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Abstract. Turing’s original quintaple formalism for an abstract compubing machine jg
compared with the quadruple approach of Post and with some new allernatives. In each gage
the possibility or nonpossibility of two-symbol or two-state universal machines is demon.
strated.

1. Introduction

The term “Turing machine” has been applied to several different characterizations
of an abstract computing machine. Since each of the formalisms has been adequate
for a development of recursive function theory, no serious trouble has arisen from the
multiple use of the term. In this paper various formal definitions for the notion of 5
general-purpose abstract computer are compared, and some new alternative defi-
nitions are introduced. Particular attention is paid to one of Turing’s original
formalisms and to one by Post; the lutter has been used extensively by Davig in [2].

Most of the theorems below assert that a certain kind of machine simulates an-
other kind of machine. However, the concept of simulation of one machine by
another is extremely diflicult to define precisely. T'oo stringent a definition excludes
cases in which one intuitively feels a bona fide simulation is being performed. Too
liberal a definition allows the use of encodings of input and output in which the
real computational work is done by the encoding and decoding algorithms and noet
by the machine which is supposedly performing the simulation.

The notion of simulation of cne machine by another used here requires that
intermediate results of the computations by the two machines be closely related as
well as the outputs of the computations; i.e., the simulation is “step by step.” An
attempt at a precise definition is given in the Appendix, and it is hoped that the
nobion of simulation is correctly captured by the definition. However, the theorems
of this paper clearly satisfy any reasonable definition of siznulation, and the author
invites suggestions for improving the définition.

Theorem 2 is due jointly to 8. Aanderas and the author [1], and Theorem 8 is
due to P. K. Hooper [4]. The author is also indebted to the referce for his comments
and for his suggestion of a way (o strengthen the originally submitted version of
Theorem 3.

2, Puring Machines

A Turing machine is usually regarded as a small computer with a finite number
of states and a (potentially) infinite tape marked off into discrete squares. Upon
each square of the tape Is written onc symbol selected from a finite alphabet; all
but 4 finite number of the squares contain the same symbol, B (blank).

In Turing’s original formulation in [8], the operation of a Turing machine was

An earlier version of this work was presented under the same title to the Fifth Annual
Symposium on Switching Circuit Theory and Logieal Design, Princeton, November, 1964.
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the following. At a given timse, the machine would be in some state and would be
seanning a square on the tape. For each state-symbol pair there would be either o
well defined operation or u command to halt. A nonhalting operation (step) would
consist of three suboperations:

(1) A vew svmbol (possibly the same as the previous one) would be written on
the square being seanued.

(2) The scanning head of the machine would move to the left or to the right
one square on the tape. (Turing also allowed the machine to stay on the same
square.)

(3) The machine would enter & new state (possibly the same as the previous
one).

The machine wounld then be scanning a new symbol, and to the new state-symbol
pair there would correspond another operation, ete.

A slightly mere formal approach to the above version of a Turing machine is to
define a machine as a set of quintuples {g;, S;, 8¢, D, ¢:) with the five components
of the quintuple represeniing present state, present symnbol being scanned, new
symbol written, divection moved on fape, and next state. (By convention, the
machine halls if it reaches a state-symbol configuration for which there is no
quintuple.) In order for the machine to he well defined, ¢; and ¢; must be selected
from & finite sel of states {q, ¢z, -, @&}, 8; and S; must be selected from o finite
set of symbols {8{= B), Si, Sz, -+, Sual, and D must be either L, B or N
(left, right or uo fape motion}. Furthermore, no two distinet quintuples of the
maechine may have as their leftmost two components the same state-symbel pair,

Often the possibility 0 = N is excluded from the characterization of Turing
machines. Tt is well known that this entails 1o loss of generality. Tor the sake of
completeness of the discussion, a proof is given below.

Defindtion. A Turing machine has a blocking-loop if for some & there exist
integers @ , %, -+, 4 and ji,Js, -+, J such that the machine includes the k
quintuples:

(%’1 H SJ‘] H ‘sz » *’Va Qi'z): (qiz ’ Siz 3 S;l'a b Ar: qix)y Ty <Qi7c ' -Sm ' Sh » er (h])

Clearly, one can tell effectively whether or not a Turing machine has a blocking
loop, although one cannot in general tell whether or not the loop will ever be entered.
A machine in a blocking loop is not halted, but except for the square being scanned
at that time, the tape will undergo no further changes. Therefore, one can dispense
with the ability of a machine to enter a blocking loop without weakening its comi-
puting ability.

Lemya.  For each Turing machine without any blocking loops, there exsts o Turing
machine with the same sets of stales and symbols, which simulctes the first machine and
which has no quintuples with D = N,

Proor. Whenever there exist two quintuples of the machine of the form
{gs,8;, &, N, q and (g, Si, S., D, ¢ where D 5= N, let: the first of these be
replaced by (g, 8;, S, D, gy This results in the elimination of a quintuple with
D = N. The absence of blocking loops guarantees (hat cvery quintuple with
D = N will eventually be eliminated. It is clear that the new machine simulates the
original machine.

Henceforth, the term “Turing machine” will denote a quintuple machine in
which there are no quintuples with D = N, ‘

Shannon has shown in [7] that, given enough symbols, one can construct & uni-
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versal Turing machine with only two stules. Furthermore, given enough states, one
can construct a universal Turing machine with only two symbols {(by using the
procedure of encoding 2° symbols as binary sequences of length k). ‘Thus, there is 4
certain symmetry between stules and symbols, or in the parlance of computing,
between instructions and data.

3. Post Machines

A popular variant on Turing’s formalism is due to Post {6] and is the model useqd
by Davis in [2]. In this formalism & machine is represented by a set of quadruples
of the form {4, 8;, X, q) where ¢;, 8, and ¢, have the same interpretations as i
the quintuple model and X is either 1., B or some symbol S, . Other eriteriy for
“well definedness” are as before, If X is L or £ the machine leaves the symbol under
sean alone and moves left or right on the tape. If X is a symbol S, then 8, is written
on the square being scanned but the machine does not move. Thus in a single
operation a Post machine can only perform two of the three possible suboperations
of a Turing machine and it can never perform both suboperations (1) and (2) on
the same step.

Since many of the operations in a “typical” Furing machine program tend to be
searches along the tape for a speeific symbol or combination of symbols, one scldom
takes advantage of the quintuple machine’s ability to write and to move on the
same step. Thus the number of quadruples in a Post machine would often be of the
same order of magnitude as the number of quintuples in an equivalent Turing
machine, and the description of the Post machine would take fewer characters than
the description of the Turing machine. For this reason the Post formulation has
heen used relatively often in the literature of computability theory.

Let us now seek some more precise statements aboul the relationship between
Turing machines and Post machines. The firs{ theoreny is elementary.

TaeorEM L. For every m-symbol n-state Twring machine there exisis a Post machine
with m symbols and at most 3n stales which stmulales the Turing machine.

Proor. Let 8, Sy, -+, 8pa be the symbols of the Turing machine and
1,9z, """, qu be g states. Then the Post machine will have the same symbols as
the Turing machine and will have as states g1, ¢s, ** . G Gz, Gon, " 1 0ni)
f.23958 ", In.n - FOr each quintuple {g:, S;, 8¢, D, ¢2) in the Turing machine,
the Post machine will have a quadruple {g:, 8;, Si, ¢0.n). In addition, the Post
machine will have mn quadruples of the form {q.: , 8, L, ¢;) and mn quadruples
of the form {gor, 8o, By q) (I=1,2, -+ ,n;k=0,1, -+, m—1). The verifica-
tion that the Post machine is well defined and exhibits the correct computational
hehavior (when given the same initial instantanecus description as the Turing
machine) is trivial.

As an immediate consequence of the above we have the well known

Remark. There exists a 2-symbol universal Post machine.

Although one can map Turing machines into equivalent Post machines without
increasing the number of symbals, it is not possible in general to find equivalent
Post machines for Turing machines without increasing the number of states. In
particular, the 2-state universal Turing machine of Shannon must map into a Post
machine of more than two states. The main result in this area is Theorem 2 below.

TrroREM 2 (with 8. Aanderaa). The halting problem for the class of 2-stafe Post
machines is recursively solvable.
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Proor. A proof of Theorem 2 is planned for publication in g separate paper [1].

Corornany. There 4s no 2-state wniversal Post machine.

Proor. A universal machine must have an unsolvable halting problem (cf. (3)).

The construction of Theorem 1 shows that there is o B-state univerzal Post
machine. However, one ean improve on this number as a consequence of the follow-
ing theorem.

TrEOREM 3. For every m-symbal n-state Turing machine there exists ¢ Post machine
with n—+1 slates and al most m(n--1} symbols which simulates the Turing machime,

Proor. Let ithe symbols and states of the Turing machine be s in Thearem 1.
The Post machine will have the same states plus an additional state, Qo - 115
sybols will be S, Si, « -+, Spey plus mr additional symbols of the form S, ;
(i=1,2 .- ,n;7=0,1,---,m—1). For each quintaple {g:, 8;. 8, D, q of
the Turing machine, the Post machine will have the quadruple (g, &, , 85/, gaith
n quadruples of the form (g, 8i;, Sps, ey (p=1, 2, ..., n), and the
quadruple {gu.41, 8i;, D, ;). The initial instantaneous description of the Post
machine will be the same as that of the Turing machine.

During the operation of the Post machine, 8 symbol 8, ; has two functions. When
the Post machine is in state guy1, Si; 8 used to indicate the proper direction and
state change given by the quintuple {(g:, S;, 8¢, D, qz). When the Post machine is
not in gas1, Si;plays the role of the unique S; determined by the Turing machine
quintuple. The mapping h: 8, ;— 8¢ ; S — S ; @1 — ¢ yields the instantaneous
descriptions of the Turing machine whenever the Post machine is not in state
fn+1 -

Cororuawry. There exists a 3-slate universal Post machine.

Proor, Since the proof is obvious, it is omitted in this diseussion,

CoroLr.arY. There 15 no 1-state universal Turing machine.

Proor. If there were a 1-state universal Turing machine, there would be a
2-state universal Post machine,—a contradiction.

The second corollary is a stronger version of a result of Shannon in {7]. (Direct
proofs not using Theorem 3 have been given by R. Abbott and R. Boyd.) Shannon
showed that no 1-state machine could simulate the behavior of a machine which
performed an infinite computation yielding convergence to the binary expansion
of 1/4/2. His approach employs a definition of universality stronger than that in
[31; consequently, it is somewhat easier to show that a machiue is not universal.
The fact that a machine cannot give the entire binary expansion of 1/4/2 does not
necessarily imply that it could not produce as output the first x bits of 1/4/2, given
¢ as input. In other words, if one considered the infinite class of all possible finite
computations, such a machine might still be able to do arbitrarily complex things
although it could not handle the infinite colnputations properly.

4. D-Machines

There arc clearly other quadruple formalisms for abstract computbing machines,
since one might invoke other restrictions than those of Post on the possible sub-
operations performed on a given step. These cases are considered below.

Definition. A D-machine is a set of quadruples of the form {g:, 8;, X, D) where
D is either L, B or N, and X is either a symbol Si or a state ¢; . The restrietions
on the quadruples of a well defined D-machine are analogous to those for well
defined Turing machines.
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The state-symbol pair {7;, §j bas the usual interpretation, If X is a symbol §,
then S; is written on the scanned sguare and the machine moves in direction D buf:
remains in the same state. Il X is a stale g the muchine does not write a new symby],
but moves in direction L) und enlers state ;. Thus a D-machine can never perfory
siboperations (1) and (3) on the same step.

THEOREM 4. For every m-symbol n-stole Turing machine lthere exisls o D-machine
with m symbols and at most (m—+1)n staies which stmulates the Turing machine.

Proor. Let the symbols and states of the Turing machine be as in Theorem 1,

The D-machine will have the same symbols. Its states will be ¢y, ¢2, -+, g, plus
mn additional states of the form ¢;; (4=1,2, - n; 7=0,1, - ,m-1)

For each quintuple {g;, S;, S:, D, ¢.) of the Turing machime, if 7 # & the -
machine will have the three quadruples {g., 8;, ¢, N, (2.5, 85, 8, N},
(g s S, qu, D) It j =k the D-machine will simply have the guadruple
{g:, 8, , ¢, D}, and state ¢;; will not be used. The D-machine will have the same
initial instantaneous description as the Turing machine.

In operation, the D-machine first changes to a state which represents uniquely
the three suboperations that must be done to simulate the effect of the given Turing
machine quintuple. Then the D-machine writes the proper symbol. Finally, it
changes to the correct state and makes the correet move. Whenever the D-machine
i# in one of the states g, ¢, -+, ga, its instantancous deseription is the same ag
the appropriate one of the Turing machine.

Coronrary. There exisis a 2-symbol unwwersal D-machine.

Theorem 4 made use of the ability of a D-machine to have D = N. If a D-machine
is restricted so that all quadruples have D = N, then the above method of proof
will not go through. In particular, in the case of & 2-symbol restricted D-machine,
the number of alternations of blanks and 1’s on the fape eannot be increased over
the number on the tape at the starl of the computation. However, a 2-symbol
restricted D-machine can be shown universal via the simulation of & 2-counter
machine, which Minsky has shown can simulate a universal Turing machine.

Defindtion. A 2-counter machine Is a set of triples of the form {g;, X, ¢;) where
X is either I, I5 , of the form Dygy , or of the form Dygy, . No two triples begin with
the same ¢, , and ¢; , g5 and g, are all members of the same finite set ¢, The machine
has two ecounters; the value of each Is a non-negalive integer. When the machine is
in state ¢; , 1ts behavior is determined by the triple beginning with g, . 1l X 1s [, the
value of the first counter is increased by 1 and the machine enters state q; . If X
is Dhy and the value of the first counter is 0 the machine enters state g.; otherwise,
the value of the first counter is decreased by 1 and the machine enters state g;.
Operations I, and Dug, similarly affect the second counter,

Turorem 5. For any 2-counter machine there exvsts a 2-symbol DD machine which
simadates the 2-counter machine and which has no quadruples with D = N,

Proor. Denote S, by B and 8, by 1. The tape of the D-machine will always be
of the form ...BBB1B™1 B*1 BBB..., where B™ means m consecutive B’s. The values
of the first and second counters will be represented by m —1 and n— 1, respectively.
Construetions will be given to handlc operations I. and Dhge ; I, and Dy, are
handled by a symmetrical construction.

At the start of a cycle, the D-machine is either seanning the square to the left or
the square to the right of the middle 1, depending on whether the operation to be
simulated affects the first or second eounter, respectively. States of the form gip
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ate used for simulating the action of the triple beginning with ;. The quadruples
used for the simulation of {g;, 1., ;) are the following:

{gin B, B, B g0, 1, 903, B {pe, B, s, L)
(q'l,l ) 1; Gi2 R> <q€.3 , 1, Gid s r;) (qf,ﬁ . B’ B’ L>
{gio, B, 1, L {gia, 1, B, L} (s, 1, gia, DY

where D = L if the triple beginning with q; affects the first counter and D = # if
it affects the second cotnter,
The quadruples used for the simulation of {g;, D , 0,) are the following:

g, By gie, B oo, By g, BY Aais, 1, g5, 1Y lqis, BB, ID

o1, sy B lgae, B, B, B sy Yy s, B grs, 1, s, L)
iy By By Ly giar 1, g, Iy s, L B R {2:4, B, B, L)
oss b o Dy ges s By LR Wors Brgisa L) s bogon, D

where ) and I’ depend on the counters affected by the triples beginning with ¢
and 4, respectively.

Cononrary. There crisis a 3-symbol universal I} machine in which oll quadiuples
have Ir # N.

Proor. The proof follows from Theorem 5 and from Minsky’s Theorem that
there exists a universal 2-counter machine (see [3]).

Turning now o the question of the existence of a 2-state universal D-machine,
pne can give a positive answer via a more tightly coded version of Shaunow’s
ingenious proof in [7], The proof does not need quadruples with D = A,

TurOoREM 6.  For every m-symbol n-slate Turing machine, there exisls a D-machine
with only 2 states and ol most m{4n + 7) symbols which stmulates the Twring machine.

Proor. Let the states and symbols of the Turing machine be as in Theorem 1.
The D-machine will have states ¢ and ¢y . Tts symbols will be S5, 8¢, -+, 8ot
plug 4m(n + 1) symhbols of the form 8i;+p (¢ =0,1,---,m~—1; j=01,
2, -, ;% =+, —; D =L, R), and 2m symbols of the form 8wy 50 (1 =10,
I, -+« ,m—1; D=L R). For each Turing machine quintuple of the form
{05, Si, 8, I, g the D-machine will have the two quadruples

gy Sege s Sitir o, L} and {g2, Sij-n, S, B
For each quintuple of the form {g;, Si, S«, I, ¢} the D-machine will have the
two guadruples

gy, Sier s Seien, Ly and g, 8ijmr, Snuten, B
In addition, the machine will have the following sets of quadruples for
gachi (z=0,1,---,m—1):

Quadruples Used when the Turing Mackine is Moving ta the Riyht

g, Begamy 2 £} 1 g5smn

(g, Bi04.8, Siy R)

({?2 N Si N Si,o,-.n ) L>

(g, Seyia.m s Sigmtibm s f) (157 ntl)

s, Si 0080 Q1o iy

22‘: 5 Si.:‘:n s Si gt s L) 0=2i<n-1)
Quadruples Uved when the Turing Mockine i3 Moving to the Lejt

{ga, Sijrt ) Gty L 1=2iz2n

(o, SiorL, Se, L}

{g:. 8i, Si0L s R) )

{p s Sign s Sesaan» L) (1s7sntl)

{g1) Siown s 025 L}

(g, 8igeat s Stipimn, B) 0=j=n-1
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If the mitial instantaneous description of the Turing machine is 8;_,- - 8,8
78485 -+ S;, , then the initial instantancous deseription of the £ machine will be
S,_p‘ - Si,,gsr;_l‘n,+,ﬂf]1Sio,f.—..'eS£] cre Si, .

At each step in the computation of the D-machine only two tape squares contain
symbols other than &, 81, -+, Sn. The subseript of each of these specis]
synibols has four components, the first of which contains the index of the ordinary
symbol which is currenfly on the associated square of the Turing machine tapé‘
One of the special symbols has a “+" in the third component of its subsecript ang
transmits information about the state of the Turing machine to the other square,
which eontains a symbol with a *“—"" in the third component. The fourth com.
ponents of the subseripts of both symbols are the same as the direction of the Turing
machine move being simulated. If the fourth compounents are I, then the receiving
symbol Is {o the left of the transmitting symbol; otherwise the reverse holds.

The second components of the subscripts of the two symbols contain information
about the state of the Turing machine. The D-machine oscillates back and forth
between the two squares decreasing the second component of the subseript of the
transmitting symbol and increasing that of the receiving symbol until the former
quantity is zero, The ID-machine then enters the receiving square in a different
state, thus indicating the ond of one simulation cyele. At this point, the value of
the second component of the subseript of the recelving symbol is the index of the
current Turing machine state. (One more visit is made to the transmitting square
to change the symbol there to an ordinary tape symbol.)

Whenever the I-machine is in state ¢ scanning a symbol of the form 8, ;. or
in state g; seanning a symbol of the form 8; ;. ., the instantancous description of
the Turing machine can be recovered from the tape configuration of the D-machine
via the mapping h: 8; — 8;; Si6,9.0 = Si; Si om0 = G581 .

The notation used zbove is similar to that used by Shannon in [7], and the
reader wishing to gain a more thorough understanding of this construction may
find the discussion there o helpful supplement. Anexample of a computation by the
2-state universal D-machine is given in the Appendix.

5. 8-Machines

For completeness, we consider the third of the restricted quadruple formalisms.

Definition.  An S-machine is a set of quadruples of the form {g:, 8;, S, X)
where X is cither I, R or a state ;. The restrictions on the quadruples of a well
defined S-machinc are analogous to those for well defined Turing machines.

The entries ¢, 8;, S have the same interpretation as in a Turing machine
quintuple. If X is L or B the S-machine moves after writing Sy but does not change
state. If X is a state g; then the machine enters state ¢; but does not move on that
step. Thus an S-machine can never perform suboperations (2) and (3) on the same
step.

TuEoREM 7. For every m-symbol n-state Turing machine there exists an S-mochine
with n staies and of most 3m symbols which simulaies the Turing machine.

Proor. Let the symbols and states of the Turing machine be as in Theorem 1.
The S-machine will have the same states as the Turing machine and will have as
symbols S, S1, <+, Spmer: Sor, Sz y " Smea,n s Sor, Sie, v Sm1,z - For
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each quintup}le {gi, 83, S, D, ¢ of the Turing machine the S-machine will have
a guadruple {g;, S;, Sk.p, q0. In addition, the S-machine will have mn quadruples
of the form {1y Skn, Sk, Ly and mn quadraples of the form {g:, Sk.e, Sk, &)
(1=1,2,---,mk =0,1, -+-, m~1). The initial instantaneous description of the
S-machine will be the same as that of the Turing machine.

ConrorLary, There exists a 2-siale universal S-machine.

Trrorem 8 (P. K. Hooper). The halting problem for the class of 2-symbol S-na-
chines s recursively solvable.

Proowr. Given a 2-symbo] S-machine, add a new state ¢r and add two quadruples
which begin with ¢; and are otherwise the same as the two guadruples associated
with the initial state of the machine. Redesignate g as the initial state of the
machine, Now let the machine be further modified as follows: Whenever a quad-
ruple of the form {g;, 8;, 8¢, ¢ is found where there is no quadruple beginning
with {(gi, S, delete the quadruple; whenever two quadraples of the form {g, S, ,
Sk, g0 and (g1, Si, Su, ) are found, replace the first quadruple by (¢i, 8;, Su,
g,). Whenever a noninitial state becomes inaccessible, eliminate it and its quad-
ruples. Continue until no further transformations can be made.

The process will eventually terminate, and the modified S-machine will halt if
and only if the original machine halls. Since state changes can be caused ounly by
quadruples of the form {g;, S;, Sk, ¢ it follows that with each ¢ (i # I) there
will be associated at most one such quadruple, else ¢; would have been made in-
accessible by the ahove procedure. Thus, each noninitial state in the modified
machine cun have at most one successor state, Consequently, after leaving gr , the
machine will begin to follow a path of potential state changes involving a finite
number of states. If the path cannot lead to a halting situation (because every
state in the path has a successor state), then the halting question can be answered
in the negative. If the path eventually leads to a state with no suceessor, one can
atill solve the halting problem, for it is clear that, having reached a given slate,
one can effectively determine whether or not the successor of that state will ever be
reached. The machine halts only if the end of the path is attained.

TasoreM 9. For every m-symbol n-state Turing machine there exisis an 8 machine
with m4-1 symbols and at mosi (m-1)n states which simalates the Turing machine.

Proor. Let the symbols and states of the Turing machine be as in Theoren 1.
The S-machine will have the same symbols plus an additional symbol, S, . The
states will be g1, G2, - - -y Gn Plus ma additional states of the form ¢,,; (7 = 1, 2,
ce,myg =01, 0, m—1). For each quintuple {g;, S;, Sy, D, qn of the Turing
machine the S-machine will have the quadruple {(¢:, 8;, 8m, gii), M quadruples
of the form {g.,; 5 Se, Sm, gy p=0,1,--, m—1), and the quadruple (g:,;,
Sm, S, D). The initial instantaneous description of the S-machine will be the
same a8 that of the Turing machine. '

A state gi ; in conjunction with S, causes the symbol and move specified by the
quintuple (g:, Si, S, D, g When the S-machine is in state g;,; and not scanning
an S, , it behaves as though it were in the state q. determined by the Turing
machine quintuple. The mapping k: i — Q15 g~ 5 S — S yields the instan-
tancous deseription of the Turing machine whenever the S-machine is not scanning
an Sp.

CoroLLARY. There exists a 3-symbol universal S machine.

Theorems 7, 8 and 9 are essentially the duals of Theorems 1, 2 and 3.
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6. U-machines

Having considered the various quadruple formalisms, one is led naturally 1,
consider machines which can perform only one of the three suboperations of 4
Turing machine on a given step. Such a machine can be described as 2 sel of triples,
rather than a set of quadruples. Tt is mildly surprising that the class of such machiney
is still as powerful as the class of Turing machines if one igrores considerationg of
computational speed or machine size.

Defindtion. A U-mackine is a set of triples (g;, S;, X) where X is either I, R
u symbol 8 or a stale g: . The restrictions on the triples of a well defined U-wmachine
are andlogous to those for well defined Turing machines.

The state-symbol pair {g:, 8;} has the usual interpretation. If X is L or R, the
machine moves in the appropriate direetion leaving &; alone and remaining iy
state g;. If X is a symbol Sy then S is written on the scanned square and the
machine remains in state ¢, seanning the same square. If X is a state g the machine
dees not move or change the symbol &;, but enters state ¢, .

Yurorem 10, For every m-symbol n-stale Turing machine there exisis @ U-machine
wilh al most 3m symbols and 2(m + 2)n stales which simulaies the Turing machine.

Puoor. Let the symbols and states of the Turing machine be as in Theorem 1.
The symbols of the U-machine will be Ss, 8¢, -+, Sua; 8, 8, -+, 8oy
8¢, 87, -, 8. The U-machine will have 2n states of the form g, » , 2n states
of the form ., and 2mn states of the form fins (£=1,2, - n; D =1L R,
J=0,1, -, m—1). For each quintuple {g:, S;, S, D, ¢:) of the Turing machine,
the U-machine will have the two triples {g:..., S/, gi.ns) and (giz, S;, qu,0.4. In
addition, the U7 machine will have the following sets of {riples for each I and D
(=12 - n;D=1LR).

{giow, 87, 80 O=2j<m-1; 05k=m-1
gy, Sy, D) 0=k = m-1)

(91,05 8, gz} Ogksm—1; 0p2m-1)

g, Su,8" 0D=pzm-1)

(Q;.D: S;;-I': Dy (D e lL,Bband D = D; 029 2 m—1)
lgrn, Sk, 4o O£ksm=1)

lgnp, So, 8 05k m-l)

qup, Sy, D) O2ksm—1

The initial instantaneous description of the U-machine will be the same as that
of the Turing machine except that the symbol on the square being scanned will be
primed and the initial state will be ¢, ;, instead of q: . Whenever the {/-machine is
in an unprimed state scanning o primed symbol, the instantaneous description of
the Turing machine can be reeovered via the mapping h: q;p — ;3 S ,-’ — i3
S i S_-,' .

To understand the operation of the U-machine, consider the following cxample.
Let the Turing machine have instantaneous description. - -.¢:8;8,- - - and let the
appropriate quintuple be {g;, S;, Sv, &, ). Following the machine specifications
given above in order, regarding the varigbles i, 7, &, L and p as free rather than
bound and setting ) = R. The successive instantaneous deseriptions of the U-ma-
chine will be as follows, where D is the direction of the previous move of the Turing
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machine:
: *Qz‘,nS;’S},' " T SZCJ]E,RS:»/‘ o
.. .gm’k_gj’gp, . .. .,:,glmgj,"gp’. ..
--q;,g.kaSp- .. .. Aqm,g;"gp’. ..
. S;’;’qi,m!gjsp' . t. 'Q{,RSk’Sp" o
'AS.Z({;.nSp‘ v v 'Skql,ﬂsp" e

TueorkM 11, There is neither a 2-state nor a 2-symbol universal U -machine.
Proor. A U-machine ean be viewed either as a vestricted Post machine or as a
restricted S-machine. The result then follows imumediately from Theorems 2 and 8.
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APPENDIX
L. Simadation of One Machine by Another

The terminology below is that in [2], Let M and M, be two machines. Let p be a
characteristic funetion defined over the set Oy of all possible instantaneous descrip-
tions of M, . Let 7 be a mapping from Cs onto €1, the set of all possible instantaneous
deseriptions of My, and f be a 1-1 funetion from € into Cy. Let Cy([, £) be the
instantancous configuration of M; at time ¢ if M, was started in instantancous
configuration I at time 0 (thus Cy(1, 0) = ). Ce{I, £) is defined in a similar fashion.

Defindition. TFor every initial instantaneous configuration I for My let a function
g be defined on the non-negative integers by the following recursion equations:

g(0) = walp(Co(f(1), 2}) = 1]
gt + 1) = pele > g() and p(Cu(f()),2)) = 1]

Then M, simulaies My with respeet to a class of functions @ if and only if for every
initial instantaneous description I of M, and every time ¢ = 0: (1) (I, &) =
h{CL(FLDY, g())); (2) Cu(d, t) is final if and only if C2(f(1), g(i)) is final; and
(3) f, » and h € @ The class € should consist of funections which are in some

I

1
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sense “easy to compute.” A reasonable candidate for © might be the elass of ela.
menbary funetions of Kalmir,

2. Operation of the 2-stafe Universal 1-Machine
Suppose the Turing machine to be simulated has instantaneous deseription
S1g5828; and quintuples
{s 382,84, By @)y {0, Ss, 8, Ly (g, 80,80, L, a0
The successive instantaneous descriptions of the Turing machine will be:
1) S1 ga Sz S
(2) S A qz S

3) 8. 41 S Sy
4 o & Se S5 (final)

The successive instancous deseriptions of the 2-state D-machine will be the follow-.
ng:

1) 8108 1 Sis-m s
7 Sto+.r Bizar Sz

Sy /68 Sa,z,+,a Ss
8 Bi20r ¢ S
Sl /4] Sé,z,+,k S:,0.~.R
Sy Siai+r ¢ Sso-k
Si ge Se14n Sit-z
8, Seo4e @2 Ssi-.rz
8 gz Si04.R 83,22
2 8 Sie+r G Saz-.m
S @1 Bio.r S04,
3, S g1 Sea+1
8 @ S84 851,45
& Ss0-z @ Ssa+r
S g1 Si0-.1 85,042
Sy Betmn @ Sso4.n
(3) S gz Si1-.L S5.0,4.L
31 Ser+.z G2 Ssol
Sy @ Ser+L s
n S ¢ Ber+r &;

S0 Sst4.1 8
@1 St0-.1 86.0,4.L Ss
Sui-z O SeopL Ss

1) ¢ S11,-.L S5,0.+.L 8 (final)
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