
PATH SYSTEMS AND LANGUAGE RECOGNITION*

Stephen A. Cook

University of California at Berkeley

Summary.
Our main result, theorem 2, gives a

bound on the storage required for a
Turing machine to simulate certain time-
bounded pushdown machines. The theorem
is a generalization of the result appear-
ing in [3] stating that any context-free
language can be recognized by a determi-
nistic Turing machine within storage

(log n) 2 We introduce a combinatorial
object, called a path system, develop its
theory briefly, and use the theory to
prove both the result on pushdown machines
and the result on context free languages,
as well as a third result. The third
result is the Theorem of Savitch [5]
stating that a non-deterministic L(n) -
storage bounded Turing machine can be
~imulated by a deterministic

(L(n)) 2 - storage bounded Turing machine.

Path Systems.
Definition A path system is a

quadruple ~. = (S,R,S,T), where X is
a finite set (of nodes), R is a three
place relation on X (the incidence
relation), S C X (S is the set of
source nodes)--and T C X (T is the set
of terminal nodes).

The admissible nodes of ~ are the
least set A such that T C A, and such
that if y, z e A and R(x?y,z), then
x e A. We say ~ is solvable if at
least one admissible nod~ ~sin S.

The notion of solvable can be
defined alternatively as follows. Start-
ing with a node s e S, we try to form a
directed graph by finding nodes Xl,X2,eX

so R(S,Xl,X 2) holds. Then we let

S,Xl,X 2 be vertices of the graph, and

let (s,x I) and (s,x 2) be directed

edges. Then we find x3,x 4 and x5,x 6

so R(Xl,X3,X 4) and R(x2,Xs,X 6) hold,

and let (Xl,X3), (Xl,X4), (x2,x5),

(x2,x 6) be directed edges as shown.

We continue in this way (possibly letting

a node have two or more edges coming in)
until every directed path leads to a
terminal node (member of T). This is
possible if and only if ~ is solvable.

More precisely, .~ is solvable if
and only if there is a digraph G = (V,E)
where

a) the set V of vertices is a
subset of X,

b) for each edge (x,y) e E, there
is z e V such that (x,z) e E
and either R(x,y,z) or
R(x,z,y) holds.

c) There are no directed loops in
G (i.e. no sequences (Xl,X2) ,

(x2,x3),...,(Xk_l,Xk):,(Xk,X I)

of edges),
d) V A S is non-empty,
e) Every vertex x either has

edges leading out from itself or
x eT.

Such a digraph G is called solution
gra~ for the path systems .
Def'n The path system 2~ is tree - like
luther ~_ is unsolvable, or~ some
solution graph of ~ is a binary tree.
(For our purposes, a digraph Ls an binary
tree if and only if each vertex has at
most one edge coming in and eLther two or
zero edges coming out, and no directed
loops).

We shall be concerned only with tree-
like path systems here. However, more
general path systems are of interest; for
example the proofs of the results on
auxiliary pushdown machines in [2] could
be stated in terms of general path
systems.

Example Let G = (V, Z, P~r) be a
context-free grammar with terrainals V,
alphabet Z, productions P, and initial
symbol~--. We shall assume G is in the
normal form in which all production are
of one of the forms

$i ÷ ~2 ~3' (÷ A,

where ~i' ~2' ~3 and ~ are nontermi-

nals, and A is a terminal.

For a non-empty string w E V* we
associate a tree like path system
~= (X,R,S,T) with w and G as follows
(here n is the length of w):

* Most of the materfal here appeared in
a different form in the unpublished
report [i]

-70-

X is the set of triples (~, i, j),
where ~ is a non terminal, and i and

j are integers satisfying i < i < j < n.

R(x,y,z) holds if and only if
x,y,z have the form (~_, i, k), ±
(~2' i, j), (~3' j+l, k) respectlvely,

where ~i + ~2 ~3 is a production of G,

S = {<~-, I, n)},

T is the set of all nodes of the
form (~, i, i), where ~ ÷ W. is

1
production of G, and w = W I W2...W n.

It is not hard to see that the
admissible nodes of ~ are precisely
those nodes <~, i~ j) such that the
string W i Wi+i...W j is derivable

from $ in G. Thus w = WiW2...W n is

in the language generated by G if and
only if (~F', i, n) is admissible, i.e.
if and only if ~ is solvable.

To see that ~ is tree - like, we
note if w is in the grammar generated
by G, then a generation tree for w
tells us how to construct a solution
digraph for ~ which is a binary tree.
In fact, the generation tree, with final
branches pruned, will be isomorphic to
the solution digraph.

We shall use this example to show
that context-free languages can be 2
recognized within storage (log n) .

Query Machines

Let E be a finite alphabet, and
suppose R is a finite r-place relation
on E* (i.e. R is a finite set of
r-tuples of strings on E). The norm IRI
of R is the length of the longest
string in some r-tuple of R. That is,

r
IRI = max {~I £ = max lwil, for some

i=l

<Wl,...,w r) such that R(Wl,...,w r)

holds}

A query machine (simular to the
Turing machines M with oracle defined
in [4])is a (deterministic) Turing
machine designed to recognize a class
of finite r-place relations on E*. The
query machine M is equipped with a
special query tape, in addition to a work
tape, and M has three distingushed
states, called the yes state, no state,
and query state.

A query machine is deterministic,
except when in the query state it can
continue in either the yes state or no
state. If R is an r-place relation on

E*, then the R-computation of M is the
computation M undergoes starting in the
initial state with both tapes blank, such
that whenever M enters the query state
with a string of the form Wl* w2*...*w r

on the query tape, w i e E*, the next

state assumed is the yes state if
R(Wl,...,w r) holds and the no state if

R(Wl,...,w r) fails to hold. If the

string on the query tape is not of the
.*w when M is in the query form Wl*.. r

state, then M halts.

We say M accepts R within storage
if the R-computation ends in an

accepting state and no more than
squares of the work tape are scanned.
Suppose ~ is a set of finite r-place
relations on E*, and L(n) is a func-
tion from natural numbers to reals. We
say M accepts R within storase L(n)
if for all R e ~, M accepts R within
storage L(IRI) , and for all R e ~, M
fails to accept R (in any storage). If
some such machine M exists for the set
~, then we say ~ has tape complexity
L(n).

A path system ~ = (X,R,S,T> is a
E-path system if the set X of nodes is
a set of strings on E excluding the
empty string. The relation R* codes
such a path system ~ if R* = R U
{(x,A,A|x e S}U{~,y,~> IY e T}, where~i
is the empty string.

Theorem i Let E be a finite
alphabet. Then there is a set ~ of
finite 3-place relations on E* such that

i) ~ includes all R* which code
solvable tree-like E-path
systems

2) ~ includes no R* which code
unsolvable E path systems

3) ~ has tape complexity L(n)=n 2

The proof is an abstraction of that
outlined in [3] showing that every context
free language has tape complexity

(log n) 2. In fact, that result follows
from the present result.

Corollary I Every context-free
language has tape complexity

L(n) = ~og n) 2

Proof. Let G = <V,E,P,~ be a
context-Re language, and for each
w e V* let .2~ w be the path system

associated with w and G which we
described earlier. Let E'=E U {0,i,/}.
Then ~ can be translated into a tree-

w
like E'-path system ~'w by representing

-7]-

the node <~,i,j) by the string ~/T/J,
where T, J are the binary notations
for i and j. Note that if Rw* codes

~'w' then IR*wl ~ 2 log 2 lwl -3. Thus

a Turing machine M can be constructed
which incorporates the query machine of
theorem i. Given an input w, M has
the query machine perform an R* w-

computation by answering the queries
appropriately, and M accepts w if and
only if the query machine accepts R*

W

The storage required by M is dominated
by that required by the query machine,
which, by theorem i, is (2 log21w I + 3) 2

This can be reduced to (log lwl) 2, by
standard results on Turing machines.

Corollary 2 (Savitch [5]) If a set
A of strings on E is accepted by a non-
deterministic Turing machine within
storage L(n) ~ log n, then A is
accepted by a [eterministic Turing

machine within storage (L(n)) 2.

Proof. With each input w to the
non-deterministic Turing machine one can
associate a tree-like path system w

coded by a relation R* w such that

IR*wl _< L(n), and ~w is solvable if

and only if the Turing machine accepts
w. The proof proceeds as in the above
proof.

Theorem 2 If a set A of strings
is accepted by a (non-deterministic)
multihead two-way pushdown automaton
within time T(n) = e n k for some
constants c and k, then A has tape

complexity (log2n)2.
The proof proceeds along the lines

of the preceeding corollaries, although
the path system is considerably more
complicated• This result can be
generalized to other types of pushdown
machines, including the auxiliary push-
down machines of [2] using results in [2].
Corollaries i and 2 above are immediate
corollaries of the generalization.

References

i. Cook, S. A. and W. J. Savitch. "Mazes
and Turing Machines". Technical Report
No. 29, Computer Center, University of
California, December, 1968.

2. Cook, S. A. "Variations on Pushdown
Machines" Proceedings of the ACM
Symposium pm Theory of Computr~ May 1969,
Marina del Rey, California, pp. 229-232

3. Lewis, P.M. II, R. E. Stearns, and
J. Hartmanis. "Memory Bounds for the
Recognition of Context-Free and Context
Sensitive Languages." IEEE Conference
Record on 1965 Symposium on Switching
Circuit Theory and Logical Design.

4. Kreider, D. L. and R. W. Ritchie.
"Predicatably Computable Functionals and
Definitions by Recursion". Zeitschrift
fur math. Logiks and Grundlagen der
Math., Vol. i0, 65-80 (1964).

5. Savitch, W. J. Nondeterministic Tape
Bounded Turing Machines7 Do---~toral Thesis,
University of California, Berkeley,
September, 1969.

-72-

