AUG. 24/2:00-3:30/GR. BALLROOM NORTH
SESSION 5: Invited Papers—1

9.2: Basic Concepts of Automata Theory

R. J. Nelson

Case institute of Technology, Cleveland, 0.

I WAS INVITED to present a survey of the theory of automata. Since there are_already
several surveys, especially the very competent ones of Chomskylo, McNaughton37, and
Roger354, all of which deal with various aspects of the theory of automata and more,
I shall confine myself to an exposition of what might loosely be called a '"philosophy
of automata'. On the way, however, I hope to touch upon certain developments of the
subject which have come about since McNaughton's 1961 paper. Readers who feel they
are up on the theory may wish to omit sections 2 and 3,

What the theory is about,

An understanding of what automata theory is about presupposes some familiarity
with logic and recursive function theory. We are interested in functions of non-
negative integers into the non-negative integers which can be calculated by an algo-
rithm, These functions are any of the list,

(a) S(x) = x+1,

(b) Uj(xqy5 +..5 Xy) = X4,

(c) x+y, (D
d x =y,

(e) xy,

or are obtainable from (a) -- (e) by application of the operations of composition
and minimalization.

Three items in the above formulation may be unfamiliar., (b) is the generalized
identity functionm, Uss whose value for an assignment of value to the n variables is
the value assigned to x;. (d) is proper subtraction, and has the value x - y (or-
dinary subtraction) if x>y and the wvalue O otherwise, Minimalization is an
operation on an equation f(y,xj, ..., xn) = 0., The value of the operation is the
smallest non-negative integer y satisfying the equation; if there is no such y the
operation is undefined. The function f in the equation must be one already obtained
by the foregoing process.

A function of n variables obtained by the indicated procedures, if it is de-~
fined for some values of the variables and not others, is partial recursive; if it
is defined for all values, then it is recursive, A sub-set of the recursive
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functions is the set of primitive recursive functions. Roughly speaking these func-
tions are defined by a '"'recursive process' in the sense that the function value £(0)
is given outright and f(y +1) is defined in terms of both f(y) and y. This idea is
applicable to functions of y with parameters X1s +ees X (Davis 3).

Example. y +y is recursive by (c) above. By composition and (d) (y +y) * x
and x = (y + y) are recursive, Again by composition,

[y+y) 2 x] + [x = (y+y)] (2)
is recursive, But (2) equals |2y - x|, which is therefore recursive. Finally by
minimalization, x is the least integery which satisfies [2y - x| = 0. . The func-

X : . . , .
tion 7 is not deéfined for odd integers x (there is no least y satisfying the equa-
tion in such cases), hence it is partial recursive.

A recursive set of integers is one which has associated to it a two-valued re-
cursive function such that if an integer is in the set the function has the value O
or '"yes" and otherwise 1 or "no'". For example, the set of integers greater than or
equal to 10 is recursive since the associated function 1 = (1 = (10 - x) is recursive,

The set of values of a recursive function; i.e.,, its range, is a recursively
enumerable set, A set is recursive if and only if both it and its complement are
recursively enumerable.

Now a word of interpretation is called for. Recursive function is a concept
meant to make completely exact the vague notion, used by mathematicians and computer
people, of an "effectively calculable" function, or of a function calculable by a
systematic procedure or algorithm -- in other words, by a simple clerk, Similarly,
recursive set is a precise notion corresponding to the intuitive idea of mechanical
question answering. '"Is there an algorithm for deciding whether n is prime?" now be-
comes the precise question "Is the set of primes recursive?" Finally, recursively
enumerable set clears up the vague idea of an "effective enumeration" -- generating
a (possibly infinite) sequence of integers by a 'mechanical' or "rote" process. We
now may talk instead about the range of a recursive function.

These three key ideas can all be extended to the domain of non-numerical prob-
lems. Suppose T is any transformation from one set into another, say from the set
of English sentences into the set of Russian sentences. If you like, assume that T
preserves ''meaning', whatever that is., Now if an effective one-one correspondence
can be set up from English sentences to numbers, and another from Russian sentences
to numbers; and if the function fy which associates n to fp(n) when and only when
the English sentence corresponding uniquely to n is tramslated by the Russian sen-
tence uniquely corresponding to fT(n) is partial recursive, then so is T. 1In such
wise we may talk meaningfully about recursive transformations or functions with re-
spect to arbitrary sets. Of course, by analogous devices we extend the concept re-
cursive set and recursively enumerable set to arbitrary collections -- for the most
part to sets of symbols, words, sentences, languages, etc, TFor instance, the set of
theorems of any of the usual systems of logic is recursively enumerable -- and this
fact justifies programing proof procedures on digital computers. If a formula is a
theorem, a proof can be found by an algorithm. Again, if a set of occurrences of
the letter "A" is recursive ~- no matter how poorly registered, degraded, or from
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how many type fonts -- an occurrence can be recognized or not as an instance of "A"
by an algorithm,

Automata theory studies models of machines of various kinds which can compute
recursive functions, and which can either recognize or generate the elements of re-
cursive or recursively enumerable sets. This is not yet a definition, but is, I
claim, a good description,

The machine models we are looking for are systems of rules for operating on
symbols. We have at hand, suppose, a non-empty finite set of symbols S called the
alphabet., By S* we understand all of the finite sequences of expressions made up
out of the symbols of S. These sequences are called words; if x is a sequence on S,
S (i.e., if x € $¥) and y € $¥, then z= xy is also a sequence on S8, i.e., z € S%,
The act of tacking y onto x is concatenation. S* is a denumerably infinite set,

S* includes the null word A which has the property Ax = xA = X, for any x € S*,

Let P and R be variables over S* and let the symbols g, g' be constants denot-
ing fixed words of S*,£ A rule is any expression of the form

PgR -~ Pg'R, (3)

which is to be interpreted as meaning: given g as part of an expression PgR of S*,
to rewrite g by g' yielding Pg'R.

47

Using the standard terminology of the ALGOL 60 reference language ' as the

alphabet in our sense,

P basic symbol R = P letter R

and

P basic symbol R = P digit R

are rules., It is easy to see that our rules of the form (3) are recursive, which
simply means that to rewrite the symbols g by g' can be done by an algorithm,

Techhically the assertion means that the set of ordered pairs (a, B8) such that there
are words P and R for which o = PgR and 8 = Pg'R are.true, is a recursive set.

We say that 8 is a consequence of a by the rule a = 8. We also say informally
that 8 follows from a.

Ordinarily we are interested in the cases where we have some given word w e.S¥%
which we operate on by using rules. Such a word is an initial word or axiom, In
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the ALGOL reference language, '"basic symbol" is an initial word or axiom,

Consider a much simpler example with S = {0, 1}, s* = {A, 0, 1, 00,.01, 10, 11,
000, ¢+o} and an initial word 1010111, The set of rules for the example is

(a) P10 R~ P 01 R
(b) P11 R—P 1R

(¢c) POOR—-P 0T

By applying these rules to the axiom we generate a sequence w = Wis Wosee.s Wg in
which w; 4 ;follows from w; by some rule (i=1, ..., 7). Such a sequence is deriva-

tion, and the last word generated, wg, is called a result or theorem,

Let us see how the rules in fact do generate a sequence, We write the sequence
as a list and to the right we annotate the entry.

(1) 1010111 initial word;
(2) 0110111 using 1 as the left side of

rule (a) with g = 10, g'= 01,
P= A and R = 10111;

(3) 010111 rule (b);
(4) 001111  rule (a);
(5) 00111 rule (b);
(6) 0111 rule (c);
(7) o11 rule (b);
(8) o1 rule (b).

If a result has no consequence, then it is terminal. The above result, 8, is
terminal since no rule applies to the word 01,

Let us now attempt to design a system (with the same alphabet as above) of
rules to operate on a word w and produce a result w' as follows. Let n be the
number of occurrences of 1 in w; if n is even, th? result w' is to have n/2 occur-
rences of 1 in it; if n is odd, w' is to have 24%— occurrences of 1 in it. Any
distribution of 1's in w' is permitted,

Anyone who tries to fashion a set of rules for performing the desired task will
find that: (1) - the rules must effect a scan across the initial word w from left to
right (or oppositely); and (2) - special markers, distinguishable from the symbols
of §, must be available to keep count of the oddness or evenness of the number of
occurrences of 1's scanned up to any step in the derivation. We call these special
markersvauxiliarv symbols,
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Continuing the example, we need besides the alphabet S = {0, 1, #} where we
use # as an end marker, an auxiliary alphsbet Q = {qo, ql}. We set A = S U Q, and
in our rules let P, R range over A¥*, As before x, y, W, etc.,will be words on
S - {x} alone. qow# is the initial word or our system. In this and later cases
where the initial word is of this form w will be called the input. The rules for
the system are the following six.

(a) Pg,0 R~ PO g R
(b) Pg, L R~P1gqqR
(¢) P qi\O R—~PO g R
(d Pg 1 R—~PO g, R
(e) P g, # R~ P #R
(f) Pg # R~ P # R
Suppose the input is 1011101l. When the initial word is
(1) d, 1011101#
Rule b applies, yielding
(2) lqy 011101#

If one applies rules (c), (d), (b), (d), (a), (b), and (e) in order, he will obtain

h (9) 10010014

The part of this terminal result up to # is an output.

Returning to\Ehe example from ALGOL let us further illustrate some of the above
described ideas. We shall see that an interesting fragment of ALGOL
numbers is again a system of recursive rules with an alphabet and auxiliaries, an
initial word, derivations, and results in the foregoing sense, Here we let our pure
alphabet be

10
S = { ey ¥y =5 0, 1, ceey 9 }.

The auxiliary alphabet is
Q = { D, UI, DF, EP, DN, UN, N }.
There is a single initial word which is the éuxiliary N. In this system to shorten

the list of rules we will use the following convention,

If PgR — Pg'R and PgR — Pg''"R are two rules, we express them as one by (a) suppress-
ing use of the syntactical variables P and R with the understanding that g may be
replaced by g' (or g") in any context, and (b) by indicating by use of the expression
g'ig" that g' or g" may replace g. Thus
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PUIR—-PDR

PUIR—~-PUIDR

is to be written simply

(1)" Ul ~ Dp|UID.

The other rules for our ALGOL fragment are the foll_uing seven:

" 1 - ur|+urf.ul
3)'" DF - .UI
(4)" EP — I
(5)"" DN - UI|DF|UIDF
(6)" UN — DN|EP|DNEP
(" N - UN|+UN|-UN

)" b - o]1l2]|3lals|6]|7|8]9

Those familiar with ALQOL will see that this is a system of rules for generating

numbers. Although the "semantics®" of the auxiliary symbols are irrelevant, it
may be helpful for comprehension to give an interpretation.

D = decimal, UI = unsigned integer, DF = decimal fractiomn,

EP = exponent part, DN = decimal number, UN = unsigned number,
and N = number,

We may derive the real number -2.461067 as follows:

(1) N the initial word;
(2) -UN from Rule 7.";
(3) -DNEP from Rule 6.'";
(4) -UIDFEP from Rule 5.";
17) -2.461067 using

rules 1", 8", 3", 1", 8", 1", 8", 4", 2", 1", 8", 1", and 8" in that order.

Let us emphasize that 1" -- 8" are abbreviations of rules in our fundamental
sense and hence that we have a system of rules satisfying the same kind of properties
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as the pulse divider,

Bringing together the various parts of our discussion thus far, we now assert
that any finite set of rules PgR — Pg'R  with a single axiom and a finite non-
empty alphabet with at least two auxiliaries is an automaton. This characteriza-
tion seems to be fairly adequate since it includes Turing machines, finite automata,
pushdown automata, phrase structure grammars, idealized nerve networks, linear
bounded automata, sequential machines, etc., If we extend the notion of automata to
systems which are equivalent in the sense that they yield the same terminal results
from the same inputs, then computer programs are automata since they can in effect
be treated as formal systems (Shepherdson and Sturgis58), (Nelson#8 ). Since it
expresses only a sufficient condition the above characterization includes too much
-- most familiar systems of logic are automata. On the other hand, stating suffi-
ciency leaves the door open to switching circuits, probabilistic automata, percep-
trons, analog computers, control systems, and learning machines. However, we will
have enough on our hands just to talk about systems satisfying the condition.

An automaton may have any number of physical embodiments. A system of rules
on paper is an automaton as is a solid state sequential circuit. Also, being an
automaton is relative to a point of view and does not preclude being something else
from another point of view., Thus, as McNaughton points out, a clock is an automaton,
albeit a trivial one, but it is also an energy system, '

The study of automata is co-extensive with much of logic and hence is a part of
mathematics, As such it shares the strengths and weaknesses of mathematics, One can
establish the theory on a rigorous basis and explore a realm of possibilities not im-
mediately obvious to the programmer or designer and yet at the same time admit to
idealization and the need for adequacy checks against the real world of problems,
which occasion the theory in the first place.

There appear to be three main varieties of automata: acceptors, generators,
and transducers or sequential machines.

Let S be any alphabet including #, Q any set of auxiliaries, A= S U Q,
SNQ = ¢ (¢ designates the null set), and let symbols P, R, %, y, etc. be used
as before. An acceptor is an automaton having a single axiom qw with or without end
markers, and such that every terminal result is of the form q. If qw is the axiom,
then an acceptor accepts w if and only if there exists a derivation in the acceptor
yielding a terminal result of the form q. A set of words is definable if there
exists an acceptor that accepts it,

A generator is an automaton having a single axiom of the form q and such that
every terminal result is a word on symbols of S - {# ) only. A terminal result of a
generator is called a sentence and the set of all such sentences of a generator is
a language. Generators are also.called generative grammars when the rules are con-
structed in such a way that the derivation of a sentence reveals its grammatical
structure, The study of languages from this point of view is part of mathematical
linguistics; it will be obvious from the ensuing discussion in section 2 that
linguistics and automata theory have much in common, The rules defining the ALGOL
fragment above constitute a generative grammar.

A transducer or sequential machine is an automaton having a single axiom of
the form qw# or q#w#, and such that every terminal result is a word on the symbols
of § - {#} only. The pulse divider previously discussed is a finite transducer,

In qwff, w is an input and the terminal result, say w', is an output. The set of all
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ordered pairs (w, w') of this kind is the behavior of the transducer, and if this set
is a function, the transducer represents it,

From now on we suppose each automaton to include a distinguished auxiliary qg,
-- the initial state -- and we suppose every q in an axiom is q.

Automata Behavior

Although I claim that it is essentially correct to describe "automata" as I
have in terms of rules, it will not be particularly convenient or even illuminating
for the remainder of this discussion to persist in the formalities in all cases,
Suffice it to say that every automaton we shall discuss can be completely and correct-
ly defined as a system of rules,

.k . .
The most powerful automaton is the Turing machine”. As Turing machines are
very well known and have been described in many papers and books we will not rede-
scribe them here,

A Turing machine is a transducer in our sense of the word, and it computes a
function of the non-negative integers under the following circumstances, If the
argument (or n-tuple of arguments) is coded in the machine's alphabet on tape, and
if the machine then derives a terminal result representing the function value, then
we say it computes the value of the function from the argument, A function for which
there exists a Turing machine which computes the value for each integer (or n-tuple

of integers) is computable,

Proposition 1. A function is (partial) computable if and only if it is (partial)
recursive,

On informal grounds proposition 1 means that Turing transducers can handle any
function or transformation or translation for which there is an algorithm, Converse-
ly, if we accept the thesis that all effectively calculable functions are recursive,,
a procedure is an algorithm only if it can be done on a Turing machine.

By altering the defining rules of a Turing machine we may obtain a Turing
acceptor and a Turing generator. Like the transducer, a Turing acceptor can move
back and forth reading and writing on an infinite tape. It should be expected that
such a device could accept very weakly structured sets., Indeed,

Proposition 2, A set is accepted by a Turing acceptor if and only if it is recursive-
lv enumerable.

Similarly,

Proposition 3. A set is generated by a Turing generator if and only if it is re-
cursively enumerable,

Propositions 2 and 3 have two consequences, among others, which are of immedi-
ate interest to computer scientists, The first one is that the theorems of any
formal theory can be generated by a Turing machine, since such theorems are known to
comprise a recursively enumerable set, Assuming that a digital computer is a Turing
machine (we shall question this assumption later), this fact justifies non-heuristic
theorem proving programming studies, The second one is that natural languages such
as English or Russian or artificial languages such as ALGOL or FORTRAN are either
generable by or accepted by Turing automata. As we shall see, the same is true of

considerably weaker automata,
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Turing himself showed the existence of one of his machines which can compute
any recursive function, Shannon”’ has shown that such a universal machine can do
with two symbols, {0, 1}, at the cost of increasing greatly the number of states --
i.e., auxiliaries; or it can do with two states if there is a sufficiently large
alphabet of symbols. Watanabe®? has constructed a universal machine having a state-
symbol product of only 30!

. . .. *h%
The weakest kind of automaton is a finite state acceptor (f.s.a.) . An

f.s.a. has rules of the forms

(&) PgqgsR—~Pq R

(® Pq#R-Pg R (4)

Khkk

subject to sundry provisos, the main one being that each pair (q, s) € QxS oc-
curs exactly once on the left side of a rule of type (a). If Q has n elements and
S has m, then there will be m x n rules of the (a) form. Given a subset Q' C Q,
called the set of final states, a word w € S* is accepted if and only if there is a
derivation from qo wf with terminal result ¢!, ' ¢ o', The auxiliary q, is called
the initial state.

Inspection of the rules making up an f.s.a. shows that we may picture such
automata as Turing acceptors which read tape from left to right only and which do
not write, Still more suggestively, an f.s.a. is a "black box" with input, capable
of receiving an input symbol by symbol. If the automaton goes into a final state of
Q' after injection of a word, a green light flashes,

As an example, consider the f.s.a. with § = {0, 1}, Q = {qo, d1s Qo5 Gg» q4},
Q' = {q4} and the rules

(a) Pg, OR—Pgqg R
(b) P g, LR—~PgyR
(c) Pgqy OR—=P g R
(@ Pgy 1R—PagqR
() Pg OR—P g, R
(f) Pg 1R~P gy R
() Pgqg OR—=P gy R
(h) Pgg1lR-Pgqg R
(i) Pg OR~-~P g R
(39> Pg 1 R—~P gy R

(k) Pagy #R~P gy R
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This f.s.a. accepts words having at least one occurrence of three consecutive 1l's in
it. For example, the word q4 is a terminal result derivable from the axiom q,
10111014,

The sets definable by f.s.a. are readily characterized in terms of concatena-
tion. Using our standard alphabet S, if A and B are subsets of S*, the complex
product, written AB, is the set of all words xy such that x € A and y € B. Also let
us write A° for A-A, A3 for A*A*A, etc. The iterate of A on A or the star’ of A,
written A", is the infinite union of all finite powers of A:

@
A::::UAi, AO:{A}
i=0

. *
Incidentally, this definition shows why we used the notation S for all of the words
on S in the first place.

Let us now define the notion of regular set recursively as follows. Any finite
set of words is regular, If é and B are regular then A*B is regular, A U B(the union
of A and B) is regular, and A" is regular.

As an example, with § = {0, 1}, it is fairly easy to see that the set of words
containing an even number (including zero) or l's is regular., If we let "0" itself
designate the set consisting of 0 only and "1" designate the set consisting of 1
only, then the desired regular set is denoted by

%
* )

(0*-1-0
In more or less ordinary English, this says a word consisting of any number (includ-
ing zero) or 0's followed by a 1 followed by any number of 0's (including zero) fol-
lowed by 1 is in the set; and moreover that the result of repeating-the process just
described any number of times yields words with an even number of 1's,

We' are now in the position to state a fundamental result in the theory of
finite acceptors (Kleene 352),

Proposition 4. U is accepted by some f,s,a. if and only if U is a regular set. The
definable sets are precisely the regular ones,

The complement of the set of words having an even number of 1's is given by
the expression

L1 . 0% )*

(o
and contains words with an odd number of ones. It is easy to show that every f.s.a,
not only accepts words of U but rejects words of U, the complement of U, Hence, by
redesignating the final states of the given f.s.a. we can obtain another f, 6 s.a.
which accepts TU. Hence by proposition 4 and the fact that union of regular sets are
regular, we have
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Proposition 5. The family of all regular sets is a boolean algebra., (Rabin and
Scotta2),

Since an f.s.a. is a restricted Turing machine, it follows by proposition 2
that regular sets and their complements are both recursively enumerable, Hence,
regular sets are recursive,

It is now fair to ask, so what? I think careful understanding of even the
simplest automaton is valuable in itself, However, the theory about f.s.a. is clear-
ly relevant to pattern recognition. Suppose we have a character set of n (say 64)
characters each of which can be registered in a multitude of deformed, mal-positioned,
or degraded ways. We can build a recognizer (using f.s.a.'s only) if and only if
each set of possible occurrences of a character (distorted badly but within limits)
is regular, and the sets are disjoint. Each word representing a scanned character is
"fed into" (is an initial word of) several f.s,a. simultaneously, where the f.s.a,
correspond uniquely to the regular sets., It would, of course, be folly to attempt
characgfr recognition in this way if the sets of character tokens were irregular.
Keller”~ has made an analysis of certain pattern recognition schemes, such as the
perception making use of the f.s.a. and related ideas. The theory also provides a
very primitive model of what it means to "understand" a sentence.

A remarkable result discovered by Rabin and Scott’? concerns a class of ac-
ceptors which are not constrained in each step of the derivation to assume a unique
next state, They allow of the rules®*** defining an acceptor that there be at least
one production rule with left side P q s R for each pair (g, s) € Q x S. In other
words, a situation such as

P q, s1 R~Paqg R
(5)

Pq,s; R~ P qs R

is permitted., A word w = cesqySqen. has possibly two (or more) consequences in a
derivation. Such systems of rules are said to be polygenic, while the systems for
ordinary f.s,a. are monogenic since each word in a derivation has at most one immedi-
ate consequence., An acceptor like an f.s,a, except for having polygenic rules is
called a non-deterministic finite state acceptor (n.f.s.a.). A word w is accepted
by an n.f.s.a, if there exists a derivation yielding an auxiliary terminal result in
Q'. It would not seem unreasonable to believe that an n.f.s.a. could accept more
than a regular set -- that is other than regular sets -- sets having weaker defining
properties., But this is not the case,

Proposition 6. Every set accepted by an n.f.s.a, is accepted by some f,.s.a.
(Rabin and Scott22),

Further results about simple acceptors in zig-zag tapes, two-tapes, etc., are
described in Rabin and Scott52,

Probabilistic Automata (objects not satisfying the sufficiency condition for
automata in our sense) may be looked upon as systems like the f.s.a. except that each
pair (g, s) € @ x Sleads to a new state q' with a certain transition probability p'
(¢, s). 1In general these automata can accept sets not within the range of accepta-
bility of the f.s.,a. However, there are two somewhat surprising exceptions which

- should be briefly discussed,
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If Q' is the set of final states of a probabilistic acceptor P, let p(x) be the
probability that the automaton will go into a state of Q' from the initial state q,
upon injection of an input word x. x is accepted by P if p(x) is greater than some
previously given real number )\, 0 < A < 1. For emphasis we might say that
in such a case x is A-accepted.

Proposition 7. If I p(x) = A | is bounded from below, namely, if there is a real

positive & satisfying

$£| p(x) ~-A |, for every x € s*

then P accepts only regular sets (Rabin51). Secondly, if P satisfies the above
property and if in addition pp' (g, s) > O for every q, q' € Q and s € S then the
set of accepted words is even more constrained than the regular sets. Such an auto-
maton can 'do" only less than an f.s.a.!

It appears that these results should have important implicétions for the design
of reliable sequential machines out of unreliable components. However, we will not
attempt to discuss the matter further here,

A finite state generator or grammar is essentially an acceptor "turned around".
All of the rules are of the form

PaR=Paq' sR (6)
or

PgR—*P s R
subject to sundry provisos. In general all generators will be non-deterministic.

It is known (Bar-Hillel and Shamir3) that the sets or words generated by such genera-
tors are regular. Hence as in the case of Turing automata, finite state acceptors
and generators are equivalent in the sense that they are both associated with the
same family of sets.

Proposition 8. A set is regular if and only if it is the set of words generated by
a finite state grammar,

As noted before, the terminal results of a generator are called sentences, and
the set thereof a language. Also, it is customary in dealing with grammars to term
the auxiliary symbols Q (called "states" in acceptors and transducors) non-terminals,
and the symbols S terminals. In application to linguistics the terminals are usually
words of the natural language under study. The symbols N (noun), NP (noun phrase),

V (verb), etc., are generally used as non-terminals in qrder to suggest grammatical
concepts, but for the sake of uniformity of the treatment we shall continue to use
q symbols,

A sequential machine or finite transducer (f.t.) is a device similar to an
f.s.a. but with output., It computes in strictly real time in the sense that each
output from an input is computed instantaneously, and an output sequence is formed
exactly when an input sequence is introduced. Equivalently, a finite transducer is
a Turing machine with a one-way (left to right) tape. 1In formal terms, an f.t. is
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characterized by a finite set of rules of the form

— !
quR POqR (7)

Pg#R~P#R

where there is at most one rule for each (g, s) € Q x S (determinism). 'O" is an
output symbol of an alphabet O which may or may not be the same as S: Hence

A=SUQUQ; and we require ( S UO) N Q= ¢&.

We wish to characterize the behavior of such automata. This objective is some-
what more practical than the like one for Turing machines, since sequential machines
are models of ordinary computer sequential circuits; e.g., the pulse divider.

It is clear that since a sequential machine is deterministic its behavior --
the set of ordered pairs (w, w') (cf. end of section 1) -- is a function. Which
functions, numerical or otherwise, can an f.t. represent? To answer this, we imagine
an f.s.a. with two inputs which reads pairs of words symbol by symbol. Such an f.s.a.
might be defined by rules

Sy
Pg (') R*PgR

s

where the pair (s') is an element of an alphabet of pairs. f.s.a.'s of this kind ac-
cept pairs of words. Any set of pairs definable in this way which is also a func-
tion which satisfies the property that the length of the input w is equal to
that of w', and which is such that if w = xy and w' = uz and the length of x is that
of u, then (x, u) is in the set as well, is representable by some f.t, We say that
a function which is length-preserving and prefix closed is so representable, The
converse also holds, 'yielding

Proposition 9. A function is representable by (is the behavior of) an f.t. if and
only if it is f,s.a., definable, length-preserving, and prefix closed. (Elgot4 and
Elgot and Mezeid),

A little thought given to the conditions of representability shows that prefix
closure and length preservation are almost obvious properties of functions repre-
sentable by a strictly real time device, which is what an f,t, is,

Using these abstract results one can go on to specify the numerical functions
within the powers of an f.t. By a more or less straightforward construction one can
show that addition is representable, although since sums are in general 1onger than
either addend, and the addend and augend are not necessarily the same length, certain
adjustments in the alphabet must be made to satisfy the length preservation condition.
Ritche33 has shown.

Proposition 10. The class of numerical function computable on a finite transducer
includes the identity, successor and addition functions™ (above) and is closed under
composition. There is no f.t. multiplier.

Propositions 9 and 10 pretty well summarize, in a general way, what can be
done with a finite transducer,
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Now that we have examined the behavioral capabilities of finite automata and
Turing automata it is natural to ask whether there are any well understood models in
between., By Church's thesis the Turing machine is the most powerful of all automata
and the finite automata the weakest since anything weaker (one auxiliary symbol or
one state) is merely a coding device. There are two answers, one for acceptors and
generators and the other for transducers.

First, the theory of acceptors and generators has been quite richly developed
but almost entirely from the point of view of mathematical linguistics -- which of
course does not imply lack of value for the theory of automata, Two classes of
generative grammar, in addition to the Turing generator and the finite state genera-
tor have been studied extensively, context sensitive grammars and context free
grammars. The context sensitive ones are generators in our sense with rules
PgR = Pg'R  such that g is of the form PqaPy and g' is P x¢, for some words ¢y, @g
of (SUQ)* and for x # A+ Thus the rules permit rewritifig of auxiliaries in
the context ¢; - ®5. The languages generated by such gremmars are context sensi-
tive. Although it is known that the theorems of the propositional calculus as well
as the closed formulas of the predicate calculus (Hodes2 ) and also machine lan-
guages of digital computers are context sensitive, they are not of much interest to
linguistics. Since to comment on this situation is beyond my scope I shall merely
say that the phrase structure of sentences of context sensitive languages does not
seem to be an appropriate model for understanding the structure of interesting
natural languages like English or artificial ones like ALGOL or FORTRAN. They are
of some slight interest in automata studies as seen below.

The context free grammars are like the context sensitive ones except that
that $; = ¢o = A.An example is the set of rules for the ALGOL fragment we examined
earlier, and, of course, the so-called Naur-Backus form of ALGOL is a context free
language (Backusl). Much of English is context-free; e.g., many declarative sen-
tences in the active voice and indicative mood. The context free languages may also
be obtained by a set of theoretic definition in a way reminiscent of the regular sets
(Ginsburg and Ricezo).

A pushdown acceptor is an automaton like an f.s.a., but is equipped in addi-
tion with a storage tape which can be written on as well as read and which moves
right and left with respect to the scanning head. It is arranged in such wise that
only the last symbol written in the store is in a position to be read -- namely the
stgge is a stack, Proposition 11 has been shown by Chomskylz; see also Schutzenberg-
er?”,

Proposition 11, The language accepted by a pushdown acceptor is context free., The
converse, however, is not true: some context-free languages require the more power-
ful resources of a non-deterministic pushdown acceptor. Such a device, in analogy
to f.s.a.'s has a polygenic set of rules.

Proposition 12. A context-free language is accepted by some non-deterministic push-
down acceptor,

Unlike the f.s.a., equivalence between the deterministic and non-deterministic
automata fails., Moreover as shown by Bar-hillel, Shamir, and Perlesz, the family of
context-free languages is not closed under intersection. Thus the family is not
Boolean, However, the intersection of a context-free language with a regular set is
again context free.

A linear bounded acceptor (l.b.a.) is a Turing acceptor with bounded tape; the
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length of the tape (which is either fixed or which can grow up to the bound) is a
linear function of the input length. A pushdown acceptor is really a species of
1.b.a. since, as a little thought will show, the latter if supplied with a tape
(roughly) twice the length of a given input can use the extra stretch as a stack.
Moreover the 1.b.a. accepts context sensitive languages (Landweber34).

Proposition 13. The languages accepted by a linear bounded acceptor are context
sensitive,.

The converse, to my knowledge, is an open problem, Moreover it is an open
problem whether the non-deterministic 1l.b.a., defined by relaxing the usual mono-
genicity requirements on Turing rules, is associated to the same languages as the

ordinary 1l,b.a. Landweber has also obtained the surprising conclusion -- surprising
in view of the contrary results for context-free languages -- that the context sensi-
tive languages are closed under intersection. It is an open question, at this

writing, whether the family is Boolean,

Chomsky11 has shown the recursiveness of context sensitive languages. The same
holds, by inspection of the rules, for the context free. Finally, the families of
regular sets, context free languages, context sensitive languages, and recursively
enumerable sets in that- order form a simple hierarchy with respect to proper set in-
clusion. Obviously the associated automata form a hierarchy as well.

The sketch of the last ten paragraphs hardly does justice to the amount of
work reported in the area of languages and automata, of linguistics and automata
theory. For a thorough-going survey with bibliography as of 1963 see Chomskylo.

We now return to the question posed earlier about transducers. Almost nothing
is known about these automata in the region between sequential machines and Turing
machines., I will mention a few isolated facts and then return to transducers.

Schutzenberger56 has examined compositions of sequential machines such that the
output of one machine is the input to another. Also in his machines an input symbol
s as in rule (2) above may be replaced by a word on the output alphabet O i. He
shows that the behavior of such machines (i.e., the set of pairs w, w'), where w is
an input and w' the output of the composed machine) is closed under finite composi-
tion, and that these machines transform regular sets into regular sets. By special-
izat%?n, therefore, the same holds for finite transducers (see also Ginsburg and
Rose~*,

Oettinger50 has shown that the pushdown transducer, which is like an acceptor
except that the input tape may be written on as it passes through the machine --
precisely as in a finite transducer --, is capable of translating parenthetic context-
free languages into parenthesis-free ones and conversely.

Ritchie®3 has characterized the numerical functions computable on a linear
bounded transducer the latter being precisely a Turing machine except for tape
bounded as in the case of the l.b.a. Roughly speaking this result says that the
class of functions computable by these machines includes addition, the identity func-
tion, the successor function, and multiplication (See (1)) and is closed under compo~
sition, transformation of n-variable functions to m-variable functions, n > m, by re=
placement of variables by constants, and primitive recursion. The last operation is,
however, permitted only when the next earlier function value f(y) used with y in de-
fining f£(y+ 1) satisfies certain boundedness conditionms.
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. . . * * *
It can be shown that sorting, that is the function f on S§" into s*¥ s cee Spo

where S is a simply ordered set, such that f takes eac¢ch word into "sorted order", re-
quires at least a linear bounded transducer. (Nelson™7”).

Structure

It would be highly misleading to suggest that any meaningful exposition of the
recent work on automata structures could be attained without using a considerable
amount of elementary but abstract and technical mathematics, chiefly algebra. Pre-
supposing a minimal knowledge (as we already have in using set theory and Boolean
algebra) we may, however, be able to sketch some of the recent main concepts. All
of the results we mention are about finite state acceptors and transducers, We omit
explicit discussion of state minimization, state identification experiments and
realization of automata bg switching nets since these have been already discussed gx-
tensively in books (Gill1 s Ginsburgls) and many papers, especially Burks and Wang'.
Interesting as the problems are, we must omit here discussion of structural problems
of switching and iterative nets; Burks and Wright8 and Holland?8 are representative,
What remains for discussion will not be exhaustive either.

The defining rules (7) (modified to specify exactly ome rule

Pqs R —> PO q' R for each pair (q, s) € Q x S) of sequential machine together
with provisos suggest that we regard these machines as embodying two functions M:

Q x S — Q and the other N: Q x S—>0. Thus we may take a sequential machine to
be an ordered sextuple <S8, 0, Q, q,, M, N > where S and O are alphabets and Q is
the set of states (auxiliaries) belonging to a given machine; M(q, s) = q' if and
only if P q s R—> P 0 q' R is a rule of the given machine for some o € O; and
N(q, s)= O if and only if Pq s R — P O q' R is a rule of the given machine for

some q, € Q. qo is the initial state, M is the transition function, and N is the
output function.

By a similar technique we may set up an acceptor as a mathematical system.
Since in this case there is no output, there is no N function. Instead we have a
subset of final states Q'. So we can consider an acceptor to be a quintuple
<8, Q gy M2 characterized mutatis mutandis as above.

Our interest here will be in structural properties of either sequential ma-
chines or acceptors with respect to the M function alone, and for the time being we
will not even concern ourselves with the accepting behavior of an f.s.a.; so we will
ignore final states., This leads us to abstract from transducers and acceptors and to
consider transition systems, A transition system is a quadruple <SS, Q, qo, M >

where S and Q are any non-empty, finite, disjoint sets, and where M is any arbitrary
function M;: Q x S— Q.

As before S* is the set of words on S. It is easy to see that since S* con-
tains all finite words, it is algebraically closed under the concatepation operation,

which we will temporarily denote by "o". Also, o is an associative operation, and
since x 0o A= A o x = x for any x, we have an identity element. Hence, the triple
=< 8% o, A> is a semi-group with identity (alternatively a monoid). Moreover,

it is free, which means roughly that no equalities other than x = x (or x = A x = x A)
hold in the system. The function M is extended to elements of S* as follows

M(g, N = q

M(g, xs) = M(M(g, x),s)
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Formally, M(qo’ x) = q if and only if q is a theorem of an axiom g% in, say, an ac-
ceptor., Intuitively it is the state a transition system goes into from the initial
state, We may assume without losing anything that for our systems every state q is
a terminal result for some input: M(q,,Xx) = q.

Next, we are interested in equating those words which always take the transi-
tion system from the same states to the same states. Thus we introduce an equivalence
relation E, as follows:

x Ey if and only if for every q, M(q, x) = M(q, y).

Thus x is E-equivalent to y, if and only if the indicated equation holds for all q.

It is obvious that E is properly termed an equivalence relation since x E X; x E Y
implies y E x; and x 'E y and y E z implies x E z., E determines a partition of S* in-
to equivalence clauses. Moreover E satisfies the congruence or substitution proper-
ty with respect to concatenation.

If x Eyand z E w, then x z E y w.
This is easily provemn from the definition of M and of E, since
M(q, Xz) = M(M(qs X),z) = M(M(Ql,}’),z) = M(M(q, Y)’w) = M(q, yw)
In algebraic studies a property of congruence classes (egquivalence classes
determined by a congruence relation) is that they define quotient systems. In the

case of our free semi-group 5, if T is a transition system for which the congruence
relation E has been defined, then

S/T=<1[El , o, [ A] >,

where [E]T is the set of equivalence classes [X]T determined by E, is a quotient
semi-group with identity. Here [x]T is the set of all words y € S8* such that x E y

where the M function of course belongs to T. S/T is a semi-group since [x] o [y]
[x y] and o is associative. [A] is its identity element.

S/T is also called the semi-group of the transition system T. Proposition 14.
To every transition system T (hence, every automaton with an M function, includlng a
Turing machine) there corresponds a semi-group S/T.

Another well-known fact from algebra is that a quotient system is a homomorphic
image of its parent system. Thus in the case of semi~-groups < A, -, e > and < A', o, e
a function f: A—A' is a homomorphism provided that

r>

fe) = &',

and

f(a « b) = f(a) o f(b), for all a, b, €, A.

Specifically for & and 8/T, the function ¢ : S* = [Elq determined by ¢ (x) = [x]lq is

a homomorphism since
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¢ N = [A]T by definition,

and

¢ (x y) = [x y]T = [X]T 0 [y]T =S¢ (x) o (¥

A semi-group isomorphism is a homomorphism f such that f is a one to one correspond-
ence (the sets of the semi-groups are equinumerous) and the image of ‘the function f
is all of the semi-group elements: 1i,e., the function is onto,

A very interesting fact, discovered by Myhill43, is the following.

Proposition 15. Every finite semi-group with identity is isomorphic to the semi-
rou S/r ©of a transition system T.

This theorem shows the close connection between the whole of semi-group (including
group) theory and automata.

So much for the bare essentials. The beauty of the treatment is that algebraic
methods can now be applied to the structural problems of automata., It can be shown,
for example, that if /T is a group then T is a permutation system, namely that a
state q in M(q, x) = q' is unique for every q' and every x. In plainer English, you
can always tell what state q the transition system in state q' came from, given an
arbritrary input (Burks and Wang 7y, Many other algebraic ideas are used to discuss
automata on the basis of the automaton semi-group (e.g., Beatty4, Mezei39).

Another connection with algebra is established by viewing the system of all
automata (again using the abstraction to transition systems) as a lattice.

A lattice is essentially a generalization of a Boolean algebra. 1In a lattice
it does not necessarily hold that every element_ has a unique complement, nor do the
usual associative principles necessarily hold = =. To show that the family of transi-
tion systems is a lattice we aim at showing that the family is isomorphic to another
system already known to be a lattice,

Similar to E above, we have now an equivalence relation R defined on S*, called
a right invariance relation:

x Ry if and only if M(q,, x) = M(q,,y),

which says that x and y are R-equivalent if they lead to the same state from the
initial state q,- The property right invariance says that if x Ry then x z Ry z -~
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if x and y lead to the same target state, then so do x and y with a common tail at-
tached. This property is easily proved from the definition of R,
Now consider all of the distinct relations Ri determined by transition sys-

tems. It can be shown that this family, which we will call Pi’ forms a lattice
where the interpretation is as follows: R1 E}Ri means that every pair constituting

the relationfﬁ_is a pair ofI{ﬁ RiflRi (the lattice intersection operation or meet)

is the set of pairs in both R; and Ri; and Ry U Rj (the lattice union operation

or join) is the set of pairs built up by starting with the pairs in the ordinary set
union of Ry and Rj and then adding (x, z) to the set if (x, y) and (y, 2z) are

already in it, and so on.
Next, we want to build up a family T of transition systems corresponding to P.
' |
Two transition systems T = < S, Q, go, M > and T'X< s, @', o', M' *(note common
alphabet, S) are homomorphic if there exists a function ¢ : q - Q' such that

¢ (g,) = g
and
¢ M(g, x)) = M' (@ (g x), x € 8%, q €Q.

When ¢ is one-one onto Q', then T and T' are isomorphic and ¢ is an isomorphism,
otherwise a homomorphism.

Clearly two isomorphic systems will determine one invariance relation R, since
if M(qg, X) = M(qy, y) holds, then surely @ M(ay, x) = ¢ (M(gy, ¥)); and since ¢
is one-one the converse holds. Similarly for any number of isomorphic systems. So
there is a one-one correspondence between relations Rj and an isomorphism type, T;;
i,e., a set of mutually isomorphic transition systems, The family T has the types
T; as elements.

Now P is a partially ordered system with respect to € (since it is a lattice).
Also T is partially ordered with respect to the relation homomorphism, Further, two
partially ordered systems O and O' with relations a and B are order isomorphic if
there is a one-one correspondence § between O and O' such that

aab if and only if @ (a) B @ (b)

for any a, b, € o. It can be shown that P and T are order isomorphic with respect
to the relations C and homomorphism. Finally if P is a lattice and is order iso-
morphic to T, then T is a lattice.

Proposition 16, The family T of transition systems is a lattice isomorphic to the
lattice P of right invariant relations.

On the basis of this result it is possible to discuss (among other things) in
an exact way the problem of decomposing an automaton into sub-automata which operate
in parallel, in cascade, or in cascade, or in certain feed-back arrangements., The
essential idea in these applications is to find decompositions via equivalence re-
lations, on the set of states of a transition system, having the congruence property.
One has to select equivalence relations on Q,= let us say, so that

q = q' if for all x, M(q, x) = M(q', x).
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A familiar example is the output equivalence relation used in finding minimal-state
transducers. Parallel or cascade systems exist when two or more quotient systems,
determined by the appropriate congruence relation, operating synchronously and be-
ginning in initial states, are isomorphic to the union of these transition systems in
the lattice of transitjon systems. Numerous developments of these ideas have been
developed by Hartmans The main outlines of the above development are from BuchiJ,

Another apgroach to the understanding of sequential machines has been made by
Krohn and Rhodes”” who in effect study the machine as embodying the function N:
Q x S = 0 extended to sequences of S* so that N(q, A) = A and N(q,x s)=N(m(q, x),s).
Their approach is deep and general and finds structural properties into which one may
inquire from the point of view of (non-elementary) group theory.

Solvability Results and Perspectives

The above sections sketch what I believe to be the main lines of growth of the
theory about behavioral and structural problems,

Another aim is to understand which problems about automata can be solved by
automata, We say that a problem is recursively solvable if that problem converted
into one about the recursiveness of sets is answered by a proof that the set in
question is recursive, In machine terms this can be interpreted in any number of
convenient ways: we may show Turing computability of the associated function of the
set; or we.may show the set to be definable by an l.b.s. (or less), etc.

In general the questions about Turing machine, it occurs to one to ask, are
unsolvable. Most of the required proofs depend on the fact that there exist recur-
sively enumerable sets whose complements are not recursively enumerable. So the sets
in question are not recursive, Hence there are sets accepted by or generated by
Turing machines which are not recursive. It follows more or less directly from this
circumstance that the problem whether a given Turing machine with given initial word,
will ever come to a terminal result, or halt, is unsolvable. Similarly it is un-
solvable whether two Turing machines are equivalent in the sense that they accept
(or generate) the same sets or compute the same functions. The same holds of pro-
grams; and moreover, the problem whether a program computes what it is supposed to
is unsolvable -- in particular no program can decide whether a given program will do
what is desired of it,

At the other end of the simple hierarchy of machines, the problems tend to be
recursively solvable and sometimes trivially so. Not only are the regular sets re-
cursive, but there is an algorithm for designing an acceptor, given a regular set
and conversely_there is an algorithm for finding the defined regular set, given an
f.s.a. (Kleene’<, McNaughton, Yamada3® ). There is an algorithm.for equivalence of
f.s.a.'s and also for f.t.'s, and also for finding reduced transducers (Moore42).
There are algorithms for finding decompositions of transducers, for detecting whether
a transducer is connected (every state entered from the initial state by some input),
or strongly connected (every state into every other state by some input). There is,
for such elementary machines, with initial states, a recursive procedure for telling
whether for any two automata of the same type and any function f, whether f is a
homomorphism, The question whether there are any words acceptable by an alleged
f.s.a. is recurisvely solvable (emptiness problem).

For the automata of intermediate powers the known results tend to be negative.

A large number of such problems is surveyed in Chomsky > based on the work of Bar-
Hille, Perles, and Shamir“, However, the emptiness problem for context-free grammars
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1s solvable, as is the problem whether the language generated by such a grammar is in-
finite. The unsolvable problems include the following for both the case of the inter-
section of two context-free languages or the complement of such languages; whether the
intersection or complement is empty, finite, another context-free language, or a regu-
lar set. Finally the ambiguity problem, namely whether there is more than one deri-
vation of a given context-free language -~ such as ALGOL --, is unsolvable (Cantorg).
Attempts have been made, owing to the unsg%vablllty of this problem, to redesign
ALGOL as an unambiguous language (Johnson

In the case of transducers the results are few and far between. Ginsburg and
Hibbard!? have shown that if Ry and Ry are regular sets, the problem whether there is
a finite transducer which maps Ry and Ry is recursively solvable; on the other hand,
the companion problem for context-free languages is unsolvable., There is no algo-
rithm for deciding whether there exists a finite transducer such that it (Ginsburg
and Rose““) maps one context-free language into another. When there is such a trans-
ducer, however, the output, given a context-free language put in sentence by sentence,
will again bé context-free (Ginsburg and Rose? ). There are no such analogous re-
sults for transducers of more power than an f.t.

As mentioned earlier the most rapid development of the theory has been in the
section related to linguistics -- the theory of generators and acceptors. I would
like, finally, to discuss what appear to me to be the chief problems for future in-
quiry. Almost all of these problems center around more complete understanding of
transducers; i.e., of computations in the broadest sense of the word. Briefly, what
transformations (calculations, cognitions, translations, derivations, inference,
game-plays) are possible and with how much stuff? There are, it seems to me, five
overlapping problem areas worth discussing.

(1) - To what extent are automata models in our sense (formal rules) adequate
for studying natural phenomena which we intuitively associate with '"control" rather
than "energy transformation'? The £ 610w1ng list suggest2 possible areas of applica-
tion: self reproduction (von Neuman§ , Burks® and Myhill 4); non-stochastic learning
(Miller and Chomsky40); genetic coding; language processing, human behavior, and
thought; control in biological and social organisms. My view is that the study of
such phenomenon from the point of view of formal rules is relevant and may be fruit-
ful, while a study emulative of hard physical science, usually by way of statistics,
is likely to remain barren., However, see (5) below,

(2) - None of the transducers discussed here are adequate models of digital
computers. If an input tape is part of a computer, then a general purpose computer
is not even a finite transducer, since an existing computer could not possibly add
arbitrarily large integers, while, as we have seen, finite transducers can, It is
safer (and less '"trivial- soundlng") to assume prior to discussion of any formal
model that a computer has "in principle'" all the memory it needs, If so, it is a
Turing machine, A still better makeshift is to assume that a computer does not have
indefinitely expansible memory, but always just enough for in-putting a problem
(linear function of the input). Thus, the most adequate model would be a linear
bounded transducer. However, there is no model of a "universal" 1,b. transducer;
yet we think of stored program computers as '"universal."

When we examine structure it is less clear what a real computer or computer
circuit is. Various models_have been proposed by Elgot and Robinson16, Holland?9
and in a related way Hennie“”, all of which are closer to the real thing than the
abstract sets of rules we have discussed, All of them, however, are behaviorally
equivalent to a Turing machine or less.
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(3) - It is known as we have seen, which functions are Turing computable and
also which ones are finite transducer computable. Ritchie?3 and many others have
considered more or less reasomable hierarchies of (primitive) recursive functions
corresponding to which one "in principle" can associate, crudely, transducers of
various powers, Hartmanis and Stearns?%4 have discussed complexity of computations on
Turing machines with respect to such parameters as the time it takes to compute. All
of these approaches to the problem of ordering computations according to complexity
in some sense seem doomed to eternal commerce with Turing machines., It seems to me
that a fruitful, but certainly difficult, point of view is the following. Starting
with finite sets, any function from one to the other can be realized by a finite
transducer, Now let us consider infinite regular sets. There is a non-denumerable
set of functions from one to the other, and of these the length-preserving, prefix-
closed ones can be realized by finite transducers. Which ones can be realized by
machines of greater powers? Similarly for transformation of context-free languages
to regular sets, or the reverse, and so on.

It seems to me that such studies might provide insight into non-numeric compu-
tation; i.e., symbol manipulation or information processing. There is no theory of
such computation at all except in the sense of associating the non-numeric to the
numeric via Godel numbering (DavislB). But such association does not tell us, for
example, a thin% about non-numeric computational equivalence. There are non-erasing
machines (Wang6 ) which can compute any partial recursive function; but they obvious-
ly cannot perform any computation calling for clean, readable tape, If w is inscrib-
ed on tape with blank elsewhere, for example, no such machine can produce wl with
blank elsewhere, where wl is w written in reverse. It follows that a theory of nu-
merical computation is not adequate for the non-numeric -- which is obvious but needs
to be said anyhow,

I claim nothing is known about most algebraic translations one would like to
make automatically in the sense that we know; e.g., what kind of transducer short of
a Turing machine it takes to transform a polynomial into nested form for economical
computation, or "amalytically" to integrate elementary functions. In this area_pro-
grammers have designed special methods for symbolic calculation (e.g., McCarthy3 )
but this is not the same as a theory in the sense of the study of automata, (which
may merely hint at a severe limitation of that subject, as it now stands).

(4) - A socially and philosophically important problem concerns the relative
powers of human beings and computers for selected cognitive tasks. This is obviously
no joke, since not only many clerks but also computer coders are either out of jobs,
or have had to learn systems programming, or have become administrators. It has been
suggested that Godel's theorem (which can not be described in any way but a mislead-
ing way in a short space) shows there are truths human beings can discover which are
not open to computers (Nagel and Neumanﬁ6, Lucas35). In my opinion Godel's theorem
shows no such thing, and the field is wide open.

In strict terms, these task problems call for adequate automaton models of
minds and machines and an understanding of the functions realizable by each model,
A further question, going beyond the '"selected tasks,'" is whether non-formal, non-
deductive activities we attribute to human beings are achievable by computers.
Such a question seems to transcend automata theory as such.

(5) - A problem perhaps of more concern to tQﬁﬁ}ogician than to the computer
scientist concerns the adequacy of Church's thesis ~--. If either there are re-
cursive functions which are intuitively not effectively calculable or there are
effectively calculable functions which are not recursive, then either the thesis or
its converse is false,

PROCEEDINGS o 159



In the computer field one would like to model actual computers, as in problem
(2) as closely as possible, If an actual computer is only a 1.b, transducer Fhen one
might argue that the converse of the thesis is false, From this practical point of
view, many problems of interest to computer science heretofore believed effectively
solvable (and recursively solvable) are in fact not. It is entirely possible that
one could get into serious trouble trying to program a Turing computable algoritﬁm
on a mere computer, Certainly, in every case a sign of trouble would be exhaustion
of storage, but there is no way of predicting such an outcome in advance. Clearly
this kind of problem is intimately connected with the hierarchy and complexity
-questions mentioned in (3).

On the other hand, there seems to be some evidence that the thesis is false
(Heyting26). From our viewpoint here any such evidence would also be evidence that
our sufficiency condition for automata (considered now as a full definition) is too
restrictive, If we include probabilistic machines, machines which modify their own
defining rules, and the like, we may still retain the intuitive notion of a meghanic-
al procedure while increasing powers of computation beyond the recursive functionms,

A related problem concerns computer models for computability of real functions
(or approximation thereto) or for analog computation. Almost nothing has bezg done
along these lines; however, the interested reader might want to check Myhill or
Montague41. The work of Zadeh and DeSoer® , appears to suggest parallels between
systemic structures of continuous control (i.e., analog) devices and automata; how-
ever, the same can not be said about behaviors,
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*So named after A. M. Turing®. For a description of
Turing Machines see Davis!?.

** This is known as Church’s Thesis; see Davis!s,

*** Also customarily called a finite automaton. We have

departed from this usage to preserve ‘automaton” as a
generic term.

**** Q x S is_the set of all ordered pairs (q, s) such that
9 ¢ Qand s ¢ S.

***4* It is customary to define a function on a set A with
range B as the set of ordered pairs (a, b) ¢ A x B such
that no two distinct pairs have the same left component.
This insures single-valuedness.

+ He refers to the mapping represented by the composed
machines as a “transduction,” which is of course a more
specialized usage of the word than ours.

++ Here again we must assume knowledge of the ele-
mentary facts.

. =+ Church’s thesis (section 1 above) says that all effec-
tively calculable (i.e., algorithmic) functions of non-nega-
tive integers are recursive.
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