necessary at that point for the failure to be
detected on the output of the block to which the point is
immediately connected. The signals are “traced” to an
output assigning “as-you-go,” on lines feeding each block
encountered, signals that are required for transmitting
information concerning the alleged failure through the
block. This tracing proceeds systematically, with backing
up taking place whenever “conflicts” occur between sig-
nals required to appear on any given line, and continues
until an output is found that is sensitive to changes in the
signal of the failing line. When one such output is found,
the tracing proceeds backwards from the point of failure
to the inputs, in hope of finding a set of inputs which will
bring up a set of signals on the failing line and on other
lines interior to the circuit in order to effect this test. This
procedure is continued until such a set of inputs is obtained
or a specified running time is exceeded. Thus, this process
computes a hypothetical test for each failure, after which
it is necessary to employ “simulation” to determine
whether or not the hypothetical test is a true test for that
failure. If not, then computation and simulation must con-
tinue. The advantage of the tracing method is that more
often than not it is fast. The disadvantage, as simple ex-
amples show, is that there is no guarantee that in fact a
test will be computed, even though a test may exist.

The tracing method was improved and adapted for FLT

(Fault Location Technology) by K. Maling, F. N. Evans,
M. W. Evans, and W. C. Carter (Ref. la) and R. J. Preiss
and embodied in an IBM 7094 program. This program,
joined with the SCAN concept (Ref. lb) has been massively
used for the computation of diagnostic tests for IBM
System/360.

The D-algorifhrn

The D-algorithm we are to describe proposes a new calculus
of complexes in which the internal line structure of a
circuit is utilized to describe the function and its failures.
(The notation it employs was alluded to in Reference. 7.)
The method has the advantage that the number of “terms”
(more precisely, cubes) that are required to describe the
function of a circuit and its failures is directly and solely
proportional to the number of logical blocks in the circuit.
It will be seen that if a test exists for a given failure, the
algorithm will find such a test. In a particularly simple
manner, the theory is extended to include the detection of

A paper describing this method is in preparation. See Ref. 6. 279

DIAGNOSIS OF AUTOMATA FAILURES

1 2 4

1 1 1
o i o
i o 0
: : -

1
I D 1 Dl
I
1 1 D D l
L“”J

Figure 1 An AND circuit, its singular cover and, within dashed
lines, two D-cubes.

short circuits between logically distant lines as well as any
logical failures associated with the logical block.

Although explicit comparisons of methods must await
results from programs soon to be run (on an experimental
Iverson time-sharing interpreter at the IBM Research
Center), it can be supposed that the running time of the
D-algorithm will not be greater than that of the tracing
method. Indeed, it should usually be considerably less, for
the reason that computation of a true test with the D-

algorithm requires about the same running time as does
the computation of a single hypothetical test via the tracing
method. Memory requirements for the D-algorithm are
expected to be comparable to those for the tracing method.

2. Calculus of D-cubes

To describe D-cubes and their properties can best be done
by presenting a few examples: Figure 1 consists of a single
AND block with inputs 1 and 2, and with output 4. At the
right is a kind of truth table, the first row specifying that
the output is 1 when both inputs are 1, the second and
third, that the output is 0 when either input is 0. This is
termed the singular cover of the function (Ref. 2). Now, 1
and 2 are the input coordinates and 4 is the output coordinate
of the logical block. The cubes that make up this singular
cover may also be written with x’s in lieu of blanks, which
would be a form closer to the author’s earlier notation.
Employing x’s we have

2 41

1 1 1
o x o
x 0 0.

The cube 0 x 0 stands for the two vertices

2 41 and - 1 1 2 41

0 0 0 0 1 0

or, in a notation imposed by typography, the two vertices
0 0 0 and ‘0 ’1 40. In any program of the method, the 1 2 4

J. PAUL ROTH

blanks or, equivalently, the x’s, will of necessity be repre-
sented in the coding of symbols.

Now, Figure 1 also gives two so-called D-cubes,

1 1 2 41 1 1 2 41 and ~

D I D 1 D D

or, in the alternative notation, D 1 D and ’1 ‘D 4 ~ . These
have the following interpretation: The letter D may assume
just two values, 0 and 1, so that D 1 D stands for the two
states ‘1 ‘1 4l and ‘0 ’1 40; it specifies that, when the logic
block is working properly, the value of the signal on the
output line 4 must be the same as that of the input on
line 1, provided that line 2 is kept at 1.

Recalling the definition for a test, we see that, for exam-
ple, the cube ‘D ’1 4~ contains two embryonic* tests: The
input signal 1 1 1 (obtained by setting D = 1) constitutes
a test for line 1 stuck-at-0 and line 4 stuck-at-0; the input
signal 0 1 0 (for D = 0) is a test for each of these lines
stuck-at-1. A similar interpretation holds for D-cube
1 D D. In order to be quite clear to the reader interested in
making comparisons with the author’s previous notation,
we consider another example. First, however, we remark
that a vertex in the 6-dimensional “space” of coordinates
1, 2, 3, 4, 5 , 6 is simply a vector of six binary digits, for
example,

1 2 4

11 2 3 4 5 61

1 0 0 1 0 1 .
- ”

In the three-dimensional cube ‘1 ‘x 3x 4l 5O ‘x, each x is
able to take on, independently of any other x, two values;
thus this cube “covers” 23 vertices formed by allowing
each x to assume values 1 or 0. Likewise, the cube
‘D ’1 3~ 40 5~ ‘D represents only two vertices, since all
D’S are to be thought of as all having the same values
together. We shall be dealing with “mixed” cubes, con-
sisting of cubes containing both D’S and x’s (or, equiv-
alently, blank spaces rather than x’s).

For example, if we hook up three logic blocks as in
Figure 2, the behavior of the block with output 4 of Figure
1 is given by the first three cubes of the cover. (The cube
1 1 1 may also be written ‘1 ’1 3x 4l 5x ‘x, and

similarly for the other cubes.) The next three cubes specify
the input-output relationship of block 5 , and the next
three specify that of block 6. These nine cubes are termed
the singular cover of the Boolean function of line 6, the
output signal, in terms of its primary input signals. Internal
lines are utilized in making explicit this relationship and
in general, particularly for large circuits, this mode of
expression is phenomenally more concise than an ordinary
cubical cover (normal form). Furthermore, as we shall
see, it is particularly well suited for computing tests for
failures of the circuit.

1 2 3 4 5 6

refers only to the inputs and outputs of the block itself.
* W e use the term “embryonic” to emphasize that the test pattern

2-

Figure 2 A simple circuit
in dashed lines, D-cubes.

1 2 3 4 5 6

with its singular cover and, with-

Below this singular cover are listed the “primitive”
D-cubes for the circuit. Each of these contain two embry-
onic tests for specific failures on each block. These
embryonic tests are in terms of signals on the immediate
outputs of each block. For example, the cube 4D ’0 6~

contains two tests, 4l 5O 61 and 4O 5O 60; these are tests for
failures of line 4 in terms of the output on line 6. The
seven D-cubes listed constitute all the D-cubes necessary
to compute tests for the entire circuit. (This reflects the
general case in that such a body of primitive D-cubes of
logical blocks, together with the primitive D-cubes of the
failures (see page 282), and together with the “multiple
D-cubes” which are computed on a demand basis, are
sufficient to compute tests for all failures.)

Now let us see how we can combine these D-cubes to
compute tests for lines in terms of signals imposed on
primary inputs. For example, the D-cube ’ D ~ ~ ~ D contains
tests for line 1 in terms of line 4; the D-cube 4~ ’ 0 6~ con-
tains tests for 4 in terms of 6. When these are combined or
“intersected” they yield

1 1 2 4 5 6 ,

D I D O D ,

and we now have tests for 1 and 4 in terms of 6. Now, the
D-cube above has this interpretation: When line 2 has

signal 1 and line 5 has signal 0, lines 1, 4, and 6 will have
the same signal D, with D equal to 0 or 1. Thus, for ex-
ample, to test for whether line 4 is stuck-at-1 (Cf. Ref-
erence 5) it would be sufficient to have signals 1 and 0 on
lines 2 and 5, respectively, and to have 0 on line 1 ; then if 4
is stuck-at-1, 6 will be 1, but otherwise 6 will be 0.

If we let some circuit have n lines, then a D-cube of that
circuit is an n-tuple of symbols consisting of l’s, O’s, D’S,

D’s, x’s, or blanks. The D - C U ~ is termed complete if no
coordinate is x or blank. The interpretation of a complete
D-cube is fairly simple: each 1 or 0 represents a signal on
the corresponding line; each D indicates a possible pair
of signals, either 1 or 0 but both being the same for all lines
corresponding to coordinates having the value D; con-
versely, all lines having coordinates i5 have the same value
but one that is opposite to that of the lines having coordi-
nates D. If a D-cube is not complete, then it has coordinates
which are not specified; i.e., are blank. Let there be r of
these. Then this D-cube represents 2’+‘ possible configura-
tions of signals on the circuit. As indicated above, these
blanks may be changed to x’s as for the standard cubes that
have been treated by the author. Thus in Figure 2, the in-
complete D-cube ‘D ’1 D 0 6~ may be written

The vertices of a D-cube having r x’s are obtained by
setting each x to a 0 or 1, each D to a 1, and each b to a 0
(or vice versa, each D to a 0, and each B to a 1) to define
2“’ such vertices. We say D-cube A D-contains D-cube B
if the set of vertices of D-cube A contains all those of
D-cube B. For example, A= 1 x 0 x D ii must D-contain
1 1 0 x 0 1 and 1 x 0 1 0 1, as well as six others.

Construction of c(T, F)
Let T be a test and F be a logical failure in a circuit. Then
each test T and failure F define a D-cube, c(T, F), in the
following manner: If, for any coordinate, the signal as
induced by the test input in line i is the same, say 1, whether
or not a failure exists, then the D-cube has this signal, say 1 ,
as its i th coordinate. If the perfect circuit has a 1 on a given
line in response to the given test and the circuit with the
given failure has a 0, then assign to the corresponding
coordinate a D. If the reverse, assign a 6.

Observe that this construction is possible only if the
logic circuit is a Boolean graph, i.e., has no feedback (for
if not, the signals on lines in the failing circuit are not
unique). Note also that c(T, F) conversely defines T, being
the values of c(T, F) on the primary inputs pi.

Lemma 1 : If a given test T detects a given logical failure F,
then the coordinates expressed by the corresponding
D-cube, c = c(T, F), defined by T and F, contain a con-
nected chain of coordinates having values D or B, linking
the output line of the failing block to a primary output.

Prooj: By definition, some primary output is a function

3 4 5

1 2 3 4
D 1 x D 506D.

281

DIAGNOSIS OF AUTOMATA FAILURES

of the failure in the sense that its value changes depending
upon the presence or absence of the failure. This depen-
dence must be through some chain connecting the failing
block to the primary output. For if there were no connected
chain of coordinates having the value D or b linking these
two, then, along every path between the failing block and
the sensitive primary output, the chain of D’S would termi-
nate; the “next” block in the chain would have a fixed
output value whether or not the failure had occurred.
Thus, along each path from failing block to output,
eventually there would be no change due to the failure.
Consequently, the primary output would also not change.

Q.E.D.

The general objective is now to combine or “intersect”
the “primitive” D-cubes constructed from each block
to achieve a test for a corresponding set of failures.

Intersection of cubes

Let the coordinates (al, , an) and the coordinates
(bl, - , bn) specify cubes a and by where ai and b are 0
or 1 or x. Cubes a and b will intersect in an empty cube 4,
if, for some i, ai = 1 and bi = 0, or ai = 0 and bi = 1.
If this condition does not occur their intersection is speci-
fied by coordinates (cl, e e - , cn), where each ci = ai n bi
is formed according to the rules below (Cf. Ref. 8):

o n o = o n x = x n o = o ;

~ n l = ~ n x = x n ~ = ~ ;

x n x = x .

For example, 0 x x 1 x x intersects in the empty cube 4,
but

o ~ x x ~ n o x l x l = o ~ ~ x ~

and

x x x m l x o x = 1x01.

Primitive D-cubes of a failure.

Consider a logical block with a given singular cover
specifying al, the totality of conditions under which the
output of the block is 1 (these are specified by all those
cubes whose output coordinate is 1) and a0, the totality
of conditions under which the output is 0 (these are speci-
fied by all those cubes for which the output is 0). Now let
F be a failure of the logical block that changes the logical
function which it performs. Let the singular cubes for
which the output of the failing block is 1 be denoted by Pl
and those for which the output is 0, by PO. For example,
suppose the logical block is an AND which under a given
failure is transformed into an OR, as shown below, with

282 1, 2 as input coordinates and 4 as output coordinate.

11 2 41

1 1 1)al

O x Oi,O
x 0 oi

x 1/01
x 1 1

0 0 0)po

Then the totality of input conditions for which the outputs
disagree, depending on whether or not there is a failure,
is obtained by: (1) changing the output coordinate of all
cubes of a1 and intersecting them with 00 and (2) changing
the output coordinate of all cubes of a0 and intersecting
them with Pl. Those cubes in the first class we shall denote
by assigning a D to their output coordinate and those of the
second, by a 6.

In the example, we thus generate the D-cubes

2 41

O l B
l o b .

These cubes now have the following interpretation: When
the inputs 0, 1 are applied respectively to lines 1 and 2,
the output will be 0 if the circuit is perfect, or 1 if it has
changed to an OR output. Similarly for the input 1, 0.
In the case of a multiple output block such as we shall

meet for the diagnosis of shorts between lines, the pro-
cedure for generating the D-cubes is exactly similar. For
example, let 1,2,3,4 be input coordinates and 5, 6 output
coordinates. Suppose that the singular cover for the perfect
circuit contains the cube ‘1 ‘x 4x 5l 60, and the failing
circuit contains ‘x ’1 3x 4l 5O 61. Then the construction
yields the D-cube ‘1 ’1 3l 4l 5~ ‘13.

Primitive D-cubes of a logical block.

For purposes of computing tests for failures which can
be detected by primary outputs of the circuit, we introduce
another type of D-cube, one which essentially specifies the
signals on all inputs to a block but one (or more) under
which a change of signal in this input (inputs) induces a
change on the output of the block. The example of Figure
1 depicts these D-cubes.

We shall first give the construction for change on a
single input coordinate i. For each cube in the singular
cover for which the ith coordinate is not x, change its
value and change the value of the output coordinate.
Intersect this cube with each other cube in the singular
cover; for each such cube in the intersection, assign the
value D to the i th coordinate; if the value of the output in
the original cube is the same as that of the ith coordinate,
assign to it the value D; otherwise, b.

J. PAUL ROTH

Basically, we need two kinds of primitive D-cubes:
D-cubes with only one input coordinate equal to D or 6,
and multiple input D-cubes, which have more. In construct-
ing the multiple input D-cubes, it is expedient to deal with
canonical covers, i.e., covers of cubes containing no x’s.
Otherwise, the procedure for changes in r input coordinates
is exactly analogous to that for one.

For example, if the singular cover contained the cubes

11 2 3 4 5 61

1 0 1 0 x 1
0 1 x 0 1 0 ,

with 1,2,3,4, and 5 the input coordinates and 6 the output
coordinate, and with 1 and 2 the particular coordinates, the
D-cube

would be constructed. This has the interpretation that,
when input lines 3, 4, and 5 have values 1 , 0, and 1 , then
when 1 and 2 change respectively from 10 to 01 the output
on line 6 changes from 1 to 0 and vice versa.

Lemma 2. The totality of all input configurations, such that
an inversion in the value of each r particular input lines
effects a change in the output, is obtained by the above
construction and each such input configuration is con-
tained in one of these primitive D-cubes.

Proof: This lemma follows directly from the construction
of these primitive D-cubes: For each cube in the cover,
examine the particular r coordinates in question. In canon-
ical terms, every possible input configuration is repre-
sented. Suppose there was a multiple input D-cube for
which there are r input D-coordinates. Then, setting D = 1,
we are yielded one term which must appear as a canonical
term in the cover; similarly the cube obtained by setting
D = 0 also must be in the cover and must by construction
be obtained from the first by inversion of the particular r
input coordinates. Hence, this D-cube would be obtained
by construction from the canonical cover. Q.E.D.

D-infersection.

First we define the coordinate D-intersection of the sym-
bols 0 , l , x, D, and B. This requires the introduction of four
new symbols: 4, meaning empty D-intersection; #, mean-
ing that D-intersection is not defined; and X and p, signify-
ing a more complicated subroutine for the definition shown
in the table immediately below:

n O l X D 6
-
0 0 4 0 # #

1 4 1 l l l . I c .

X o 1 X D 6

D # $ ’ D p X

B # # B X p

Thus, if for any coordinate, the coordinate D-intersection
is 4, then the D-intersection is said to be the empty cube.
If any coordinate intersection is # then the D-intersection
is undefined.

Assume now in what follows that no coordinate D-

intersection 4 or # occurs. Then if bofh X and 1.1 occur, the
coordinate D-intersection is not defined. If only 1.1 occurs,
then for these coordinates let D n D = D, 6 n 6 = I3 and
let the D-intersection be the set of coordinate intersections.
If only X occurs, then in the second factor change all
coordinates which are D to 6, and which are B to D. Then
using the rules for coordinate D-intersection of D n D = D,

B r\ 6 = 6, the D-intersection is the set of these coordinate
D-intersections. It is seen, by comparing the intersection
table in Reference 8 with that above, that when cubes a
and b are ordinary (nonsingular) cubes, i.e., with no
coordinates equal to D or 6, that intersection and D-inter-
section coincide.

Lemma 3: Where products are defined, D-intersection is
commutative and associative.

In the algorithm to follow, we will use the restricted
D-intersection which insists that there be at least one co-
ordinate for which both cubes have the value D or 13; that
is, their D’S must “interact.” We shall say that D-cube
a D-contains D-cube c if for each coordinate i, ai = ci
or x. It follows from this definition that if a D-contains c,
then the set of all vertices of a contains the set of all vertices
of c, so that a also contains c. If a D-contains c we shall
write a 2 c.

Lemma 4. Let T be a test for a failure F of logic block 3.
and again let c(T, F) be the D - C U ~ defined by this test
and failure. Then c(T, F) is D-contained in a primitive
D - C U ~ of failure F.

Proof: The coordinate(s) of the output of 31 in c(T, F)
must clearly be D or 6 since otherwise no primary output
would be capable of distinguishing the existence or non-
existence of failure F, by the above lemma. Thus consider
the D-cube defined by having the same values as c(T, F)
for the immediate inputs to 31, the same value D (or B)
which c(T, F) has for the output of 31 and, for all other
coordinates, its value is x: this is clearly a primitive D- 283

DIAGNOSIS OF AUTOMATA FAILURES

cube of the failure F and it clearly D-contains c(T, F) .
Q.E.D.

Lemma 5 : If D-cubes a and b each D-contain D - C U ~

c # 4, then their D-intersection is defined and it D-contains
C.

Proof: By hypothesis, for each coordinate, ai = c i or x
and bi = ci or x, so that ai A bi = c, or x or p. Now
if the coordinate D-intersection is p, then c i must be D

or b and, according to the rule for D-intersection, this
coordinate is changed to D or b. It follows for this case
that ai A bi = c,. Hence in general, the coordinate D-

intersection ai A bi = ci or X so that a (3 b by definition
D-contains c. Q. E. D.

Lemma 6: Let T be a test for a failure F of a given Boolean
graph (a logical circuit without feedback). Let c(T, F)
denote the D-cube defined, as described above, by T and F.
Let h be a logic block, not the site of the failure F, for
which the output coordinate of 3. in c(T, F) is D (or Is).
Then c(T, F) is D-contained in a primitive D-cube of a.

Proof: If an output coordinate of block a of c(T, F) con-
sists of a D or b, then at least one input coordinate to the
block of c(T, F) must also be D or b, for if all the input
coordinates had values 1 or 0, i.e., did not change whether
or not failure F existed, then the output also obviously
could not change.

Let - , a i (r) , bicl,, - , bits) be thecoordinates
of c(T, F) for logic block 31, with the a's input coordinates
and the b's the output coordinates. Assigning to D the
value 1 and to D the value 0, we define a cube which is
"covered" by the singular cover of h; i.e., each of its
vertices is contained in some cube of the singular cover.
Similarly a cube is defined for the opposite assignment:
D = 0 and ij = 1. On the other hand, these two cubes
(they are vertices of the cover of a), when combined by
the method above, go together to form a primitive D - C U ~

pdc of the block a. Now, to be explicit, if pdc is extended
over all coordinates of the Boolean graph by assigning the

jT$+
I I

L""l

Figure 3 Shorts between lines: an illustrative circuit. I

contain all tests to detect these failures are
l a - b a* b",

1 0 1 I3
O l b 1.

I

These cubes may therefore be inserted into the algorithm
for the generation of tests of Section 3 or 4, to obtain tests
in terms of primary inputs for this failure.

3. Manual procedure for D-algorithm

The D-algorithm will be described in two forms: First by
means of a manual procedure in this section, in which the
set of primitive D-cubes will be priorly computed and
stored, and second, by means of a program written in
Iverson notation in Section 4. In both cases the underlying
steps are quite simple: First, having selected a primitive
D-cube of a given failure, this cube is successively D-inter-
sected with primitive D-cubes in an attempt to form a
connected chain of D-coordinates to a primary output;

value x to those as yet unassigned, then it is clear that second, having generated such a D-cube, we attempt to
pdc D-contains c(T, F) . Q.E.D. "complete" it by means of D-intersecting it with the sin-

* Detection of short circuits.
gular cover S. This will be called the CONSISTENCY opera-
tion.

We next consider shorts between lines of the circuit. Con- We shall describe the manual procedure by means of the
sider the typical case as shown in Fig. 3, consisting of example shown in Figure 4. The figure on the left is des-
logical blocks A and B whose output lines a and b cross. cribed analytically by the singular cover S on the right,
If the lines short at the point of crossing we shall assume consisting of rows a through r. The primitive D-cubes of
that the short behaves as a so-called dot-OR function. The the logic blocks (the single-output variety) are represented
treatment is exactly analogous in case the short behaves as by the rows A through M.
an AND. We assume, therefore, the existence of a pseudo- The first step in the algorithm is to select at the site of
block C with inputs a and b and outputs a* and b*. When the failure a primitive D-cube of the failure. Consider first
no short occurs a* = a and b* = b. Under failure, how- the case of a failure in line 1 (we treat the failures stuck-
ever, a* and b* become the OR of a and b: a* = b* = at-1 and stuck-at-0 simultaneously): Thus the initial test

284 a V b. It is easy to show therefore that the D-cubes which cube fco = 'D. We form the following chain of D-inter-

J. PAUL ROTH

1015

Figure 4 The circuit, singular cover, and primitive o-cubes for the D-algorithm of

sections: (The order for D-interSeCtiOn should be lexi-
cographical; it turns out, in this example, that the first
such intersection that "works" is the one shown.)

t C 2 = tc' n L

Section 3.

Now for each D-cube fc we define the activity vector a
consisting of the set of all coordinate numbers j of tc for
which: (1) the coordinate fci = D or D; and (2) this co-
ordinate j is a primary output of the subgraph of the
circuit defined by those coordinates of tc not equal to x.
In the example above a' of fc' is { 1, 8) ; for fc2, a' = { 10).

In Section 4, the notion of the D-fanout of a, fa, figures
prominently. It keeps track of the number of successors
of each element of a which are potential extenders of the
D-chain to primary outputs, i.e., are on the "frontiers"
of fc; if a line is a primary output, then 1 is added to this 285

DIAGNOSIS OF AUTOMATA FAILURES.

number (see step 3 of Fig. 5.). In this examplefa’ = (‘1, ‘1).
Thus, returning to the description of the algorithm,

when the D’S have been driven forward as far as possible
and primary outputs Po have been encountered, the CON-

SISTENCY operation, moving back to the primary inputs,
via D-intersecting with S, is begun. Thus, in the example,
since the activity vector a’ of tc’ consists only of the pri-
mary output 10, the first part of the algorithm is finished.

The next step is the CONSISTENCY operation. The purpose
of this operation is to “fill in” the remaining coordinates
and to ensure that they are “consistent” with the singular
cover. In general, it is necessary to have “prime” cubes
(prime implicants) as a singular cover for this operation.
This time we shall, for the sake of convenience, write
down all the singular cubes in tabular fashion and then
intersect them all simultaneously with tc2.

The fourth coordinate is blank (or x); this means that it
may be given an arbitrary value. Thus tc5 describes four
tests, the primary inputs for which are:

, 1 2 3 4,

1 0 0 0
1 0 0 1
0 0 0 0
0 0 0 1 .

The first two of the four tests are for line 1 being stuck-at-0,
the last two, for line 1 stuck-at-1.

Another path in the algorithm also applied to the D-cube
‘D of the failure line 1 stuck-at-1 (or stuck-at-0) is the

286 following, shown up to tc3:

At this point, the vector a of active coordinates consists
of 1,6, and 7. Now the block with output 8 has both 1 and 6
as inputs and, therefore, the need for a “double” D-cube
is indicated. Let us go through this computation.

The first cube in the singular cover for block with output
8 is ’1 6O ‘1. In accordance with the method for generating
multiple D-cubes (Section 2), change the input coordinates
affected, 1 and 6, and its output, 8, to obtain ’0 61 ‘0 and
D-intersect it with the remaining cubes ‘1 ‘1 ‘0 and ‘0 ‘0 ‘0.
They do not D-intersect so that a double D-cube does not
exist and the generation of the test cube tc3 is abandoned.

It is instructive to compute a test for line 2. The table
below shows the result tc5 of the first five effective D-

intersections, up to but not including D-intersection with
the primitive D-cubes of the block with output 10.

The vector a of active coordinates consists of lines 8 and 9,
both of which are inputs to block 10. This fact indicates
a need for a “double” D-cube, and this is generated by the
following procedure.

Cube ‘1 ’1 “0 has its input coordinates 8 and 9 changed
and also its output coordinate to yield the cube ‘0 ’0 “1.
This cube is tested to ascertain whether or not it lies in the
singular cover: it does, because cube q is ‘0 1 or 9 10

J. PAUL ROTH

8 9 10 0 x 1, whose intersection with '0 '0 "1 is indeedso '0 "1.

We now return to the subroutine for generating the test
This then defines the double D-cube N = 'D 'D "13.

cube IC' = tc5 nlv,
, 1 2 3 4 5 6 7 8 9 1 0 ,

t c5 1 D o o D D i j i j l i

N D D D

i C 5 T \ N 1 D O O D D f i n l i D

Now the vector a of active coordinates consists solely of
line 10, which is a primary output Po, a C Po.

The next step is the CONSISTENCY operation. In this case,
the set g of coordinates of tc5 which have the values 1 or 0
consist solely of primary inputs pi, g C pi, so that the
CONSISTENCY operation need not be performed. This com-
pletes the computation for the test cube fc'. This cube
determines the tests '1 '1 3O 4O for line 2 stuck-at-0, and

A method has been developed using D-notation for
identifying all failures that a test detects; that method
will be described in a subsequent paper.

1 2 3 1 0 0 4O for line 2 stuck-at-1.

4. Programming the D-algorithm

A program is given here for the central part of the D-algo-
rithm. It is written, as Fig. 5 [the foldout] reveals, using a
quite restricted subset of the Iverson notation. Sections
1.2 through 1.5 of Reference 9 will be found to cover all
that is used here. An alternative reference is Falkoff,
Iverson, and Sussenguth, Ref. 10, pp. 198-202. Further,
the present section also gives a step-by-step description
of the program itself.

In contradistinction to the manual procedure of Section
3, the program here is restricted to logic circuits composed
of AND'S, OR'S, NAND'S and NOR'S (the transistor-type of
logic used almost universally in today's technology). This
restriction would be easy to remove, however, involving
as it does only a few instructions. It is also assumed that
the logic blocks or lines of the circuits are labelled with
integers in such a way that the number assigned to any
block exceeds that of all the lines that feed it; a very simple
method is sufficient for such an assignment.

In Table 1 we provide a list of the symbols used in the
program, together with their meaning, given in the order
of their appearance in the discussion below.

There are two parts to the algorithm. In the first, a
primitive D - C U ~ ~ f c of the failure is recursively intersected
with primitive D-cubes of logic blocks seeking to form a
D - C U ~ tc which provides a "connected chain" of D-CO-

ordinates to some primary output Po (Steps 1 through
38). The second part, the CONSISTENCY operation (Steps
39 to SS), consists of intersecting this D-cube f c with the
singular cover S. This amounts to "driving backward";

i.e., amounts to successively assigning values to the uncom-
mitted coordinates (those equal to x) in a way consistent
with the singular cover, if this is possible.

Step 1 is to set initial parameters rn and h, to 0. Step 2
is to load tc, the test cube, with a primitive D-cube of a
given failure. Step 3 defines the "activity" vector a, con-
sisting of all coordinates j whose value is equal to D or I3;
the values of a are integers, belonging to the set 1 of all
integers. Referring to Step 4, dk consists of the set of logic
blocks driven by block k, vdk means the number or cardinal-
ity of this set, and vd" is to denote the vector whose kth
component is this number. To complete the initialization
of fa, the quantity is added to vd" in order to record
the fact that any particular ai is a Po.

Step 4 unconditionally branches to Step 9 (we shall
return to Steps 5 through 8). Now j is the index on the
coordinate number of the activity vector a; it runs, there-
fore, from 0 to ua, the dimension of a. Thus Step 9 sets j
to 0. Step 10 compares j with vu; if j # vu, then Step 11
follows, which increments j by 1, j + j f 1. (On the first
time in reaching Step 10, j would be 0 and thus in general
less than vu. Thus we proceed first with the chain of in-
structions following the branch j f vu.)

In Step 12, k is the index on the set (or vector) d"' of
logic blocks driven by ai. Thus k ranges from 0 to the
number ud"' of elements in d"'. Step 12 sets k to the initial
value of 0 and Step 12.1 defines the final value of kf.

Step 13 compares the magnitude of k with vdUi. If in
Step 13 k = kf, then we return to Step 10 where we try
the next coordinate of a if possible.

If k # kf, k is incremented by 1 in Step 14. (Thus, for
the first time through, k = 1.)

Now, to simplify notation, in Step 15 and subsequent
steps we let dt', the kth successor of ai, be denoted by s
(s for successor). For the same reason in Step 16 and
subsequent ones, rs, the set of predecessors of line s, is
denoted by p .

Now the algorithm as described in this program is
restricted for convenience of expression to the logic blocks
AND, OR, NAND, and NOR. In Step 17, the expression within
oblique brackets / ; ;/ defines a vector 1. The expression
e; is a vector obtained from p by replacing each com-
ponent by a 1 or 0 according to whether it is or is not in a.
When it is, the value /;;/ is D, the right term, so that the
corresponding coordinate of t would also be D. When it is
not, the value of the corresponding coordinate of t is
the value of the proposition (All 2 AND, NAND): 1 if
logic block s is an AND or NAND, and 0 otherwise, in which
case it is either an OR or NOR. Thus Step 17 determines all
the values of the input coordinates of s.

Step 18 determines its output coordinate by the expres-
sion in the oblique brackets and catenates this with f,
to form pdc, the appropriate primitive D-cube of s. Within 287

DIAGNOSIS OF AUTOMATA FAILURES

/;;/ now, A, y NOR, NAND is a proposition equal to 1 or O
depending upon whether or not the logic block of s is or
is not a NOR or NAND. If it is, then the output coordinate
shall be ij, the right member of the expression. If not, then
D. Thus is pdc the primitive D-cube of s defined.

Step 19 forms the D-intersection of tc with this primitive
D-cube pdc. However, only the subset of the coordinates
of f c corresponding to the block s are needed and these are
specified by the subscript p , s. The D-intersection is called

Now in contrast to the definition in Section 2, this w
is meant to be the coordinate D-intersection and in Step 20
this is tested. Step 20 evaluates the proposition: Are any
coordinates of w equal to 4, I) or do both X and p appear?
If this proposition is true (equals 1) then no D-intersection
is formed and we branch to Step 28 to update a, fa, and j .

Step 21 tests to ascertain whether or not a p occurs in
the coordinate D-intersection w. If p does not occur, then,
according to the rules for D-intersection, the D’S and b’s
of pdc must be interchanged. This is accomplished in
steps 22 and 23.

Step 22 defines the intermediate primitive D-cube ipdc:
where p d c has coordinate D, ipdc has coordinate D;
where p d c does not have coordinate D, ipdc coincides
with pdc. In step 23, where pdc had coordinate D, re-
specified pdc has D; otherwise the “new” pdc coincides
with ipdc. If p does occur (in step 21) then we skip steps
22 and 23. In either case we arrive at step 24.

Steps 24 through 27 are concerned with what quantities,
if any, should be stored in case the branching process
returns to this stage in the execution of the algorithm.

Steps 28 through 31 are bookkeeping operations as-
sociated with a. Now a consists of those coordinates of tc
which are “active”, that is, coordinates which lie on the
frontiers of tc. The respecification of a (and fa) is accom-
plished by use of the survivor vector sur. Imagine that
for each coordinate of a that is a predecessor p of s, the
fanout vector fa is decremented by 1, i.e., nfa + (fa - e;).
Only those coordinates of “new” fa which are not zero
should survive since only they have a chance of propagat-
ing. This sur is defined in step 28 as a logical vector whose
i th coordinate is 1 if and only if nfai is 1 ; otherwise 0. In
step 29 all coordinates of nfa that are 0 are deleted, i.e.,
sur compresses nfa, this respecifies a. In step 30 a is simi-
larly compressed by sur, to eliminate all coordinates of a
which are not on the frontiers of f c. Step 31 updates the

W .

we return to step 13 to resume the examination of suc-
cessors. When both a D and ij are present, step 33.1 tests
to see if the block output has previously been set to the
incorrect value: if so, it is necessary to back up, thus a
branch to step 6 is executed. Step 33.2 tests to see if the
output is x. If it is, step 34 is used to set the output. If
the output is not an x, it must already have been set cor-
rectly; the program branches to step 13.

Now what we want of new f c is that its old coordinates
shall be those of old f c while its new shall be those as-
sociated with block s, namely either its input coordinate
p or its output s. Thus the expression within the left oblique
bracket \; ;\ (which Iverson calls mesh) contains a vector
e p ” . If the rth coordinate of this vector (or proposition)
is 1, then the corresponding coordinate of f c is that of
w. If it is 0, then the corresponding coordinate of tc is
that of old t c, which is obtained by restricting f c to the
subset E p ” , not in the inputs or outputs of the block s.
This is what C p ’ “ / t c specifies.

Step 36 adjoins s to a. In step 37, necessary modifications
for fa are made (Cf. step 3).

Step 38 determines whether or not the “D-drive” to the
output has been completed, i.e., whether all entries in a
are primary outputs which have been driven forward as
far as possible. If not, the action returns to step 13, to
resume the examination of successors. If it has, then we
have pursued the D’S to primary outputs and we have
finished with the first part of the algorithm.

The only instructions in the first part of the algorithm
yet to be explained are steps 5 through 8. These are reached
through the backup procedure in branching. Step 5 is
accessed from step 10 when all elements in a have been
examined. Step 5 ascertains whether or not a Po has been
reached. If it has, we branch to step 38. If a Po has not
been reached, we ask in step 6 whether any branching
levels remain to be investigated: i.e., is rn = O? If not,
then no test exists. If so, steps 7 and 8 back up in the
branching structure.

The last part of the algorithm, the CONSISTENCY opera-
tion, begins with step 39. This step defines a vector g
consisting of all lines whose coordinates of t c have values
1 or 0. Step 40 asks whether or not g consists solely of
primary inputs p i . If it does, the algorithm STOPS, for the
purpose of the CONSISTENCY operation is consistently to
drive back the values on the lines g to primary inputs, to
determine the actual test, in terms of primary inputs, to the

index j on a to compensate for the compression. For each circuit. Step 41 deletes those coordinates of g which are
coordinate r 5 j whose corresponding entry in sur is 0, already primary inputs. Since we will always be working
j is decremented by 1. with the last element of g, step 42 sets the g index, n, to vg.

Step 32 decides (again) whether or not a.valid D-inter- Step 43 tests the inputs (predecessors) of logic block gn
section was formed. If it was, then we branch to step 35 to to see if both a D and D occurs in t c. If both do occur, this
form the new t c . If it was not, step 33 tests to see whether block can be skipped (its output was determined strictly
or not the D-intersection failed because of a D and 6 both by the D, 6; cf. step 34) so that step 44 deletes g,, from g I

made. If they do not both occur, step 45 is entered. Step 45
sets to 0 the index 1 on the number of rows of the singular
cover 'S of the r th logical block. As was indicated in Sec-
tion 3, it is necessary that S consist of prime cubes, that is,
of prime implicants. In Step 46 P(~"S) is the number of
rows of the matrix " S and Step 46 tests whether or not
all rows of '"S have been tried (unsuccessfully). If they
have, then this test cube t c is finished and control shifts
to Step 55 where m is tested to ascertain whether all
branches have been exhausted. If m = 0, the process is
ended and there is no test. If m # 0, then in Step 56 the
parameter h, is tested. If h, = 1 then the next branch is
in the CONSISTENCY mode and Steps 57 and 58 prepare for a
return to Step 46. But if h, = 0 in Step 56 control shifts
to Step 7 for commencing the first part of the algorithm.
But we return to Step 46. If 1 is less than p(""S) then more
D-intersections can be formed: Step 47 increments 1 and
Step 48 forms the coordinate D-intersection. Step 49 is a
test to ascertain whether or not a nontrivial D-intersection
is formable. If not, control returns to Step 46. If so, then
Steps 50, 51, 52 ascertain whether to save this stage of the
computation: if I < p('"S) then it is saved. In any event
in step 53, g,, is deleted from g and those coordinates of gnS,
whose value is 0 or 1 and for which f c = x, are added to g.
Step 54 respecifies t c by y. Finally control is shifted to
Step 40 where the test for completion is made: is g con-
tained in the set pi of primary inputs? With this, then,
the description of the program is complete.

5. Proof of validity of algorithm

Definition: Let q = ql, v', - , vr be a set of D-cubes.
Let a(q) be defined as their D-intersection

a(q) = q1 n q2 n - n 7'.

If q is the empty set 4, let a(q) = xx . . x, of dimension vG.
For notational convenience let c(T, F) be denoted c.

As in Section 4 we restrict ourselves to the functions AND,

OR, NAND, and NOR for the logic blocks 1.
A-construction: Let I be a logic block not the site of the

failure F, for which the output coordinate cI of c is D or
B. We define a D-cube a' in the following manner: for the
immediate inputs p of I and output I , let the coordinates of

coincide with those of c ; let the coordinates of a' else-
where be x. The proof of Lemma 6 establishes that a' is a
primitive D-cube of block I .

Let o denote the set or', . , or"' of all such primitive
D-cubes, one for each block I , which has a D or b in its
output coordinate and is not the site of failure F.

B-construction: Suppose that for logic block J the out-
put coordinate of c is 1 (or 0) and both D and B do not
occur on the inputs. Then c can be used to form a singular
cube P J a according to the following construction. Let r
be an output or input coordinate of block J: if c(r)

1 (or O), let PJ'(r) 3 1 (or 0); if c(r) = D, b or x, let
PJ*(r) = x; let all other coordinates of p J * be X.

Lemma 7: (1) The cube P J * is contained in a singular cube
0" of 'S. (2) Furthermore, P J D-contains c(T, F).

Proof: We shall prove part (1) of the lemma for hJ being
an AND. Similar proofs establish the lemma for the other
three possibilities.
Case Z: The output of block J is a 1. This implies that all
inputs are 1 and the lemma immediately follows.
Case ZI: The output of block J i s a 0. Now the only ways in
which it is possible in the D-algorithm for this output to be 0
is that either (a) a D-, fj-combination occurs, which is ruled
out by hypothesis or (b) some input L of J is 0. Clearly
/3 * is contained in the prime cube /3 of JS, consisting of a
0 in lines z and J, and an x in all other coordinats.

Part (2) of the lemma follows immediately from the
construction. Q.E.D.

Let /3 denote the set pJ', - - , P J " of such constructed
singular prime cubes, one for each block J which has in c
a 1 or 0 in its output and whose input does not contain
both D and B.

r-construction: Suppose that for logic block K its out-
put coordinate in c(T, F) is 1 (or 0) and that a D and B
occur as input coordinates. In this case we define cube +yK
consisting of a 1 (or 0) in coordinate K and x's elsewhere.
Let y = y K 1 , - - - , y K c be the set of all such y%.

Hypothesis H : Given a Boolean graph G , a failure Fin G ,
and the existence of a test T to detect Fin G .

Theorem I : Under Hypothesis H , the following conclusions
hold:
(1) The D-cube of test-and-failure c(T, F) (as defined in
Section 2) can be constructed.

(2) This D-cube c(T, F) conversely defines T as its primary
input coordinates pi.

(3) There exists a primitive D-cube-of-failure (YO which
D-contains c(T, F)

a" 3 c (T , F).

(4.0) There exists a set o E arl, azz, e . . , arm of primitive
D-cubes of a set of logic blocks in G such that their D-
intersection a(o) D-contains c(T, F),

a b) 3 c (T , F).

(4.1) There exists a set /3 of prime singular cubes
P"', @ J' , - , pJn of G such that a(@) D-contains c(T, F),

First we state

a(P> 3 c (T , 0 . 289

DIAGNOSIS OF AUTOMATA FAILURES

c* 3 c(T, F) ,

and c* defines a set T* of tests containing T.

Proof of Theorem 1

(1) The construction of c(T, F) requires that, for each line
of G in both the good and failing circuit, a unique signal
value occurs. This is ensured by the hypothesis that G is a
Boolean graph.

(2) By definition, Tis completely specified by the values of
the coordinate positions of the primary inputs of c(T, F).

(3) This is a restatement of Lemma 4, with a" being the
primitive-D-cube-of-failure.

(4.0) By Lemma 6 for each logic block I, for which an
output coordinate of c(T, F) is D or ij, there is a primitive
D-cube of failure ar 2 c(T, F). That a(a) 3 c(T, F) follows
directly from Lemmas 3 and 5.

(4.1) By Lemma 7 for each logic block J for which the out-
put coordinate of c(T, F) is a 1 or 0 and for which a wij-
combination does not appear on its inputs, a singular cube
,f3 is constructed, each D-containing c(T, F). Let there
be n of these blocks J , and thus n 0's: P J ' , - , PJ*. By
Lemmas 3 and 5, a@) = p' n pz n . . A p" 3 c(T, F).

(5) That c* 2 c(T, F) follows directly from the A-, B- and
I"constructions and from Lemma 5. Now since c* 2
c(T, F) E cy the only way in which c* differs, if at all,
from c in any coordinate r is for c*, to be x while c, is 1
or 0. Thus, denoting c& as T* and c, as T, we have that
T* 2 T. Q.E.D.

Theorem 2: If for a given failure F of the circuit there exists
a test T to detect that failure, then the D-algorithm will
compute a test cube c(T', F) for some test T'.

Proof of Theorem 2.

Assume that, in the execution of the D-algorithm, as
described in Fig. 5, no test cube t c c(T', F) has been
constructed before the test cube c(T*, F) has been en-
countered, for if one such has been, then the theorem is
already proven. We shall demonstrate, under this assump-
tion, that c(T*, F) is in fact generated by the D-algorithm.

Assume that the set q = a V y has been arranged in
ascending order with respect to superscripts, logic block
numbers, i.e., 7 = qL1, . - , qLm+# where Li < Li+l . Let
6 be similarly ordered.

The following terms will be convenient in the exposition.
Block w is said to be a D-successor of block u if and only
if block w has a D or ij in the coordinate position corres-
ponding to block u. We shall dually describe this relation-

290 ship by saying that block u is a D-predecessor of block w.

J. PAUL ROTH

A sequence of sets H v (composed of elements from
CY", q, and P) and corresponding test cubes fc', u = 0,1,. . -,
n + rn + 4, will now be constructed, recursively, in such
a manner that the t cv will correspond directly to a sequence
of test cubes generated by the algorithm in Fig. 5.

Let H" = a' and fc" = a(H") = a". Having defined the
set H" and test cube fc" we proceed to define H"" and
tc'+' from q', the uth entry in H", as follows.

Case 1 : Suppose q n is a y. Then
H"1 = - Hv

1cv+1 = fc";
i.e., in the algorithm the successors of blocks arising from
y's are never examined.

Case 2 : Suppose q v is an CY. Then

p" = H" v ~ (T J ')

tCUf1 = IC" aP(7J">l,

where qw E Z(q") if and only if: (a) qw is not an element
of H " ; (b) qw is a D-successor of qv ; and (c) one of the
following two conditions holds :

Condition 1. Suppose qm is an a. Then all D-predecessors
of w must have their corresponding primitive D-cubes of
failure, a, in H".

Condition 2. Suppose qw is a y. Then there must be at
least one D-predecessor of block w whose primitive D-cube
of failure is in H" and has value opposite to that of q v in its
output coordinate.

After u* = m + q iterations, H" contains all the elements
of a", a, and y. This corresponds to the completion of the
D-drive: the q' do not have any new D-SUCCeSSOrS, and the
primary outputs Po must therefore have been reached.

The final n iterations in the formation of H" and t c ' ,
where u* < u 5 u* + n, are carried out as follows. Pick
the highest coordinate position, hence a logic block, in
f c' which is a 1 or 0, which is not a primary input p i , and
which has not already been examined (Cf. Steps 41 and 42
of Fig. 5). If there is both a D and ij on the inputs of this
block skip the coordinate. If not, then the B-construction
generated a Pw for this block. Now form
HV+l = H" v p"
t C W + l = IC" A p".

After n iterations, this final intersection process must
terminate.

1. Theorem 1 proves that c* = a' A a(a> n a@) A a(r)
defines a set of tests T* containing T.
2. The above construction follows precisely the steps of

We can now make the following assertions :

the D-algorithm of Fig. 5 in generating the test cube
fcm+n+a: the order of examination of 7’ and formation of
c(7”) corresponds precisely to that specified by Steps 5
through 38 and the order of intersection of the 0’s is
specified by Steps 39 through 58.

Since intersection is commutative (Lemma 3) we have

f C n + m + a =

Thus the algorithm generates a test T* which contains T.
Q.E.D.

Acknowledgement

The author is most grateful for the manifold contributions
of P. R. Schneider to the final formulation of this paper;
specifically, the structure and proof of Theorems 1 and 2
are the joint work of JPR and PRS. Further, the final
version of the programmed algorithm (Figure 5 and Sec-
tion 4) was a joint undertaking of JPR, PRS, and W. G.
Bouricius. The author is much indebted to E. G. Wagner
who read critically an earlier version of the paper and who
continued to make penetrating observations. The author
is also endebted to K. E. Iverson and Adin Falkoff who,
at a still earlier stage, helped him in writing his first version
of the Iverson-notation program. Finally, thanks are due
to B. 0. Evans, then Vice President of the IBM Data
Systems Division, who first urged the preparation of such
a paper for the IBM Journal.

References
la. W. C. Carter, H. C. Montgomery, R. J. Preiss, and H. J.

Reinheimer, “Design of Serviceability Features for the
IBM System/360,” ZBM Journal 8, 2 (1964).

lb. K. Maling and E. L. Allen, Jr., “A Computer Organization
and Programming System for Automated Maintenance,”
ZEEE Trans. Elect. Comp. EC-12, No. 6, 887-895 (Decem-
ber, 1963).

2. J. P. Roth and R. M. Karp, Minimization oGer Boolean
Graphs, ZBM Journal 6, 2 (1962).

3. R. E. Miller, Switching Theory, Vol. I , John Wiley and Sons,
New York, 1965. p. 233.

4. J. P. Roth, “Algebraic Topological Methods in Synthesis,”
in Proceedings of an International Symposium on the Theory
of Switching, 2-5 April 1957, Part I : The Annals of the
Computation Laboratory of Harvard University, Vol.
XXIX, pp. 57-73, Harvard University Press, Cambridge,
Mass., 1959.

5. J. M. Galey, R. E. Norby, and J. P. Roth, “Techniques for
the Diagnosis of Switching Circuit Failures,” Transactions
of the IEEE Communications and Electronics 83, 74, Sept.
1964, pp. 509-514.

6. C. B Stieglitz, Paper in preparation.
7. J. P. Roth, “A Pragmatic Theory of Automata,” Lecture

given at A Symposium on Switching Theory and Automata,
International Federation of Automatic Control, Moscow,
1962. Cf. also IBM Data Systems Division Report TR00.918,
Sept. 21, 1962, Poughkeepsie, N. Y.

8. J. P. Roth, “Algebraic Topological Methods for the Syn-
thesis of Switching Systems, I,”, Transactions of the Ameri-
can Mathematical Society 88, 2, 301-326, July 1958. Cf.
also Institute for Advanced Study, Princeton, N. J., ECP
56-02, April 1956 and General Electric Company Report
No. R55GL345, Schenectady, N. Y., Sept. 1955.

9. K. E. Iverson, A Programming Language, John Wiley 8c
Sons, New York, 1963.

10. A. D. Falkoff, K. E. Iverson and E. H. Sussenguth, “A
Formal Description of System 360,” IBM Systems Journal
3, 3, 1964, pp. 198-263.

Received October 15, 1964
Revised Manuscript received March 14, 1966.

291

DIAGNOSIS OF AUTOMATA FAILURES

