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A survey of machines which are more powerful than finite 
automata and less powerful than general Turing machines is 
presented. It is felt that the machines in this category are as 
closely related to digital computers as either the finite automata 
or the unrestricted Turing machines. 

Intermediate machines can be created by adjoining an 
infinite-state memory to a finite-state machine and then per- 
forming any or all of the following: (1) restrict the manner in 
which the unbounded portion of the memory can be accessed, 
(2) bound the number of steps allowed for a computation by 
some increasing recursive function of the length of the input, 
(3) restrict the total amount of memory available in the same 
manner. Examples from all three classes and their properties 
are discussed. 

1. I n t r o d u c t i o n  

In  recent year's there has been increased interest in ab- 
str~mt machines with more computing power than finite- 
state one-tape machines but with less potentia[ complexity 
than Turing machines. Although a computer without 
auxiliar T storage can be viewed as a finite-state device, and 
a computer with unlimited auxiliaw storage can be re- 
garded as a Turing machine (eft Wang [(i5]), neither ap- 
proach yields as much insight into the nature of computa- 
tion as would be hoped. 

To the computability theorist the regular sets of Klecne 
[36t, which carl be recognized by finite-state one-tape 
automata, are a very small subset of the recursive sets. 
The latter can be recognized by Turing machines [64] but, 
in general, not by machines of lesser computing ability. In 
between the regular sets and the recursive sets are un- 
eountably many classes of sets of non-negative integers. ~ 

This paper was presented as an invited talk at the 196.4 Inter- 
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Theory, Jerusalem, Israel. Preparation of the manuscript was 
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One may often wish to work strings of symbols rather than 
non.negative integers. The usual procedure will be to associate 
with an integer thc string representing its n-ary expression for 
some base n, generally n = 2. 
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Some such classes are tile deterministic pushdown lan- 
guages [2(i], context-free languages [8], context-sensitive 
languages [8], elementary sets [28], primilive reeursive sets 
[3U], prow~bly reeursive sets [20] and many others. 

Any one of the sbove intermediate classes may turn out, 
to be more closely related to real computing than the 
regular sets or the reeursive sets. Thus, machines with 
intermediate computing power may prove to be better 
models for real-world digital eomputers, s t  least for many 
purposes, than the better known finite-state and Turing 
machines. 

In  this paper an attempt is made to provide a census of 
nonprobabilistie intermediate machines. Discussion of 
finite-state machines and of unrestricted Turing machines 
is excluded, but familiarity with [51] and Part~ 1 of [13] is 
assumed. The terms machine and autornato~ ale used 
interchangeably to mean any well-defined discrete system 
which defines a class of sets between the regular attd recur- 
sire sets. The terms acceptor, ger~eralor and transducer 
designate respectively machines which have no output 
except "accept" or "reject," machines which have no input 
except a single starting pulse, and machines which have 
both inputs and outputs. 

2. Mul t i -Tape  Fini te -State  A u t o m a t a  

The simplest generalization of one-tape finite-sLate 
machines is the n-tape one-way acceptors introduced by 
Rabin and Scott. These devices recognize sets of n-tuples 
of strings via computations in which at each step one of the 
n input tapes is advanced one square and a new machine 
state is entered. The tape advanced depends upon the 
present state of the machine, and an n-tuple is accepted or 
rejected depending on whether the machine is in a final or 
nonfinal state after reading all of the input on all n tapes. 
Special end-of-tape symbols are permitted. 

The deterministic and nondeterministie versions of these 
machines generate, for each n, classes of sets of n-tuples 
denoted by D,, and N,,, respectively. For n > 1, D,, is 
dosed under set eomptementation, but Rabin a n d  Scott 
showed it is not closed under union or intersection [51]. 
Rosenberg has shown that D~ is not closed under input 
reversal, concatenation or the closure (star) operator of 
Kleene [541. ~ 

Unlike the case when n = 1, for n > 1, it does make a 
difference whether an n-tape automaton is deterministic or 

2 The reversal of string a~2 ... ~r~_~= is t, he string ~r=~,~_~ ... 
cat where the ai are each single symbols in the input alphabet. 
Reversal of an n-tuple is eomponentwise. 
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non, deterministic. An example by Rosenberg of a set in 
N2--D.2 is the set of all pairs of strings in which the second 
member of the pair is equal to a terminal segment of the 
first mentber (i.e., of the form (zg, y}). Elgot and Ylezei 
found that Nn is closed under union, concatenation, star 
and input reversal [151. Since N,, is in fact the smallest 
class which contains all finite sets of n-tuples and is closed 
under union, concatenation and star, an n-dimensional 
analogue of Kleene's theorem of regular events holds for 
Nn . However, for n > 1, N,~ is not closed under comple- 
mentation or intersection. 

In addition to being closed under fewer operations, the 
elasses Dn and Nn are more complex than Dt = N, (the 
regular sets) in several ways. Questions which are decidable 
for D, are often undecidable for D,, (n > 1). One such ques- 
tion is the intersection problem: to determine whether or 
not the intersection of two members of a class of sets is 
noncmpty (el. Ilabin and Scott [;511]). A question which is 
solvable for D~ but open for Dn is to determine whether or 
not  two machines in a class accel)t the same set of n-tuples 
of strings. The class D~ contains properly the class of all 
relations definable by the "generalized sequential ma- 
chines" of Ginsburg [25]. 

Ginsburg and Spanier have regarded multi-tape finite- 
state transducers as extended as generalized sequential 
machines [27]. For finite-state machines with two irtput 
tapes and one output tape they show that if the languages 
permitted on two of the three tapes are regular, then so is 
the third; if one is regular and one is context-free, the 
other is context-free; but if two are context-free, the third 
is not necessarily context-free. A generalization of this is 
given by Fischer and Rosenberg: for .n-tape accepters, 
if all but, two of the n tapes are restricted to regular lan- 
guages and one to context-free, then the language on the 
last tape will be context-free, etc. [24]. 

Elgot and Rutledge considered deterministic n-tape 
automata with tapes that are blank except for a single end 
symbol [17]. Unlike the general D,, ease, the intersection 
question for the class of sets defined by these machines is 
solvable. This follows from the existence of an effective 
mapping of such sets into Presburger formulas (of the first, 
order theory of addition of non-negative integers), for 
which the satisfiability question is solvable. If one permits 
more than one read head per tN)e, then one gets all of the 
Presburger relations. Also investigated were properties of 
the machines when one or more of the tapes are loops, 
rather than straight tapes. The question of whether a 
machine with two loop tapes (or one loop tape with two 
heads) accepts a nonempty set is unsolw~ble. For machines 
with one loop tape (with one head) and n straight tapes 
the intersection problem is open. I t  is solvable if Hilbert's 
Tenth Problem is. 

3. S t o r a g e - A c c e s s  R e s t r i c t e d  M a c h i n e s  

Turning now to infinite~state devices, it is clear that in 
general one will have the computing power of a Turing 
machine. One can, however, obtain intermediate classes by 

imposing restrictions (m t;h(: w~by a d(:vice eatt actress its 
storage (i.e., ca its state l:r:msitions) al~cl/or by dis:~llowing 
computations in which a give~ measure of ('omplexity 
(e.g., the number of "steps") exceeds some constraint 
(usually a function of Cite input). Th(,. first of' ~hese ap- 
proa(.hes is discussed in this section. 

TILe best known example of a storage-access resl rictiott is 
the pushdown store, in which only the last item of informa- 
tion placed ill the store is inunediately accessible to the 
control unit of the computing device. (Pushdown stores 
are sometimes called LIFO stacks because of this last-in- 
first-out nature.) One-tape Turing machines in which the 
tape is used only as a pushdown store are called pushdown- 
slore machines. Such machines are of interest to both 
automata theorisls and mathematical linguists because of 
the important connection between the two areas given by 
Chomsky: a language is context-free if and only if il, is 
recognizable by some nondeterministic pushdown-stom 
accepter [9]. Thus, results from linguistics can be used to 
prove theorems about pushdown-store automata, and 
eonversely. 

Another example of storage-access restriction is the 
co,tnter. The value of a counter is any non-negative integer, 
and on a single machine step a counter's value can be in- 
creased by one, decreased by one, or tested for zero. a A 
counler can also be regarded as a pushdown store with a 
one-symbol alphabet. 

Evey [18] and Fischer [21] investigated both deter- 
ministic and nondeterministic machines with one or more 
pushdown stores and/or  counters, tlelationships among 
accepters, generators and transducers were explored and 
it was shown that, a set which was accepted by a nondeter- 
ministic version of one of the machines under consideration 
could also be defined as the output  of a deterministic trans- 
ducer of the same type, and conversely. For example, the 
class of all sets which are the output  of a deterministic one- 
counter machine, the class of all sets which are the output 
of a nondeterministie one-counter machine, and the class 
of all sets which are the domain (input) of a nondcte> 
ministic one-counter machine are n.I1 the class C' men- 
tioned below. 

By a result of Minsky [44], two-counter machines (and 
therefore two-pushdown-store machines) are already as 
powerful as Turing machines. Thus, the approach of Evey 
and Fischer yields exactly four distinct intermediate 
classes, which can be expressed as those sets recognizable 
by deternfinislic and nondeterministic one-.counter accep- 
ters (C and C') and those sets recognizable by deter- 
ministic and tmndeterministie pushdown-store accepters 
(P  and P'). P '  is, of course, the class of eontext-fl~e 
languages and is closed under union, concatenation artd 
star, but  not under complementation or intersection (cf. 
Scheinberg [55] and Bar-tIillel, Perles and Shamir [5I). P 
is an interesting proper subclass of P'  and is closed under 

The capabilities of the machines are unchanged if the counters 
are permitted to take on all integral values. 

800 Communicat ions  of the ACM Volume 8 / Number 12 / Decenlber, 1965 



complement:at ion, but not under union or intersection. 
The classes C ~md C' are not as interesting linguistically 
and have no1 received as much attention. 

Early work with pushdown-store machines is described 
by  0eitinger [47]. In [60] Schutzcnberger exhibits a rather 
complicated algebraic definition of deterministic push- 
down-store machines and proves some basic properties, 
from which the closure of P under eomplementation follows 
trivially. Recently, Ginsburg and Greibach have investi- 
gated P. With the exception of [26], most of their results 
have not yet been made public. P and P '  and the asso- 
chafed machines have also recently been studied by Haines 
[29]. The fact, that  languages in P are always unamlfiguous 
is independently given it, both [26] and [29]. 

Other kinds of storage-access-limited automata have 
been discussed in several papers by Sehutzenberger. In 
[56] he deals with a class of finite-state transducers which 
arc more powerful than generalized sequential machines 
and less powerful than nondeterministic, finite-state, one- 
input-one-output transducers. As in the other two eases, 
regular sets are preserved under such transductions. 

In [57] accepters with integer-valued counters are 
introduced. Unlike the counter machines previously 
mentioned, tile state of the finite-menaory part (control 
unit) of the machine is not permitted to depend upon the 
contents of the counters. (Thus, machines with two or 
more counters do not have the computing power of Turing 
machines.) For each combination of control unit state 
a.nd input symbol, a machine performs a transformation on 
its counter space in such a way that the new value of each 
counter could be computed by a finite computer program 
(having sullieient temporary storage to handle inter- 
mediate results) using only the following kinds of opera- 
tions: (1) addition or subtraction of two integers, (2) 
multiplication of an integer by a (bounded) integral 
constant, (3) reduction of an integer modulo a (bounded) 
integral constant. A machine accepts an input tape if the 
n-tuple representing the values of the counters after all 
input has been processed is not in a given subspace of the 
n-dimensional vector space over the integers, where the 
subspace selected depends upon the final state of the 
control unit of the machine. 

Sehutzenberger shows that his machines could be de- 
fined in terms of finite sets of integral nX n matrices, n 
depending on the machine. A machine is the homorphie 
representation of the monoid of inputs in the ring of 
matrices such that an input word is accepted if and only 
if the upper-right-hand en tw in the matrix associated with 
the word is nonzero. Having demonstrated the equiv- 
alence, he shows by algebraic methods that the class de- 
fined by the entire family of his machines is closed under 
union, intersection, concatenation and star, but not under 
complementation. An analogue to Kleene's theorem is not 
produced, however, because the appropriate basis (which 
for the regular events is the class of finite sets) for the 
induction is unknown. 

In [58] the above machines are further restricted by 
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requiring that tlle ratio of tile amount of itfformatiot/ 
stored in the memory of the machine to the amount in the 
input tends to zero with the length of the input word. A 
smaller class results, which is closed under union, inter- 
section and concatenation, but not under complementa- 
tion or star. Results in [591 and [10] (with Chomsky) relate 
decision problems of several kinds of storage-access re- 
stricted automata, including pushdown-store machines, 
and of generative linguistic grammars to the appropriate 
algebraic structures. The notion of a fornml power series is 
central to this development 

4. T i m e  R e s t r i c t e d  T u r i n g  M a c h i n e s  

Some machines necessarily have their computation lime 
bounded by a reeursive function of the length of the input. 
For the finite automata of [51] the identity function 
suffices. On the other hand, for Turing machines there is, 
in general, no effective a priori bound on computation 
time, else the halting problem for Turing machines would 
be solvable. 

The first person to consider time-restricted Turing 
machine computations was Yamada [66, 67]. Yamada 
was especially interested in a class of strictly increasing 
functions from the non-negative integers into the non- 
negative integers which were, in his terminology, real-lime 
countable. Let the characteristic sequence of a set A of non- 
negative integers be the binat T sequence o~ = o~0c~a~... 
such that ~,, = 1 if attd only if n C A. Then a monotonic 
function f is real-time countable if some multi-tape Turing 
machine can generate the characteristic sequence of the 
range of f in real time, i.e., a~ can be generated by time n. 
The class of real-time countable functions was shown to be 
closed under addition, multiplication, eomposition, ex- 
ponentiation and to contain all polynomiMs in one varia- 
ble. Siegel found that there are real-time countable func- 
tions that are not primitive recursive, and monotonically 
increasing primitive reeursive functions that are not real- 
time countable [62]. 

Hartmanis and Stearns studied time restrictions on 
Turing machines in a more general setting [31]. For  any 
monotonically increasing function T, let ST denote the set 
of all infinite binary sequences a = a0o~ta2. • • such that 
there exists a multi-tape Turing machine which generates 
oe, by time T(n) for all n. Such an S~. is called a complexity 
class. I t  is easy to show that for all monotone recursive 
functions, T, the complexity class S~ is a recursively 
enumerable set. Since every eolnputable sequence is in Sre 
for some recursive U, it follows immediately that. there are 
infinitely many complexity classes and that the class of all 
complexity classes cannot be effectively enumeraled. The 
"real-time" ease &~ (i.e., ST where T(n) = n) is the minimal 
class. 

Hartmanis and Stearns showed that  multiplication of a 
timing function by a constant does not alter the com- 
plexity class, i.e., S~.e = Sr for all monotone functions T 
and constants c. Complexity classes are also unchanged if 
more than one read-write head per tape is permitted. If 
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~@Sr then there is a oneqape Turii~g machine which can 
generate a,, by time (T(n)) e, for all n. The same "square 
law"  applies if one passes from multidimensional tapes 1o 
linear tapes. 

Hennie and Stearns reeenlly were able to show that the 
partial  ordering of complexity cb~sses ham dense suborder- 
ings [34]. They first showed that if c~.~Sr and 7' is real- 
t ime countable, then there is a two-tape Turing machine 
which can generated oe,, by time T(n).log(7'(n)). This 
permits the use of a diagonal method to show that if T is 
real-lime countable and 

lira T(n) . log  ( T ( n ) )  = 0, 

then ,% properly contains St. Since nn and In ~t-~] satisfy 
the conditions of the theorem, it follows that  there are 
suborderings with the order lype of the rationals. 

Hennie also worked with time-limited recognition 
problems. In [331 he assumed that  the input was plaeed on 
one of the working tapes of a Turing machine (where it 
could later be written over if desired). For this model he 
was able to show that the "square law" given above can- 
not be improved. For one-tape machines he also showed 
that  if 2 > p > q > 1 then ,S',~, properly eontains S~. 
Although Hennie's "offline" accepter is superfically only 
slightly different from the "online" version, where the in- 
put  is placed on a special one-way tape which is not counted 
as one of the working tapes of the machine, the two models 
appear to have quite different properties. 

The work of Hartmailis, Hennie and Stearns has raised 
many interest.ing questions. Is it true that  if 

lim T(n)  _ 0, 
, ~ - , ~  U(n) 

t;hen ,%. ~ Sv? The binatTv sequence representing .v/2 is in 
S~,,. ]s it in any smaller class? (?an one get relationships 
atialogous to those in [18] and [2l] covering generators, 
accepters and transducers on the one hand, and online and 
offline machines on the other? For recognition, rather than 
generation, of sequences the equation Sr  = S~.r is re- 
placed by St(n) = S~(r(,,)--,,)+,~ since reading of the input 
cannot be sped up. How does the special ease T(n) = n 
relate to the ease T(n) >_ ( l+e )n  for e > 0? 

Rabin answered a question raised in MeNaughton's 
19(}1 survey of automata theory [42]: Can two-tape Turing 
machines do more in real time than one--tape machines? 
For  the online accepters, he showed that  two tapes are 
better  than one by requiring a machine to store two binary 
sequences and to retrieve either one of them upon demand, 
without delay [50]. One noteworthy aspect of this problem 
is that a proposition which at first appears to be quite 
simple requires a rather careful and involved proof. 
Furthermore, no one has yet been able to demonstrate for 
the same model that three tapes are better than two. 

Blum has developed an abstract approach to computa- 
tional complexity [7]. All he requires of ~ measure of 
complexity is that  it be defined whenever the partial 

t'er:ursive ['unctior~ with which it is associat{~d is defined 
and that one be able to tell effectively when a given com- 
plexity bound has already been exceeded by a computation 
(which may or may riot subsequently terminate), l';xamples 
of acceptable measures are ~he number of si,eps in a Turing 
machine computation, the number of lape squares used ia 
a computation, the maximum number of consecutive ones 
appearing on a tape during a compulation, and so forth. 

Blum shows that for any measure of computational com- 
plexity satisfying the abow,, requirements and for any re- 
cursive function g(x) there exists a recursive characteristic 
function f(x), the computations of which cart be "sped tip" 
in the following sense. For any method of computing f(x) 
there exists another method of computing J'(x) so that if 
I,'(x) denotes the complexity measure of the first method 
and F'(x) that of the second method, then F(x) _> g(F'(x)) 
for all but a finite number of inputs x. (On the other hand, 
from the work of [31] and [341 it can be shown that  there 
also exist functions which have complexity measure F(x) 
but  which cannot be "sped up"  by g(x) = x~ ' . )  

5. T a p e - R e s t r i c t e d  T u r i n g  M a c h i n e s  

The best known example of a tape-restricted machine is 
the linen>bounded automaton of Myhill [46]. A linear- 
bounded automaton is a (me-tape Turing machine which 
is given only enough tape to hold the input string. Since 
the machine's alphabet may be larger than /:he input al- 
phabet, this is equiwflent to saying that the amount of 
information storage permitted is a linear function of the 
length of the input. 

Kuroda has shown Ihat the context-sensitive (Type 1) 
languages of Chomsky are exactly those sets which cart be 
recognized by ~ nondeterministie litmar-bounded autom- 
aton [39]. On the other hand, sets recognizable by 
deterministic lilmar-bounded automata are ~ Boolean 
a~gebra [39, 40]. Whether or not the deternfinistic and 
nondeterministic versions of linear-bounded automata de- 
fine the same (:lass of sets is still open. If the answer is yes, 
then the context-sensitive languages arc obviously closed 
under eomplementation. 

R. W. Ritehie discusses a hierarchy of functions based 
on tape-restricted computations [;53]. He defines F0 as the 
class of all functions computable by  finite-state trans- 
ducers. For each i > 0, I,'~ is then defined aM the class of all 
functions which can be computed by a Turing machine 
where the amount of tape used is bounded by sortie func- 
tion in F~-~. A hierarchy of order-type co is produced, and 
the union of all the F,  yields t,tm elementary functions of 
Kalmgr. The F~ are not closed under composition, but  are 
closed urider certain limited operations. If one begins with 
the linear-bounded automata instead of finile automata, a 
similar hierarchy is created, which interlaces with the first 
one arid again yields the elementary functions. 

In [37] the approach of [53] is relativized using fuac- 
tionals with tape-limited computations. In [38] Kreider 
and R. W. Ritchie consider the subclass of three-symbol 
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d(~termi.i.~tic lhmar-bou:~ded automata. The subclass 
('(m~ah:s a "universal" machine but is uot closed under 
suI st i:ution or idemifieatiou oi variabbs. 

Very reee.tly, Har*manis, Lewis a,:(t Stear,:s have been 
working on :al)e-rrs~ricted e(m~pu~ati(ms {301, The offliae 
model of Ite,mie is modified to et>nsist of a Turi~:g ma(hine 
with a Iwo way :,)nwritil:g input tape and a workiug tape. 
The amount of working tape used determi::es the com- 
plexity clas~ificaiio,. ()nliae machh:es are also being 
studied, and i:t either case th(, working tapes may or may 
not be restricJed to lmshdowt:-siore ol)erati(>::, tlierarehies 
analogous to the one for time--li:nit~d eomptexity elasses 
are given. 

Despite the wording of the ii{le of [30], as far as the 
~x:'iter knows, no one has yet exph)re(t in detail ~he inter- 
action betwe(m tape :rod time restrietio,s, It. would be nice 
if a reasom,ble trade.off of time for tape, and vire versa, 
existed so that a measu:r( of computational complexity 
('otfld take both into aceo:mt in a meaningful maturer. 

6. Real-Time l t c ra t ive  Arrays 

A n.-dimensioual iterative array of (inite..s~ate machi::es 
consists of ideutieal finite automat:~ i:ldexed by 'n4up/es 
over the :~onmegative intege:s {32]. Two machines are 
considered neighbors if their i~diees are identical iu all but 
one coral)el:e::( and differ by one in that position, I~flmts 
at~d outputs for the arnG/ are coal:coted to the machine 
indexed by (0,0,.. ,,0). Except for the machine at the 
origin, the state of any maehi,:e in the array a~ time b-l-l 
depends only upon the states of it al:d its t~eighbors at time 
~, and its stale ,.tt time 0 is a par(i( ular quiescent state. 

I~ can be shown ~hat certain variations it( the deli.nitio~, 
of an iterative array do not alter its properties. The origin 
rnachi,m :nay be allowed to be differeut [rora all the rest; 
the definitio,: of neighbor may be relaxed somewhat; the 
initial states of the machines need not be quies(.e::t so long 
as they are initially all the same. 

It is easy to see that. a (me..dime:~siolml array can 
simulaJe a '].'urh:g mae.hine, sh,(e stuh all array (:ILtl sil/ltL- 
late airy finite number of pushdown stores, Thus, other 
restrictions must be placed on t ier , t i re  arrays to obt~tin 
reeognilion of intermediate classes of sets of strings, 
G(~nera[ time reslrie{ions ou iterative arrays, amtlogous to 
thos(x of" Hartmanis and Stearns for "rurillg machines, have 
not ye* bee:: investigated. However, the special (',ase of 
real-lime eolnputation by deterministic iterative arrays of 
fitfite-state machines has been studied by sew:ral persons. 
The most. comprehensive treatmen¢ is due to Cole [:t2]. 

O:~e-dirne,~siom:d iterative arrays can do many surprising 
things. Cole has shown ~hat they can reeognize i:n real time 
the st( of all pali~dromes and the set. of all strings of the 
form :oz. Tile former set is, from a pushdown-store ap- 
proach, inherently nondeterministie, and the latter set is 
not even context, free. Fischer has shown that one-di- 
nlensionaI arrays earl generate the eharaeteristie seq~:mnee 
of the set of all prime numbers, i.e., the machine will put 
out a 1 at time t when t is a prhne and a 0 at time t other- 
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wise [22}. Atrubi1~ ~howed thai, one<timensi(mal arrays elm 
multiply iu real time if the inputs are wi:ilte':~ in binary 
::oration aad %(t in from right, to left [1]. 

Cole showed that. the class of sets recoguizable by n- 
dime,:s:onal arrays is a Boolean algebr:~, but is not closed 
mtder input reversal or coneatemdiou. The s,~ of all 
sirings havh~g n nouempty termhml seglllenf of tit(? [orln 
:ra: is showl~ not to be recognizable by any n dime}~sionaI 
array. This set, however, is the co::eate.atkm of *he unto 
versal se~ and the set of all :r,r, which are both a(~eeptable 
by otmdhuensional arrays. Furthermore, the reversal of 
this set is again recognizable by a om>dimenskmal array. 

Cole's method can. also be applied to the set: of all strings 
having a termbmt segmcng which is a :/()mrivhd pailim 
drome. This la~mmge is eo~:text=h'ee bui not ,?eel)table by 
a~:y n<limensional array, trurthermore, %r each ~.~ there 
exists a eo**texi~.free language which is reeoguizaI)le in real 
time by some (n+/)<time~,sional array mac. i:of by a,W n,.. 
dimensional array. Thus, real-time iteral.ive arrays and 
con(ext..free lauguages are i~comparable in a very strm~g 
seIlse. 

7. Miscel lany 

()(her work related to computatiorml eomplexity is 
me,~tio:~ed here briefly. Perles, Rabh~ fred Shamir [49], 
Eggan [14] and [),pert and McNaughton [181 haw~ studied 
subclasses of the regular sets a~d the retalionships betwee, 
their linguistic a~d machine properties. 

Lee [41] and Fischer [23] (:(msidered miifimal sets of Tt:tr- 
ing ma(hine operalious and showed whether or ,/or various 
restricted Turing machi~(s could be u,iversal. Shepherd~ 
sou a,ut Sturgis [(iil] and Elgof ~md Robiuson [161 explored 
computations by machines havi,:g in place of tapes a 
finite lmmber of registers, eaeh of which eau hold a,~ 
arbitrary il~teger. Given the ability to make eo,ditional 
transfers of control and to perform addition of two h~tegers, 
such machines are equiwflent, t,o Ttlr:ng machhles, 

Axt studied a hierarchy of recursive fmic{i(ms built, up by 
begimfit~g with the primitive reemsive functions a~d treat-. 
ing new classes by uniform dhtgonaI methods [2]. Related 
work by [?abiau is give~l in [19]. Other work of Axt [3], 
Cleave Ill}, Meyer [43] and I). Ritchie [52] shows that 
several difli~rent methods of elassifyi~g the primitive 
reeursive fl.mctions all produce hierarchies strongly re- 
tared to that of Grzegorczyk [28]. 

An interesting sm'vey paper by Be6v~  may soon be 
available [(;l. I{e gives a elassifieatkm of lhe many models 
of computing devices used in investigations of COmlmtao 
tional complexity and offers some philisophieal comment 
<m the tenuous~tess of the relatio~ship of some of them to 
"real" eomputir~g. Russian work in <::omputational com.. 
plexity, particularly that of Trahten.brot [(i3], Ls well coy= 
?red. 

Finally, the author would like to ine~:ttion that second- 
order bibliogrN)hical references will yield papers not cited 
above which are relevant to the area surveyed here, 
especially it, the areas of mathematical linguistics and 
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decision problems for aut;oma{i:x. The bibliographies in [4, 
6, 9, 10, 13, 35, 42, 45] are recommended to the reader seek-. 
i n g  add i t i ona l  references ,  

R~c~,:~w:. JUNE, m65 
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LETTERS--continued from page 788 

and Gm'wiek [Re-Views of I F I P  Congress 65. Comm. ACM 8 
(July 1965), 471]. 

Firs% I do not agree that  the conference arrangements were 
beyond criticism. I legarding the ordering of the sessions, there 
were severM unfortunate  clashes, e.g., parallel sessions on pro- 
t r amming  (F2 and F3),  parallel sessions on time-sharing systems 
(H3 and lit4), l)arallel sessions on numerical analysis (H7 and 
[f9). This  is due to fmlure to find out  beforehand any indication 
of w h a t  interested potential  Congress members, as was done 
before the Munich Congress ( IF IP  62). This  lack of knowledge 
was also evident  in the  allocation of the rooms: I left a crowded 
meeting, packed into a smallish room, and went into a parallel 
session, with few people lost in a vast  bMlroom. Physical arrange- 
ments were also somewhat slapdash: blackboards were, in gen- 
eral, too small and all too often rooms with several pillars were 
used for sessions involving proiection of slides. The folders tha t  
were supplied were useful and welcome, but  why were they de- 
signed so tha t  i t  was impossible to put  one's name on them? 
Some note paper would have been invaluable. 

[ agree with Buxton ' s  comments about  the reading of papers 
whose full texts have  been distributed. But  why did we have the 
full t ex ts  and summaries (in four languages) of the invited lec- 
tures bu t  no guidance about  the contents of the submitted 
papers? Such abstracts  would have helped us to get more out of 
~he mee t ings - -o the r  congresses (including I F I P  62) manage to 
produce such abstracts,  or even preprints. 

Ancil lary services: I t  is not  their presence that  is important  
but also when they are available. Certainly,  there was a Post  
Office, which was closed for half the day and in fact  was open 
mainly during afternoon sessions. An information counter (not 
0fficiM IFIP!)  tha t  was open only during sessions, with meal 
breaks coinciding with the breaks between sessions, and even 
then giving incorrect information (as I subsequently discovered), 

is of doubt fu l  vMue. 
Personally I was not perturbed by the shortcomings of the 

social program. I only remark that  i t  is not  impossible to find 
out beforehand how many people can be accommodated at tile 
UN (a.nd restrict the  acceptances accordingly), nor is i t  impos- 

sible to find out several months ahead whether there is a concert 
or other performance on a particular night. 

I enjoyed what I saw and heard at  IFIP.  However,  I have tile 
feeling that  a little more attention to detail by the organizers 
would have made I F I P  65 a much more valuable experience for 
all participants. 

PAUL A. SAMET 
Computation Laboratory 
The University 
Southampton, England 

R e m a r k s  on  C o m p u t e r s  and  Aid to  t h e  H a n d i c a p p e d  

Dear  Editor:  
I would like to offer a correction of Mr. Glaser's remarks: "On 

Computers and Aid to the Handicapped" [Comm, ACM 8, News 
(Oct. 1965), 638]. I am concerned here only with his comnmnts 
about  activities at New York University. 

Mr. Glaser defines aphasic p~tients as " . . .  those who have for 
one reason or another lost the power of speech." This definition is 
a misleading popularization. Aphasia is characterized by a reduc- 
tion in vocabulary which is usually specific to particular word 
classes and with an associated reduced control of syntax. Aphasia 
is to be distinguished front other types of verbal impairment, in 
particular from verbal apraxia and dysarthria. 

New York University has indeed embarked upon a program to 
augment patient treatment in aphasia using computer assisted 
therapy. However, actual patient-machine sessions are not sched- 
uled to begin until sometime shortly after November l, 1965. 

We have had some experienee in treating a single anarthric 
pat ient  for a period of about six months. This was a cooperative 
exploration of our facilities and techniques conducted by our- 
selves and a technically trained patient of exeepti(mal intelligence 
and broad experience. Regrettably, the patient was not "helped."  
On the contrary, i t  was found that the patient 's  needs were far in 
excess of our current capabilities. This proieet made clear the 
necessity for confining our present research in this area to clinical 
situations that  fall within the scope of current sophistication. 

G. ROSE 
Section on Commwnication Sciences 
New York University, New York 
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