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Abstract

Cryptocurrencies are well-known for their high volatility and unpre-
dictability, posing a challenge for forecasting using traditional meth-
ods. To address this issue, we explore variations of the N-BEATS
deep learning (DL) architecture by adding convolutional network lay-
ers, Transformer mechanisms, and the Mish activation function, and
propose a novel approach for forecasting cryptocurrency portfolios.
Our comprehensive evaluation demonstrates that our model variations
outperform other DL and traditional forecasting methods in numer-
ous evaluation metrics, making them powerful tools for predicting
cryptocurrency prices and portfolios in the rapidly-evolving cryptocur-
rency market. Furthermore, our newly proposed N-BEATS Perceiver
model, a Transformer-based N-BEATS variation, exhibits a robust
risk profile with less downside compared to other models and per-
forms exceptionally well when evaluated using the TOPSIS method
across a wide range of portfolio evaluation parameters. These results
underscore the potential of our approach and specifically highlight the
N-BEATS Perceiver’s potential for selecting portfolios and forecasting
cryptocurrency prices, offering valuable insights into the development
of more accurate and reliable models for cryptocurrency forecasting.

Keywords: N-BEATS, Perceiver, Transformers, Deep Learning, Forecasting,
Cryptocurrency
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1 Introduction

Cryptocurrencies have earned a reputation for their extreme volatility and
dramatic price movements, which are driven by a number of variables includ-
ing trading volume, market beta, and volatility (Khedr et al., 2021). Due to
the complexity of the matter, it is challenging to develop accurate price pre-
diction models for cryptocurrencies, despite their increasing significance in the
financial world. In recent years, both machine learning (ML) and deep learn-
ing (DL) communities have paid substantial attention to the application of
ML algorithms for cryptocurrency price predictions (Fang et al., 2022). In
this quickly expanding market, these ML-based approaches have increasingly
demonstrated their capacity to enhance the precision of predictions, promote
better portfolio decisions, and enable more effective market risk management.

In this paper, we describe novel methods for forecasting cryptocurrency
prices based on the N-BEATS (Oreshkin, Carpov, Chapados, & Bengio, 2020)
architecture. We investigate variations of the N-BEATS model, such as the
addition of Convolutional Neural Networks (CNNs) and Transformer (Vaswani
et al., 2017) mechanisms to extract spatial features and weight input features,
as well as the application of the Mish (Misra, 2020) activation function. Next,
we explore the use of N-BEATS for portfolio-level univariate forecasting. To
evaluate the effectiveness of our proposed approach, we conduct three experi-
ments on historical cryptocurrency price data. Two of these experiments focus
on univariate time series point forecasting, while the third centers on a portfo-
lio selection task. We compare the outcomes of our proposed approaches with
those of existing ML and conventional statistical techniques. The purpose of
these experiments is to assess the accuracy and robustness of various forecast-
ing techniques for portfolio selection, including the ability to choose portfolios
with the highest forecasted returns.

Our research provides strong evidence that the N-BEATS architecture,
when combined with convolutional transformations, attention layers, and the
Mish activation function, is a powerful approach for forecasting portfolio-
level cryptocurrency prices. In evaluating a diverse set of forecasting methods,
our newly proposed N-BEATS Perceiver model, a version of N-BEATS that
leverages a Transformer architecture, emerged as the top performer against
other variations. The N-BEATS Perceiver model showed exceptional results
across all assessment criteria, exhibited a superior error distribution, and had
superior mean and median error performance in comparison to other mod-
els and N-BEATS variations. In addition, the N-BEATS Perceiver exhibited
remarkable scalability properties as inputs increased. Lastly, as a portfolio
selection approach, N-BEATS Perceiver was discovered to have a robust risk
profile, with less downside relative to other models, and performed remark-
ably well when evaluated using the TOPSIS (Uzun, Taiwo, Syidanova, &
Uzun Ozsahin, 2021) method. Consequently, our research offers a highly
promising method for forecasting cryptocurrency prices and portfolios in the
volatile and rapidly-evolving cryptocurrency market.
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In the following sections, we provide a detailed description of our research
on forecasting cryptocurrency portfolios using variations of the N-BEATS
architecture. The literature review in Section 2 covers recent advancements in
DL for time series forecasting, including improvements to the N-BEATS archi-
tecture, and evaluates the effectiveness of diffeerent approaches in the domain
of cryptocurrency forecasting. In Section 3, we describe our proposed archi-
tecture, the N-BEATS Perceiver, as well as competing architectures based on
convolutional network layers, Transformer mechanisms, and the Mish activa-
tion function. We also present our preferred evaluation metrics, and introduce
an alternative method for interpreting DL experiments through SHAP val-
ues. In Section 4, we detail our experimental setup, including data collection
and preprocessing, and three different experiments aimed at evaluating vari-
ous forecasting techniques for portfolio selection. Section 5 presents the results
of our experiments, including main forecasting results, subsample forecasting
results, and portfolio selection results. In Section 6, we provide a comprehen-
sive discussion of our findings and implications for the use of the N-BEATS
Perceiver model in the context of cryptocurrency portfolio forecasting and
selection. Finally, Section 7 concludes our work by summarizing our con-
tributions, implications for future research, and practical relevance of our
findings.

2 Literature Review

The goal of this research is to improve the performance and versatility of the
N-BEATS architecture for time series forecasting. To achieve this, we provide
a comprehensive overview of the existing literature in the areas of DL for time
series forecasting, improving DL architectures, and in cryptocurrency price
forecasting. We focus on the most relevant studies that are directly related
to this research, highlighting their key contributions and how they inform our
proposed approach.

2.1 Deep Learning for Time Series Forecasting

The use of ML techniques for time series forecasting has gained considerable
attention in recent years due to their potential to improve the accuracy of
predictions and enable effective decision-making. In particular, the N-BEATS
(Oreshkin et al., 2020) architecture has been proposed as a novel neural net-
work architecture for univariate time series point forecasting. The architecture
is based on backward and forward residual links and a stack of fully-connected
layers, and is designed to be interpretable and applicable to a wide range of
target domains. The authors of the paper have tested the model on several
datasets, including the M3, M4, and TOURISM competition datasets, and
achieved state-of-the-art performance.

More recently, the N-HiTS model (Challu et al., 2022) has been pro-
posed as a state-of-the-art approach for time series forecasting that builds
upon the N-BEATS model. This architecture includes a MaxPool layer at
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the block level, which enables the model to learn short-term and long-term
effects in the time series and combine these forecasts to make more accu-
rate predictions. Additionally, the authors have added residual connections
between blocks in each stack and modified the architecture of the blocks to
further improve performance. Through experiments on large-scale datasets,
the authors have demonstrated that N-HiTS provides an average accuracy
improvement of nearly 20% over the latest Transformer architectures, while
also reducing computation time by an order of magnitude.

Overall, the use of DL techniques for time series forecasting has demon-
strated impressive performance, with the N-BEATS and N-HiTS architectures
providing state-of-the-art results. The interpretability and applicability of
these architectures make them particularly attractive for decision-making in
various domains, such as finance, where accurate predictions are essential.

2.2 Improving the N-BEATS Architecture for Time

Series Forecasting

N-BEATS is a powerful and effective architecture for time series forecasting,
but it has some limitations that could be addressed by modifying its architec-
ture. In this paper, we propose several modifications to the N-BEATS model
that aim to improve its performance and make it more versatile.

Previous works have attempted to improve the N-BEATS architecture
for time series forecasting, such as N-BEATS-RNN (Sbrana, Debiaso Rossi,
& Coelho Naldi, 2020), which added a Recurrent Neural Network (RNN)
architecture to the N-BEATS model and used a Neural Architecture Search
(NAS) to optimize the RNN’s architecture for improved performance. Recent
advances in RNNs have the potential to capture long-term dependencies, but
their complexity and computational cost have caused them to fall out of favor
in many DL tasks. Moreover, NAS may be a way to optimize RNN architec-
ture, but the search is highly computationally expensive. Therefore, in this
research, we do not further explore a hybridization of N-BEATS with RNNs
but instead focus on alternative architectures that are more computationally
efficient.

Instead, we propose three specific modifications to the N-BEATS archi-
tecture. The first is to add a convolutional layer on top of each stack in the
N-BEATS model. Convolutional layers are a key component of convolutional
neural networks (CNNs) (LeCun & Bengio, 1998) and are widely used in image
and video processing tasks. A convolutional layer applies a set of filters to an
input image, each of which is designed to detect a specific spatial pattern. This
allows the CNN to extract features from the input data that are robust to small
translations and deformations. In the context of N-BEATS, a convolutional
layer on top of each stack could help the model to better capture local patterns
in the input time series data, which could improve its forecasting performance.

The second modification we propose is to add a Transformer Encoder on
top of each stack in the N-BEATS model. Attention mechanisms and the Trans-
former have been widely used in natural language processing tasks, where they
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allow a model to integrate information from different sources in a flexible and
efficient manner. In the context of N-BEATS, a Transformer Encoder could
be used to integrate information from distant points of the time series which
could improve the model’s forecasting performance. Additionally, the use of
attention mechanisms could help to reduce the computational complexity of
the N-BEATS model, allowing it to scale to larger inputs and outputs.

We finally propose incorporating a Perceiver Encoder into N-BEATS to
improve the model’s ability to handle inputs of various modalities and sizes.
The Perceiver (Jaegle, Borgeaud, et al., 2021; Jaegle, Gimeno, et al., 2021) is
based on the Transformer, and uses an asymmetric attention mechanism to
iteratively distill inputs into a tight latent bottleneck, allowing it to scale to
handle large inputs and outperform specialized models on classification tasks
across various modalities. If only the encoder portion of a Perceiver model is
used, the model would still be able to map inputs of a wide range of modalities
to a fixed-size latent space, but it would not be able to generate outputs of
various sizes and semantics. By using a Perceiver Encoder on top of each
stack of an N-BEATS model, it could improve N-BEATS’ ability to compactly
encode inputs, which could help to reduce the computational complexity of
the model, allowing it to scale to larger inputs and outputs.

The modifications we have proposed to the N-BEATS architecture could
help to improve its performance and make it more versatile. In addition, these
modifications could help to reduce the computational complexity of the model,
allowing it to scale to larger inputs and outputs. We hypothesize that these
modifications will be beneficial in improving the performance and scalability
of N-BEATS for time series forecasting tasks.

2.3 Cryptocurrency Time Series Forecasting

To contextualize our research in the domain of cryptocurrency time series fore-
casting, it is essential to understand the current state of the field. Fang et
al. (2022) have conducted a comprehensive survey of cryptocurrency trading
research, covering 146 papers on various aspects of cryptocurrency, includ-
ing trading systems, technical analysis, ML technology, portfolio construction,
market condition research, and more. In their exhaustive examination of the
literature on cryptocurrency trading, Fang et al. (2022) identify ML and DL
technologies as the most popular researched topics. The authors provide an
overview of various ML algorithms, including classification, clustering, regres-
sion, and reinforcement learning, and note that DL algorithms, particularly
CNNs, RNNs, Gated Recurrent Units (GRU), Multi-Layer Perceptron (MLP),
and Long-Short Term Memory (LSTM), are the most widely adopted tech-
nologies in cryptocurrency trading. Numerous studies covered by the survey
have investigated the use of ML and DL models in cryptocurrency trading,
demonstrating that they can perform some level of modeling and accuracy
for financial time series, including cryptocurrencies, and, more importantly,
that they can improve trading performance relative to conventional technical
trading strategies.
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Another recent survey paper (Khedr et al., 2021) provides a thorough
analysis of classical statistical models and ML methods for predicting cryp-
tocurrency prices for research conducted between 2010 and 2020. The paper
highlights the dominance of artificial neural networks (ANNs) and Bayesian
regression in predicting Bitcoin price fluctuations due to their ability to
learn the nonlinear relationship between input and output variables in
cryptocurrency datasets. The survey emphasizes the predictive potential of
DL approaches, particularly LSTM models, for cryptocurrency pricing. The
authors argue that because LSTMs incorporate memory states, they are more
effective at solving time-series prediction problems and recognizing long-term
relationships by deleting unnecessary information from the network. The paper
recommends future research on the use of LSTM models, such as CNN-LSTMs
and bidirectional LSTMs (Bi-LSTMs). In addition to highlighting the limita-
tions of conventional methodologies, the survey article advises investigating
ensemble techniques and employing meta-optimization to ML techniques to
increase accuracy.

In a more recent comprehensive study not covered by the surveys, Kang,
Lee, and Lim (2022), propose a 1-Conv-CNN stacked over a 2-layers GRU
model for the prediction of Bitcoin, Ethereum, and Ripple prices. The model
is designed to smooth the data before passing it to the 2-layered GRU, hence
improving its performance. The authors also compared the performance of
their proposed model with other popular models for cryptocurrency price
prediction, including Simple RNNs, LSTMs, ARIMA, XGBoost, Facebook
Prophet, and Bi-LSTMs. The results showed that models of RNN-nature and
the ARIMA model outperformed other models. However, the authors found
no statistically significant difference between their proposed model modifica-
tion and a simple 2-layered GRU, a Simple RNN, ARIMA, or a CNN-LSTM
model. Notably, these models performed slightly better than a 2-layered LSTM
and substantially better than popular models such as XGBoost, Prophet, and
Bi-LSTMs. The findings highlight the effectiveness of RNN-based models and
the ARIMA model for cryptocurrency time series forecasting, while also sug-
gesting that a simple 2-layered GRU, or other analogous models, can achieve
competitive performance in this domain.

In another recent research, Patra and Mohanty (2022) propose a three-
stage GRU model to predict the prices of three cryptocurrencies (Bitcoin,
Ethereum, and Dogecoin) over a 21-day forecast period. The data for the
study was gathered from the Quandl marketplace, and many pre-processing
techniques, including min-max normalization and the removal of missing time-
series data, were applied to it. The authors report that the suggested model
outperformed simple LSTM and GRU models in terms of Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). The authors suggest that a hybrid
model may be necessary to overcome the constraints of the proposed model
for longer forecasting windows of six months to one year.



N-BEATS Perceiver: A Novel Appr. for Robust Cryptoc. Port. Forecast. 7

Finally, Tripathi and Sharma (2022) present a DL framework for Bitcoin
price forecasting using both technical and fundamental indicators. The frame-
work was evaluated at four distinct time intervals (1, 3, 5, and 7 days in
advance), and the results were compared to those of previous benchmark stud-
ies. The authors employed three input types and four models, including ANNs,
LSTM, Bi-LSTM, and CNN-LSTM. The model with the best performance was
determined to be the ANN which leveraged technical indicators. The research
findings show a significant improvement in Bitcoin price forecasting when using
technical indicators instead of fundamental indicators. The significance of tech-
nical analysis on the Bitcoin market is highlighted by these results, which have
ramifications for portfolio managers and algorithmic traders.

In summary, the literature on cryptocurrency time series forecasting high-
lights the dominance of ML and DL algorithms in predicting cryptocurrency
prices. While previous studies have demonstrated the effectiveness of several
models in cryptocurrency forecasting, there is still a need to investigate new
models and strategies to increase the accuracy and dependability of these
forecasts. Thus, the proposed modifications to the N-BEATS architecture in
this study offer promising means of improving the precision and resilience of
cryptocurrency price forecasting.

3 Proposed Architecture: N-BEATS Perceiver

In this section, we present a detailed description of the novel architecture, N-
BEATS Perceiver, which we propose for cryptocurrency price forecasting. We
describe the design and development of the architecture, including the proce-
dures and techniques employed. To evaluate the effectiveness of the N-BEATS
Perceiver, we conducted experiments using historical cryptocurrency price
data, and compare its performance against existing methods. The subsequent
subsections provide detailed accounts of the data used, N-BEATS architec-
tures tested, heuristic optimization algorithms employed, and the experimental
setup.

3.1 Transforming the N-BEATS Architecture

N-BEATS is a DL model for univariate time-series forecasting. It is composed
of a fully connected network and a basis layer. The fully connected network
predicts expansion coefficients both forward (forecast) and backward (back-
cast). The basis layer is composed of blocks which are organized into stacks
using doubly residual stacking principle. The forecasts are then aggregated in a
hierarchical fashion, forming a deep neural network with interpretable outputs.

This architecture has several advantages. Firstly, it is a pure DL approach,
meaning that it does not rely on time-series specific feature engineering or
input scaling. This makes it a flexible and adaptable approach which can
be applied to a wide range of forecasting problems. Secondly, it is designed
to be interpretable, allowing practitioners to understand and explain the
model’s outputs in terms of traditional decomposition techniques, such as the
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”seasonality-trend-level” approach. Thirdly, the architecture is composed of
basic building blocks, which can be easily customized and extended to suit spe-
cific needs. Lastly, the model uses ensembles to improve accuracy, allowing it
to capture multiple scales of the data and learn more complex representations.

We explored multiple variations of the N-BEATS architecture in our exper-
iments, including the use of convolutional network layers and Transformer
mechanisms, as well as the Mish activation function. One advantage of using
the Mish activation function instead of the ReLU activation function in N-
BEATS is that Mish has a smoother gradient. This characteristic can improve
the model’s performance by allowing gradient descent to converge to the opti-
mal solution more quickly and accurately. Another advantage of Mish is that
it has a bounded output, meaning that the output of the activation func-
tion will always be contained within a specific range. This could prevent the
model’s output from becoming excessively large or small, which could lead to
numerical instability and degradation in performance. In contrast, the ReLU
activation function has a non-smooth gradient and can produce unbounded
outputs, which can make the optimization process more difficult and can reduce
the performance of the model. To use Mish as the activation function in N-
BEATS, we can simply replace all instances of the ReLU function with the
Mish function.

This will replace the ReLU activation function with the Mish activation
function, and can improve the performance of the N-BEATS model. It is impor-
tant to note that this may not always be the case, and the performance of the
model will depend on the specific characteristics of the time series data and
the model architecture. It is best to conduct experiments and compare the per-
formance of the N-BEATS model using different activation functions in order
to determine the best activation function for your specific case.

In addition to the Mish activation function, we also explored adding CNNs
or Attention Encoders, specifically the Transformer and Perceiver Encoders,
to the N-BEATS architecture in order to improve the accuracy of the model.
As shown in Figure 1, which depicts our N-BEATS Perceiver model, we have
implemented these modifications by adding layers between the input and the 4-
layer MLP block in order to form a new block that includes an additional step
of input pre-processing. In the case of the Transformer and Perceiver Encoders,
the 4-layer MLP blocks act as a decoder of the information compressed by
the encoders. We have implemented the native Transformer Encoder from the
Pytorch library, the Pytorch implementation of the Perceiver Encoder from the
Hugging Face library (Wolf et al., 2020), and the native Pytorch 1-dimensional
CNN layer with a stride of three.

We hypothesize that the incorporation of CNNs into the N-BEATS archi-
tecture will improve its performance by allowing it to capture spatially local
information, thereby allowing the model to learn more local patterns in the
data. Additionally, we anticipate that the integration of attention encoders will
enable the model to better focus on important parts of the data, and to learn
more complex relationships between features. Through these modifications, we
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Fig. 1 Proposed Architecture for N-BEATS Perceiver Model. The figure depicts
our proposed architecture for the N-BEATS Perceiver model, a deep neural network designed
for time series forecasting. The network is composed of 20 N-BEATS blocks, each con-
taining a Perceiver Encoder, Perceiver Embeddings, a 4-Layer MLP, a Linear layer, and a
Mish activation function. The Perceiver Encoder layer is responsible for extracting features
from the input time series, while the Perceiver Embeddings layer learns embeddings for the
extracted features. The 4-Layer MLP acts as a decoder layer responsible for generating the
Backcast and the Forecast, and the Linear layer applies a linear transformation to the input
before the Mish activation function’s final transformation of the outputs. The model contains
251,455,360 trainable parameters in total. All backcasts are transferred to the subsequent
block, and all forecasts are added to produce the model’s final forecast.

aim to enhance the versatility and performance of the N-BEATS model. We
also aim to assess the trade-offs of computational complexity, by testing each
model’s scalability to different input sizes.

3.2 Interpreting Deep Learning Experiments with Shap

Values

In this paper, we analyze the performance of the N-BEATS model with differ-
ent combinations of architectures, loss functions, and activation functions. To
interpret these results, we use Shapley Additive exPlanations (Shap Values)
(Lundberg & Lee, 2017) to understand the individual contributions of each
feature or variation to the model’s predictions.
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Shap Values are a method for interpreting and explaining the output of ML
models by decomposing the model’s predictions into the contributions of each
individual feature. Decision trees are particularly useful for this task, as they
can compute Shap Values by associating each split in the tree with a particular
feature and computing the Shap Value for that feature as the difference in the
prediction made by the tree before and after the split.

Using the decision tree model LightGBM (Ke et al., 2017), we trained a
model with the different variations as features and required it to predict the
expected forecasting error of the model. We were then able to compute Shap
Values to gauge the contribution of each feature to the error. This allowed
us to determine the unique contributions of each variation to the model’s
predictions, offering significant insight into which variations are most beneficial
for a particular task. For instance, if the Shap Value for a particular loss
function is large, it indicates that this loss function is a significant predictor
of model performance. This could provide meaningful information into which
variants are most effective for a given task and better guide our decisions when
developing DL models.

3.2.1 Evaluation Metrics

It is essential, while evaluating the effectiveness of forecasting models, to
employ metrics that are suited for the particular characteristics of the time
series data and the objectives of the research, which are, in this case, the
evaluation of a models ability to perform univariate point forecasting in dis-
crete time. As a result, we have chosen, for our study, three of the most
often employed loss functions for model training in forecasting: Mean Abso-
lute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error
(sMAPE), and Mean Absolute Scaled Error (MASE).

MAPE measures the average error of a model as a percentage of the actual
values. It is calculated as:

MAPE =
100

n

n∑

i=1

(Actuali − Forecasti)

Actuali
(1)

where n is the number of forecasts, Actuali is the actual value of the i-
th observation and Forecasti is the predicted value of the i-th observation.
However, MAPE is not defined for cases where the actual value is zero, as
it involves dividing by the absolute value of the actual value. This can be a
problem if there are many zeros in the data, as MAPE will be undefined for
cases in which a portfolio goes to zero.

sMAPE is similar to MAPE, but it is symmetric, meaning that it doesn’t
discriminate between positive and negative errors. It is calculated as:

sMAPE =
100

n

n∑

i=1

(Actuali − Forecasti)

(Actuali + Forecasti)
(2)
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sMAPE is defined for all cases, even when the actual value is zero. However,
sMAPE is generally considered to be more sensitive to outliers, as it involves
dividing by the sum of the absolute values of the actual and forecast values.

To overcome this limitation, we also include the Mean Absolute Scaled
Error (MASE) as a complementary metric. MASE is a scale-independent
measure of forecast accuracy, and is calculated as:

MASE =
1

n

n∑

i=1

(Actuali − Forecasti)

MeanAbsoluteErrorofNaiveForecast
(3)

where MeanAbsoluteErrorofNaiveForecast is calculated as:

MeanAbsoluteErrorofNaiveForecast =
1

n

n∑

i=1

(Actuali −Actuali−1) (4)

MASE is useful for comparing different forecasting models in a relative
sense, as it compares the forecast error to the errors that would be made by
a naive forecast. It is a relative measure of forecast error, which means it is
independent of the scale of the series, and it makes it particularly useful for
comparing models when the data has different scales or units of measurement.
Overall, using MASE as a metric allows us to accurately and intuitively com-
pare the performance of different forecasting models in our study in a relative
sense, and makes it particularly useful for comparing models in cases where
the series has a trend or seasonal component.

For model performance comparison, in addition to these three metrics, we
also use Root Mean Squared Scaled Error (RMSSE), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE). While these metrics are not
used as loss functions during the model training process, they provide valuable
information for comparing the performance of different forecasting models.
RMSSE, for instance, is particularly useful for comparing models when the
series has a trend or seasonal component, while MAE and RMSE are widely
used metrics for evaluating the accuracy of forecasts and provide a clear
measure of the magnitude of the errors.

However, given the importance of accurately and intuitively comparing the
performance of different forecasting models in our study, we have chosen to
use sMAPE as our primary metric for evaluating the performance of models
in much of the analysis of the results. This is because sMAPE is symmetric,
easy to interpret, and defined for all cases, even when the actual value is zero.
Additionally, the use of sMAPE allows us to understand the overall accuracy of
the forecasting models, regardless of whether the errors are positive or negative.

4 Experimental Setup

In this study, we evaluate the performance of several time series forecasting
models on hourly cryptocurrency portfolios with the objective of accurately
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predicting their future values. To achieve this goal, we apply the problem of
univariate point forecasting in discrete time to the specific case of univariate
portfolio time series data of cryptocurrencies. In this section, we define the
forecasting problem, describe the data collection and preprocessing methods
used, and present the experimental designs implemented in our study.

4.1 Problem Definition

In our study, we focus on the problem of univariate point forecasting in discrete
time for hourly cryptocurrency portfolios. The objective is to predict the future
returns of a portfolio of cryptocurrencies given a historical series of length-T
of hourly returns [r1, r2, ..., rT ]. Specifically, we seek to forecast the vector of
future returns rT+1:T+H , where H is the forecast horizon. To make the task
more manageable, we use a lookback window of length t = T as input to the
forecasting models, denoted as xt = [rT−t+1, ..., rT ]. It’s important to note
that in this context, the observed series history [r1, ..., rT ] is indexed at 1, and
the future returns rT+1:T+H are defined as a ratio of the future portfolio value
to the indexed historical value of 1. This means that both past and future
returns are expressed as a percentage change relative to the indexed value of 1.
Although this problem shares similarities with the univariate point forecasting
problem described in Oreshkin et al. (2020), our study focuses exclusively on
portfolio time series data of cryptocurrencies with indexed values.

A sample time series demonstrating the problem is shown in Figure 2. The
series fluctuates randomly until it reaches rt = 0, where it has a locked value
of 1. The task is to forecast the future returns relative to this indexed value
of 1 over the next 48 hours.

4.2 Data Collection and Pre-processing

The dataset used in our experiments consists of historical cryptocurrency price
data from Binance, the largest cryptocurrency exchange platform. We acquired
the data through the Binance API (Binance, 2022) in minute format. The data
was preprocessed so that, for each cryptocurrency, we calculated the volume-
weighted average price (VWAP) using a 1-minute time series as input and
outputting the VWAP hourly. The initial price, before the calculation of the
volume, was calculated as the average of the Open, High, Low, and Close prices
for each 1-minute time step. The VWAP at the hourly level is calculated as
follows:

VWAPi =

∑60
j=1(

openj+highj+lowj+closej
4 · volumej)

∑60
j=1 volumej

(5)

where openj , highj , lowj , closej , and volumej are the minute-level prices
of Open, High, Low, Close, and volume, respectively, for the j-th minute within
the i-th hour. This formula calculates the hourly VWAP by first taking the
average of the minute-level prices of Open, High, Low, and Close for each
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Fig. 2 Sample time series for forecasting. This figure demonstrates a sample time
series of hourly cryptocurrency portfolio returns from the test period that ends at the indexed
value of 1. The task is to forecast future returns relative to this indexed value of 1 over the
next H = 48 hours, using a lookback window of 7H (equivalent to 336 hours). The horizontal
and vertical dashed lines represent the point at which the value of the portfolio is indexed
to one, which is the last observation.

minute within the hour, and then multiplying this average by the correspond-
ing minute-level volume. The resulting products are summed over all minutes
within the hour, and then divided by the total volume for the hour. This allows
us to obtain a fair representation of the value of the cryptocurrency over time,
taking into account both the price and volume of transactions.

The volume and prices were obtained from the volume of trade and prices in
the main base cryptocurrencies, namely, USDT , USD, USDC, BUSD, BTC,
ETH, BNB, which were all converted to USD. This was done in order to
ensure that the VWAP accurately reflects the fair value of the cryptocurrencies,
regardless of the denominations they were traded in.

To generate a large number of portfolio return time series, we developed
a selection algorithm that ensured the portfolios consisted of assets that were
traded throughout the entire life of the portfolio. This was done to avoid any
scenarios of impossible portfolios, such as cases where certain currencies were
de-listed. The resulting portfolio series were then utilized as input for both the
time series forecasting and portfolio optimization experiments.

The training and test datasets were generated from historical data from the
cryptocurrency exchange Binance. Specifically, we utilized portfolios beginning
with Binance’s earliest recorded datapoints on July 14, 2017, and continuing
through June 30, 2022, to train and assess the performance of our models.
All test data, on the other hand, was comprised of portfolios from July 1,
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2022, through October 31, 2022, which we used to evaluate our models’ gen-
eralization capabilities and performance on unseen data. Table 1 provides an
overview of the specific periods and assets used in the analysis. By employing
this temporal split and utilizing a diverse set of assets, we aimed to mitigate
the risks of overfitting our models to the training data and to ensure their gen-
eralization ability to new data. This technique is a well-established practice
in ML, particularly in financial applications where overfitting is a well-known
issue (Lopez de Prado, 2018).

Table 1 Periods and Assets used in the study

Data Period Assets Source

Train set Jul 14, 2017 - Jun 30, 2022 500 unique tickers Binance historical data
Test set Jul 1, 2022 - Oct 31, 2022 387 unique tickers Binance historical data

In both training and testing, all models were tasked with predicting the
next 48 hours of the portfolio, called H. Different models would look at differ-
ent lookback horizons ranging from 2H to 7H, that is, looking on 96 hours of
history up to 336 hours of history.

By using portfolios of real-world assets, we aimed to evaluate the perfor-
mance of our methods in a more realistic setting and better understand their
potential applications in practice. The results of this analysis are depicted in
Figure 3, which presents a graphical representation of the distribution of values
and returns for a sample of portfolios selected specifically for testing between
July and October 2022.

Lastly, we would like to note that the train and test datasets used in
this research have been published and made available in Sbrana (2023a) for
reproducibility purposes.

4.3 Description of Experiments

We devised a series of experiments to evaluate the effectiveness of various
forecasting techniques in the context of cryptocurrency portfolio selection.
Our experiments were designed to assess the models’ ability to produce accu-
rate and robust forecasts for a wide range of portfolio possibilities, as well
as their ability to select portfolios with the highest forecasted returns. We
performed three experiments, which are described below: the Main Forecast-
ing experiment, the Subsample Forecasting experiment, and the Evaluation of
Forecasting Models through Portfolio Selection experiment.

4.3.1 Main Forecasting Experiment

In this experiment, we aim to forecast the returns of the portfolio over the
next 48 hours, given the index value of 1 at hour zero. To provide benchmark
comparisons for our DL models, we selected several methods from the Darts
library (Herzen et al., 2022). These methods include four varieties of Naive
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Fig. 3 Analyzing the Performance of the Test Portfolios and their Returns

Distribution. The left chart illustrates the distribution of portfolio values for over 4,160,000
sampled test portfolios, depicted by a fan chart with percentiles at 45, 65, 80, 90, and 99.
These portfolios were utilized to assess the effectiveness of our models in forecasting the
portfolio’s returns over the following 48 hours, with the value at hour zero serving as a
reference point indexed at 1 (or 100%). The models are expected to predict the fluctuation
of the portfolio’s value with respect to hour zero. The right chart displays the distribution
of returns for the same test portfolios, with the mean return of 0.005 and median return of
0.003, represented by the red and green dotted lines.

models, the Theta method, Croston’s method, and a Fast Fourier Transform
(FFT) model. These models were selected for benchmark comparison because
they could provide a reasonable runtime response for the 4,160,000 portfolio
forecasts that comprised the test set of our main experiment.

All other methods were DL models that we implemented ourselves. To
further improve the performance of these models, we trained multiple versions
of each model. Specifically, we trained 54 models per DL model, comprising of
6 types of lookbacks (2H through 7H), three types of loss functions (sMAPE,
MAPE and MASE), and three versions of each of those combinations. This
approach is similar to the one used in the original N-BEATS paper (Oreshkin
et al., 2020), which repeated each of those experiments 10 times instead of
three times while training the N-BEATS models. The reason for repeating the
experiment multiple times is to avoid having “bad luck” from initialization
and comparing noisy or unfortunate versions of each model, which would be
unfair to the approach.

In recent years, researchers have proposed various optimization methods for
training neural networks, recognizing the significant impact that such methods
can have on performance. In our study, instead of the traditional Adam opti-
mizer (Kingma & Ba, 2015), we adopt the Ranger optimizer (Wright, 2022),
a state-of-the-art approach that combines two promising techniques: RAdam
(Liu et al., 2020) and Lookahead (Zhang, Lucas, Ba, & Hinton, 2019). The
RAdam approach incorporates a gradual warming up period to reduce the
fluctuation in momentum during the initial training stages. Meanwhile, the
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Lookahead technique involves searching for the best weight updates and then
adjusting the current weights in that direction. This method aims to stabi-
lize training by cleverly exploring the loss surfaces of neural networks. Both
RAdam and Lookahead aim to decrease training variability and have been
shown to improve convergence on various tasks.

In addition, we also implemented a “flat plus cosine” learning rate schedule,
as shown in Figure 4. This strategy involves maintaining a constant learning
rate for 70% of the epochs and gradually decreasing to a local minimum in the
remaining 30%. The chosen starting rate for this study was 0.001.

Fig. 4 Flat plus cosine learning rate schedule. The optimizer begins with a learning
rate of 0.001 and maintains this pace for 21,000 iterations, gradually decreasing the rate
until it reaches zero for the remaining iterations.

Table 2 shows the training parameters for the different DL models. The
models were trained on randomly sampled portfolios at runtime from the
training window between July 2017 and June 2022. Each model was assigned
different epochs of training, which were determined by looking at train and val-
idation curves within the training windows. The table illustrates an overview
of the training parameters for each DL model, including the chosen number
of epochs, batch size, number of training samples required for convergence,
as well as the min-max range of training time, number of parameters, and
memory allocation required for each model.

Most models were trained on 31 million randomly sampled portfolios with
a batch size of 1,024. However, N-BEATS Transformer required half of the
epochs and training samples to stop learning, and N-BEATS Perceiver required
only 5,500 epochs of batches of 32, that is, 176,000 samples to stop learning.
Additionally, N-BEATS Perceiver is a considerably larger model with close to
1GB of size, while models like N-HiTS, 1-Layer GRU and 1-Layer LSTM take
up under 10MB of size. The complete data for the training parameters of the
different DL models are presented in Table 2.
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Table 2 Training Parameters and Characteristics for the DL models evaluated in this
study. Min-max ranges depend on the size of lookback windows (2H through 7H, which
affect model size.

Model Epochs Batch
Train

samples

Train
time
(mins)

Params
(M)

Memory
(MB)

1-Layer GRU 30K 1,024 31M [26, 36] [1.0, 1.3] [4, 5]
1-Layer LSTM 30K 1,024 31M [12, 36] [1.3, 1.8] [5, 7]
2-Layer GRU 30K 1,024 31M [13, 27] [2.5, 2.9] [10, 11]
2-Layer LSTM 30K 1,024 31M [13, 28] [3.4, 3.9] [27, 29]
N-BEATS 1-Conv. 30K 1,024 31M [44, 67] [27, 35] [105, 133]
N-BEATS Mish 30K 1,024 31M [39, 69] [27, 35] [105, 133]
N-BEATS Orig. 30K 1,024 31M [49, 65] [27, 35] [105, 133]
N-HiTS 30K 1,024 31M [12, 29] [1.0, 1.4] [4, 5]
N-BEATS Transf. 15k 1,024 15M [50, 67] [42, 92] [159, 349]
N-BEATS Perc. 5.5K 32 176K [138, 206] [248, 258] [947, 983]

As shown in Figure 5, the scalability of the N-BEATS Transformer model
is the worst among the models compared. The graph demonstrates how the
memory utilization of the Transformer model increases steeply as the input size
increases. This is further highlighted by the broken y-axis in the graph, which
emphasizes the relative difference in memory utilization among the models.
Furthermore, as seen in Figure 6, when the lookback period is increased from
2H to 7H, that is, when the input size increases by a percentage of 250%, the
increase in both the parameters and memory size of the N-BEATS Transformer
model is a factor of 119%.

Conversely, the N-BEATS Perceiver has the best scalability profile, as seen
in Figure 6. Although it has many more parameters and near 1GB in model
size, it increases only 4% in size and parameters when the input size is scaled
by 250%. This highlights the effectiveness of the N-BEATS Perceiver model
in terms of scalability, despite the downside of having a larger model size and
more parameters.

In conclusion, the Main Experiment provides a comprehensive evaluation of
various DL models, comparing them to well-established forecasting methods.
The combination of the Ranger optimizer and a ”flat plus cosine” learning rate
schedule proved to be an effective method for training these models, result-
ing in enhanced performance. By training multiple versions of each model
and selecting the median forecast from 54 models as the final forecast of the
ensemble, we were able to achieve a more accurate and robust prediction. The
insights gained from this experiment will inform future investigations, includ-
ing those aimed at exploring other optimization techniques and assessing the
scalability of DL models on large datasets.

4.3.2 Subsample Forecasting Experiment

In addition to the main experiment, we also conducted a secondary experi-
ment on a subsample of 10,000 test portfolios. We carried out this experiment
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Fig. 5 Scalability of Model Memory Utilization with Increasing Input Size. This
graph demonstrates the relationship between memory utilization and input size for various
ML models. The x-axis represents the increasing input size, as measured by percentage
increases in the lookback parameter from 2H (0%) to 7H (250% increase in input size). The
y-axis, displayed in logarithmic scale, illustrates the memory utilization of each model. The
broken y-axis emphasizes the relative difference in memory utilization among the models.

to compare the performance of a broader range of forecasting methods, includ-
ing traditional statistical and ML methods, which do not have vectorized or
parallelized versions that can efficiently handle the large scale test set of the
main experiment.

The subsample was selected randomly from the over 4 million test port-
folios, ensuring that the distribution of portfolio values and returns remained
representative of the entire test set. The choice of using 10,000 samples as a
subsample was made based on the statistical power and computational effi-
ciency. A sample size of 10,000 is large enough to provide a good representation
of the population, as per the central limit theorem, while being small enough
to allow for efficient computation of the models.

In this secondary experiment, we used all time series methods available in
the Pycaret library (Ali, 2020), in addition to the same methods from the Darts
library that were used in the main experiment. The results of this experiment
provide a comprehensive comparison of various forecasting methods in a more
computationally feasible setting, and serve as a complementary analysis to the
main experiment, while allowing us to make inferences about the population
of portfolios with a high degree of accuracy and precision.

4.3.3 Evaluating Forecasting Models through Portfolio
Selection

The main goal of this study is to evaluate the effectiveness of various fore-
casting models in the context of portfolio selection in real-world settings. To
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Fig. 6 Scalability of Models in terms of Parameters and Memory. Comparison
of the percentage increase in model parameters and memory for different models when the
lookback period is increased from 2H to 7H, that is, when the input size increases by a
percentage of 250%.

accomplish this, we designed an additional experiment in which we applied a
diverse set of forecasting models to a large number of portfolio options, gener-
ating forecasts for each one. We then selected the portfolios with the highest
expected returns based on these forecasts, as a way to evaluate the performance
of the models in the context of portfolio selection. This approach allowed us
to test the ability of the models to accurately predict future returns and make
effective investment decisions, which is a key consideration in the real-world
application of these models.

The experiment was carried out in two phases. In the first phase, we used
the models to forecast the returns of 100,000 portfolio options on any given
hour for 102,635 rounds. These portfolios were selected from the test dataset,
and were representative of the distribution of portfolio values and returns in
the test set. In the second phase, we used a portfolio selection algorithm to
choose the portfolio with the highest expected return in each round.

In order to thoroughly evaluate the performance of the various models in
the portfolio selection experiment, we employed a comprehensive set of portfo-
lio selection performance criteria, including mean return, standard deviation,
minimum and maximum returns, downside deviation, maximum drawdown,
and various risk-adjusted return measures. To further analyze the models’
relative performance, we also utilized the Multi-Criteria Decision Making
(MCDM) method of Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) as described in Uzun et al. (2021). This technique, which is
a part of analytical multi-criteria decision-making, involves ranking the mod-
els based on their proximity to the positive and negative ideal solutions, which
are formed as a combination of the best and worst points of each criterion.
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This method is only applicable for numerical data sets and and offers a com-
prehensive evaluation of the models’ performance by comparing each model’s
performance to the best achievable performance among the pool of methods
being evaluated.

The results of this experiment offer a thorough examination of multiple
forecasting techniques in the context of portfolio selection, and serve as a
practical complement to the primary experiment, as the models are being
evaluated on their ability to generate actual profits in real-world settings.

5 Results

The results of our experiments to assess the efficacy of various forecasting tech-
niques in the context of cryptocurrency portfolio selection are presented in this
section. As described in the previous section, we conducted three experiments:
the main forecasting experiment, the subsample forecasting experiment, and
the portfolio selection experiment.

5.1 Main Forecasting Results

The main forecasting experiment evaluated a diverse set of forecasting meth-
ods, including DL models and established traditional methods, in the context
of cryptocurrency portfolio selection on a large-scale test set of 4,160,000 port-
folios. We trained multiple versions of each DL model, and used the median
forecast from those 54 models as the final forecast of the ensemble.

Our results, shown in Table 3, indicate that the N-BEATS Perceiver
achieved the best performance, with a sMAPE of 2.4964%. This represents a
significant improvement over the N-BEATS Original (2.7641%), and the N-
BEATS Perceiver model also performed better than all other models in the
remaining metrics.

Figure 7, illustrates the variation in sMAPE across different N-BEATS
architectures. N-BEATS Perceiver architectures has the lowest median
sMAPE, as well as the lowest interquartile ranges, making it the most accurate.

Figure 8 presents a comparison of the original N-BEATS models using
ReLU and Mish activations. The results demonstrate that the use of Mish
activation yields lower sMAPE values than ReLU activation, indicating a
more accurate prediction of sMAPE. Furthermore, the box plot analysis shows
that Mish activation has a smaller median sMAPE and narrower interquartile
range than ReLU activation, indicating a more consistent performance across
different scenarios.

Figure 9 presents a comparison of sMAPE across N-BEATS architectures
and lookback windows. The results indicate that the N-BEATS Perceiver
architecture had a lower sMAPE across all lookback windows than other
architectures, with no significant difference across different lookback horizons.
Additionally, the figure illustrates the trade-off between lookback window
size and sMAPE for different architectures, with the N-BEATS Transformer’s
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Table 3 Comparison of ensemble methods for cryptocurrency portfolio forecasting on the
full test set.

Method MASE RMSSE MAE RMSE MAPE % sMAPE %

N-BEATS Perceiver 5.1530 4.1134 0.0248 0.0294 2.4656 2.4679

1-Layer GRU 5.1946 4.1497 0.0251 0.0297 2.4910 2.4964
1-Layer LSTM 5.2060 4.1585 0.0252 0.0298 2.4975 2.5034
2-Layer LSTM 5.2153 4.1648 0.0253 0.0299 2.5032 2.5093
N-BEATS Transf. 5.2398 4.1857 0.0253 0.0299 2.5044 2.5104
2-Layer GRU 5.2244 4.1721 0.0253 0.0299 2.5067 2.5128
N-BEATS 1-Conv. 5.3213 4.2478 0.0256 0.0303 2.5392 2.5456
N-HiTS 5.3577 4.2751 0.0259 0.0306 2.5634 2.5723
Naive Drift 5.3593 4.2619 0.0259 0.0305 2.5658 2.5734
N-BEATS Mish 5.4066 4.3119 0.0260 0.0307 2.5759 2.5842
Theta Method 5.4875 4.3444 0.0264 0.0310 2.6183 2.6277
Croston’s Method 5.6415 4.4004 0.0272 0.0314 2.6953 2.7031
N-BEATS Original 5.7627 4.5711 0.0278 0.0326 2.7507 2.7641
Naive Ensemble 5.8877 4.6438 0.0283 0.0331 2.8087 2.8163
Naive Seasonal 6.4891 5.0766 0.0314 0.0364 3.1138 3.1216
Naive Mean 11.2237 7.9987 0.0548 0.0580 5.4483 5.4234
Fast Fourier Transf. 16.1153 11.4183 0.0799 0.0840 7.9471 7.8746

Fig. 7 Box plot Representation of sMAPE Across N-BEATS Architectures. Each
box plot summarizes the distribution of sMAPE values for a single architecture, showing
the median, quartiles, and outliers. The architectures are sorted by median sMAPE, lowest
first. The x-axis indicates architectures and the y-axis sMAPE values.

longer lookback windows outperforming its shorter ones, while the opposite
was true for all remaining architectures.
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Fig. 8 Comparison of the original N-BEATS models using ReLU and Mish

Activation. The box plot of the variation in sMAPE for N-BEATS using ReLU and Mish
activation are presented. The x-axis depicts the activation functions and the y-axis shows the
sMAPE values. The box plots depict the median, quartiles, and outliers of each activation
function’s sMAPE. The results confirm that the use of Mish activation leads to more accurate
predictions and more consistent performance across different scenarios.

Fig. 9 Comparison of sMAPE across N-BEATS Architectures and Lookback

Windows. The line chart displays the median sMAPE for N-BEATS models across archi-
tectures and lookback windows. The x-axis shows lookback windows, in hours, and the y-axis
sMAPE values. Colored lines show each architecture’s median sMAPE, with 99.99% confi-
dence intervals, colored around the median. The N-BEATS Transformer’s longer lookback
windows are shown to outperform its shorter ones, while the opposite is true for all remain-
ing architectures.

Figure 10, presents a comparison of sMAPE across N-BEATS architectures
and loss functions during training. The figure shows that the N-BEATS Per-
ceiver architecture had a lower sMAPE across all loss functions than other
architectures, but with no significant difference across loss functions.
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Fig. 10 Comparison of sMAPE across N-BEATS Architectures and Loss Func-

tions. The line chart displays the median sMAPE for N-BEATS models across architectures
and loss functions. The x-axis shows the loss functions and the y-axis sMAPE values. Col-
ored lines show each architecture’s median sMAPE, with 99.99% confidence intervals, colored
around the median.

A LightGBM model was trained on the data to estimate the sMAPE per-
formance of a model based on its characteristics of architecture, lookback, loss
function and Mish activation. A SHAP analysis of the LightGBM model, pre-
sented in Figure 11, provides insight into the distribution of the top 10 most
important features that impact the sMAPE estimation. The figure illustrates
the impact of the various characteristics used in modeling. The examination of
the figure reveals that the N-BEATS Original architecture, represented by the
red dots in the feature line, has a positive marginal contribution to the estima-
tion of sMAPE, since the red dots are to the right of the line of zero impact,
indicating higher errors. Conversely, the N-BEATS Perceiver and N-BEATS
1-Conv. architectures have a negative marginal contribution to the estimation
of sMAPE, indicating lower errors, since the red dots are to the left of the zero
impact line. Additionally, the presence of Mish activation in the blocks tends
to have a negative marginal contribution to the error, signifying that models
with Mish activation tend to have lower errors. Furthermore, when the objec-
tive function minimizes MAPE, the errors tend to be higher for the sMAPE
metric. However, when the objective function is MASE, there is a slight bias
towards a lower sMAPE error, possibly because MAPE is non-symmetric.

5.2 Subsample Forecasting Results

In the subsample forecasting experiment, we applied a broader range of fore-
casting methods to a subsample of 10,000 test portfolios, in order to compare
their performance. The aim of this experiment was to compare the perfor-
mance of a broader range of methods with those of the main experiment. Our
results, presented in Table 4, indicate that the N-BEATS Perceiver model
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Fig. 11 SHAP Analysis of LightGBM Model for sMAPE Error Estimation. The
figure illustrates the distribution of SHAP values for the top 10 most important features,
providing insight into the model’s error estimation based on various characteristics such as
architecture, lookback, loss function, and Mish activation. The red dots represent that the
feature is present or it is high, and the blue dots represent that the feature is not present or
it is low. The x-axis indicates the marginal impact of the feature samples on the LightGBM
model’s predictions. The dots located to the left of the zero impact line indicate that the
feature improves the model’s predictions by decreasing the predicted error.

achieved the best performance across all metrics, including MASE, RMSSE,
MAE, RMSE, MAPE, and sMAPE. These results are consistent with those of
the main experiment, whereby none of the rankings of the original 4 million
experiment changed.

5.3 Portfolio Selection Results

In this section, we present the results of our portfolio selection experiment.
Firstly, we present the results of each portfolio selection in the form of a
heatmap in Figure 12. The chart shows the return correlation of different
investment strategies, as determined by choosing a winning portfolio out of
100,000 options on any given hour for 102,635 rounds. The heatmap high-
lights the lack of correlation of N-BEATS Perceiver and Theta Method with
other methods, the high correlation between LSTM and GRU models, and
the moderate correlation between N-BEATS Transformer and other N-BEATS
variants and FFT. Notably, N-BEATS Mish and N-BEATS 1-Conv also have
a particularly high correlation of 0.4.

Next, we present a visualization of the return characteristics of the differ-
ent models in Figure 13. The figure shows the returns from a portfolio selection
task where the goal was to choose the portfolio with the highest expected
return out of 100,000 options, conducted over 102,635 rounds. N-BEATS Per-
ceiver is the most consistent model with the narrowest range of returns. Other
models, such as N-HiTS and N-BEATS Transformer, have higher median
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Table 4 Comparison of ensemble methods for cryptocurrency portfolio forecasting on the
10,000 subsample test set.

Method MASE RMSSE MAE RMSE MAPE % sMAPE %

N-BEATS Perceiver 5.1224 4.0871 0.0246 0.0291 2.4398 2.4436

1-Layer GRU 5.1652 4.1245 0.0249 0.0295 2.4650 2.4717
1-Layer LSTM 5.1773 4.1336 0.0250 0.0295 2.4717 2.4789
2-Layer LSTM 5.2110 4.1599 0.0250 0.0296 2.4777 2.4853
N-BEATS Transf. 5.1877 4.1408 0.0250 0.0296 2.4779 2.4853
2-Layer GRU 5.1970 4.1481 0.0251 0.0296 2.4821 2.4895
Naive (Pycaret) 5.1743 4.1828 0.0252 0.0296 2.5136 2.5093
N-BEATS 1-Conv. 5.2890 4.2205 0.0254 0.0300 2.5126 2.5206
N-HiTS 5.3278 4.2486 0.0256 0.0303 2.5380 2.5482
Naive Drift 5.3308 4.2359 0.0257 0.0303 2.5418 2.5508
N-BEATS Mish 5.3763 4.2857 0.0258 0.0305 2.5506 2.5606
Theta Method 5.4819 4.3295 0.0263 0.0308 2.6021 2.6137
Croston’s Method 5.6351 4.3877 0.0271 0.0313 2.6789 2.6895
N-BEATS Original 5.7287 4.5414 0.0275 0.0323 2.7206 2.7357
Auto ARIMA 5.7147 4.5936 0.0280 0.0328 2.7958 2.7914
Naive Ensemble 5.8754 4.6270 0.0282 0.0329 2.7881 2.7988
ARIMA 5.7915 4.6027 0.0283 0.0328 2.8192 2.8084
ETS 6.0522 4.8477 0.0298 0.0349 2.9757 2.9642
Exp. Smooth. 6.1704 4.9362 0.0302 0.0354 3.0191 3.0078
Gradient Boosting 6.1288 4.8979 0.0304 0.0353 3.0334 3.0280
K Neighbors 6.1510 4.9104 0.0305 0.0354 3.0461 3.0399
AdaBoost 6.2019 4.9375 0.0308 0.0357 3.0761 3.0704
Light Grad. Boost. 6.2711 4.9806 0.0311 0.0359 3.1070 3.1003
Random Forest 6.2808 5.0044 0.0312 0.0362 3.1137 3.1079
Naive Seasonal 6.4860 5.0682 0.0313 0.0363 3.0994 3.1107
Huber 6.3602 5.1006 0.0317 0.0369 3.1681 3.1458
Orth. M. Pursuit 6.7503 5.3640 0.0339 0.0392 3.3802 3.3615
Linear 6.7503 5.3640 0.0339 0.0392 3.3802 3.3615
Bayesian Ridge 6.7589 5.3699 0.0339 0.0393 3.3847 3.3664
Extra Trees 6.8119 5.4556 0.0340 0.0397 3.3930 3.3859
Decision Tree 7.2430 5.7841 0.0363 0.0422 3.6187 3.6124
Ridge 8.9369 6.6829 0.0451 0.0491 4.5025 4.4881
Polynomial Trend 8.9632 6.6978 0.0453 0.0493 4.5205 4.5057
Elastic Net 8.9661 6.6997 0.0453 0.0493 4.5221 4.5072
Lasso 8.9661 6.6997 0.0453 0.0493 4.5221 4.5072
Grand Means Forec. 9.3548 6.8515 0.0468 0.0502 4.6571 4.6360
Naive Mean 11.3396 8.0544 0.0552 0.0583 5.4824 5.4648
Fast Fourier Transf. 16.3439 11.5562 0.0808 0.0850 8.0436 7.9840

returns but are also associated with a relatively narrow range of returns and
have more significant downside events compared to N-BEATS Perceiver.

To further investigate the performance of the different models, we present
a table of various performance metrics in Table 5. This table includes metrics
such as mean, standard deviation, minimum, 25th percentile, 50th percentile
(median), 75th percentile, maximum, downside deviation, maximum draw-
down, Sharpe ratio, Sortino ratio, Calmar ratio, Ulcer index, negative outliers,
average loss, conditional tail ratio, Value at Risk (95%), Value at Risk (99%),
Cond. VaR (95%), Cond. VaR (99%), Expected Shortfall (95%), Expected
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Fig. 12 Comparative Analysis of Model Return Correlation. The chart shows the
return correlation of different investment strategies, as determined by choosing a winning
portfolio out of 100,000 options for 102,635 rounds. Models with high return correlation are
likely to pick similar winning portfolios on each round of the experiment.

Shortfall (99%), and Coherent VaR (95%). An overview of Expected Short-
fall and Coherent risk metrics can be found in Chan and Nadarajah (2019);
Tzagkarakis and Maurer (2022).

Finally, in 14, the results of a Multi-Criteria Decision Making (MCDM)
method called TOPSIS are presented. This method is used to compare the
relative closeness scores of various investment strategies, with the highest
score indicating the top performing strategy. The chart displays the scores for
each strategy, with the criteria used for the analysis listed in Table 5. This
figure provides a clear comparison of the performance of different model selec-
tion strategies, allowing for an informed evaluation of their portfolio selection
abilities.
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Fig. 13 Comparison of Model Returns in a Portfolio Selection Task. This box
plot data presents the returns of the portfolio selection task conducted over 102,635 rounds
and is ordered by the median return, from the highest to the lowest.

6 Discussion

This section discusses the outcomes of the three experiments conducted to
examine the performance of time series forecasting models in the context of
cryptocurrency price forecasting and portfolio selection. Specifically, we used
historical price data from Binance, the largest cryptocurrency exchange plat-
form, to calculate the volume-weighted average price (VWAP) utilizing the
whole dataset of Binance’s 1-minute pricing history. We then generated a large
number of hourly portfolio series using a selection algorithm and used them
as input for both the time series forecasting experiments and the portfolio
optimization experiments.

In the main forecasting experiment, a diverse set of forecasting methods
were evaluated in over 4 million portfolio test samples for the task of forecast-
ing the next 48 hours. These experiments included DL models and established
traditional methods as benchmarks. The N-BEATS Perceiver model achieved
the best performance in all evaluation metrics and its box plot of errors showed
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Fig. 14 Comparison of Models using TOPSIS Method. The chart shows the rel-
ative closeness scores for each investment strategy, with the highest score indicating the
top strategy according to the Multi-Criteria Decision Making (MCDM) method of TOPSIS.
The criteria used for the analysis are those depicted in Table 5: Mean, Standard deviation,
Minimum, 25th percentile, 50th percentile (Median), 75th percentile, Maximum, Downside
deviation, Maximum drawdown, Sharpe ratio, Sortino ratio, Calmar ratio, Ulcer index, Neg-
ative outliers, Average loss, Conditional tail ratio, Value at Risk (95%), Value at Risk (99%),
Cond. VaR (95%), Cond. VaR (99%), Expected Shortfall (95%), Expected Shortfall (99%),
Coherent VaR (95%).

superior performance compared to competing N-BEATS architectures, as seen
in Figure 7. Specifically, the box plot depicts each architecture’s sMAPE
median, quartiles, and outliers, with N-BEATS Perceiver exhibiting the lowest
median sMAPE. This performance difference was also observed in the subsam-
ple forecasting experiments where N-BEATS Perceiver presented the lowest
error metrics across the board, as shown by Table 4.

The study also found that the simple addition of the Mish activation to
the Original N-BEATS model significantly improved its performance, as seen
in Figures 7 and 8. The SHAP Value analysis using the LightGBM model
supported these findings and indicated that the Mish activation performed
better than ReLU, and that certain architectures performed better than others.
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Additionally, models trained with a MAPE loss function did not perform well
in their sMAPE performance.

The final experiment of our research consisted of analyzing the portfolio
selection capabilities of each model. The outstanding performance of the N-
BEATS Perceiver model in the portfolio selection experiment was highlighted
by its narrow distribution of returns and minimal correlation with other mod-
els, as illustrated in Figures 13 and 12. This resulted in a strong risk profile for
the model, with less downside compared to other models, as evident in Table
5. Furthermore, the model performed exceptionally well when evaluated using
the TOPSIS method, leading the pack with the N-BEATS Transformer and
N-HiTS architectures closely following, as shown in Figure 14. Although the
N-BEATS Perceiver model demonstrated a lower median return compared to
some other models, the N-BEATS Transformer and N-HiTS models, despite
their higher downside events, provided robust risk-reward alternatives with
higher median returns. These models can potentially be integrated in portfo-
lio selection tasks as they exhibit little return correlation, as indicated by our
correlation analysis.

Our findings revealed that the N-BEATS Perceiver model outperformed
other models with significantly less training samples and epochs. In addition,
while the N-BEATS Perceiver model has a bigger model size and more param-
eters than other models, it exhibits the best scalability profile among the
compared models, with a size and parameter increase of only 4% when the
input size is increased by 250%. Despite a higher model size, the N-BEATS
Perceiver’s scalability demonstrates its success in its capacity to manage larger
inputs and outputs. In contrast, the N-BEATS Transformer model exhibited
poor scalability, with a sharp increase in memory use as input size rose and a
119% percent increase in size and parameters when input size was expanded
by 250%.

7 Conclusion

This study performs an in-depth assessment of various time series forecast-
ing models for cryptocurrency portfolio selection, with a specific focus on the
N-BEATS Perceiver model. The study’s emphasis on the volatile nature of
cryptocurrencies and the availability of over 500 cryptocurrencies for portfolio
construction highlights its significant and relevant contribution to both quan-
titative finance and financial technology, and provides valuable insights for
developing trading strategies and risk management techniques in these fields.
Additionally, the practical relevance of the study is enhanced by the use of
a real-world dataset from Binance, the largest cryptocurrency exchange plat-
form, and by the vast size of the test dataset, which includes over 4 million
portfolio test samples.

While the study may have a focus on historical data from a single asset
class and hourly time series, it still provides a comprehensive evaluation of
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time series forecasting models in the context of cryptocurrency asset alloca-
tion. The outstanding performance of the N-BEATS Perceiver model in both
time series forecasting and portfolio selection experiments demonstrated its
potential utility in real-world applications, including cryptocurrency trading
strategies and economic outcomes.

Future research should explore more advanced portfolio selection meth-
ods beyond the random selection of 100,000 portfolios used in this study.
Techniques such as genetic algorithms and Bayesian optimization could be
employed to improve the selection process. Combining optimization and search
methods with forecasting models in a synergistic approach may lead to even
better results. In addition, it would be valuable to investigate the economic
benefits of more accurate portfolio construction methods and their potential
impact on real-world financial outcomes.
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Table 5 Portfolio selection performance metrics for the different forecasting models.

Metric
N-B.

Transf.

N-B.

Mish

2-Layer

GRU

N-B.

Orig.

1-Layer

LSTM
N-HiTS

1-Layer

GRU

2-Layer

LSTM

N-B.

Perc.

N-B.

1Conv.
Crost. Theta FFT

Mean 0.02 -0.01 0.02 -0.02 0.01 0.04 0.02 0.01 0.01 0.01 -0.00 0.01 0.04

Standard deviation 0.07 0.09 0.09 0.09 0.13 0.11 0.18 0.08 0.04 0.09 0.21 0.10 0.10

Minimum -0.16 -0.28 -0.29 -0.26 -0.29 -0.30 -0.21 -0.29 -0.09 -0.28 -0.35 -0.35 -0.22

25th percentile -0.02 -0.04 -0.02 -0.09 -0.04 -0.01 -0.05 -0.03 -0.01 -0.04 -0.08 -0.04 -0.03

50th percentile 0.01 -0.00 0.02 -0.01 -0.00 0.03 -0.00 0.00 0.01 0.01 -0.04 0.01 0.03

75th percentile 0.05 0.04 0.06 0.05 0.05 0.08 0.05 0.05 0.03 0.05 0.02 0.09 0.09

Maximum 0.32 1.90 2.92 0.39 2.07 1.54 2.92 2.92 0.16 2.07 1.54 0.27 0.39

Downside deviation 0.03 0.06 0.05 0.06 0.04 0.04 0.04 0.05 0.02 0.05 0.04 0.07 0.05

Maximum drawdown 0.47 2.18 3.21 0.64 2.36 1.84 3.13 3.21 0.26 2.35 1.89 0.63 0.61

Sharpe ratio 0.33 -0.06 0.26 -0.18 0.06 0.38 0.09 0.12 0.26 0.16 -0.01 0.07 0.43

Sortino ratio 0.68 -0.09 0.46 -0.30 0.19 1.11 0.41 0.22 0.49 0.28 -0.04 0.11 0.78

Calmar ratio 0.05 -0.00 0.01 -0.03 0.00 0.02 0.01 0.00 0.04 0.01 -0.00 0.01 0.07

Ulcer index 0.05 0.09 0.07 0.10 0.06 0.06 0.07 0.07 0.03 0.07 0.08 0.11 0.09

Average loss 0.04 0.06 0.05 0.09 0.05 0.04 0.05 0.05 0.02 0.06 0.07 0.09 0.07

Conditional tail ratio 0.53 0.60 0.65 0.64 0.69 0.28 0.61 0.69 0.49 0.65 0.23 0.87 0.73

Negative outliers 0 2306 145 957 0 29 0 204 0 344 0 23 0

Value at Risk (95%) 0.07 0.17 0.10 0.15 0.10 0.05 0.10 0.11 0.04 0.11 0.12 0.18 0.13

Value at Risk (99%) 0.11 0.25 0.19 0.19 0.16 0.15 0.19 0.19 0.09 0.19 0.17 0.20 0.22

Cond. VaR (95%) 0.10 0.21 0.15 0.18 0.13 0.10 0.13 0.14 0.07 0.15 0.16 0.19 0.17

Cond. VaR (99%) 0.12 0.27 0.20 0.22 0.21 0.17 0.19 0.19 0.09 0.20 0.20 0.20 0.22

Expected Short. (95%) 0.09 0.20 0.14 0.17 0.13 0.09 0.12 0.13 0.06 0.14 0.15 0.18 0.16

Expected Short. (99%) 0.12 0.26 0.19 0.22 0.21 0.17 0.19 0.19 0.09 0.20 0.19 0.20 0.22

Coherent VaR (95%) 0.11 0.22 0.15 0.14 0.10 0.11 0.14 0.16 0.07 0.15 0.17 0.15 0.18



Figures

Figure 1

Sample time series for forecasting. This �gure demonstrates a sample time series of hourly
cryptocurrency portfolio returns from the test period that ends at the indexed value of 1. The task is to
forecast future returns relative to this indexed value of 1 over the next H=48 hours, using a lookback
window of 7H (equivalent to 336 hours). The horizontal and vertical dashed lines represent the point at
which the value of the portfolio is indexed to one, which is the last observation.



Figure 2

Flat plus cosine learning rate schedule. The optimizer begins with a learning rate of 0.001 and maintains
this pace for 21,000 iterations, gradually decreasing the rate until it reaches zero for the remaining
iterations.



Figure 3

Scalability of Model Memory Utilization with Increasing Input Size. This graph demonstrates the
relationship between memory utilization and input size for various ML models. The x-axis represents the
increasing input size, as measured by percentage increases in the lookback parameter from 2H (0%) to
7H (250% increase in input size). The y-axis, displayed in logarithmic scale, illustrates the memory
utilization of each model. The broken y-axis emphasizes the relative difference in memory utilization
among the models.



Figure 4

Scalability of Models in terms of Parameters and Memory. Comparison of the percentage increase in
model parameters and memory for different models when the lookback period is increased from 2H to
7H, that is, when the input size increases by a percentage of 250%.



Figure 5

SHAP Analysis of LightGBM Model for sMAPE Error Estimation. The �gure illustrates the distribution of
SHAP values for the top 10 most important features, providing insight into the model's error estimation
based on various characteristics such as architecture, lookback, loss function, and Mish activation. The
red dots represent that the feature is present or it is high, and the blue dots represent that the feature is
not present or it is low. The x-axis indicates the marginal impact of the feature samples on the LightGBM
model's predictions. The dots located to the left of the zero impact line indicate that the feature improves
the model's predictions by decreasing the predicted error.



Figure 6

Comparison of Models using TOPSIS Method. The chart shows the relative closeness scores for each
investment strategy, with the highest score indicating the top strategy according to the Multi-Criteria
Decision Making (MCDM) method of TOPSIS. The criteria used for the analysis are those depicted in
Table 5: Mean, Standard deviation, Minimum, 25th percentile, 50th percentile (Median), 75th percentile,
Maximum, Downside deviation, Maximum drawdown, Sharpe ratio, Sortino ratio, Calmar ratio, Ulcer
index, Negative outliers, Average loss, Conditional tail ratio, Value at Risk (95%), Value at Risk (99%),
Cond. VaR (95%), Cond. VaR (99%), Expected Shortfall (95%), Expected Shortfall (99%), Coherent VaR
(95%).



Figure 7

Comparison of Model Returns in a Portfolio Selection Task. This box plot data presents the returns of the
portfolio selection task conducted over 102,635 rounds and is ordered by the median return, from the
highest to the lowest.



Figure 8

Comparative Analysis of Model Return Correlation. The chart shows the return correlation of different
investment strategies, as determined by choosing a winning portfolio out of 100,000 options for 102,635
rounds. Models with high return correlation are likely to pick similar winning portfolios on each round of
the experiment.



Figure 9

Analyzing the Performance of the Test Portfolios and their Returns Distribution. The left chart illustrates
the distribution of portfolio values for over 4,160,000 sampled test portfolios, depicted by a fan chart with
percentiles at 45, 65, 80, 90, and 99. These portfolios were utilized to assess the effectiveness of our
models in forecasting the portfolio's returns over the following 48 hours, with the value at hour zero
serving as a reference point indexed at 1 (or 100%). The models are expected to predict the �uctuation of
the portfolio's value with respect to hour zero. The right chart displays the distribution of returns for the
same test portfolios, with the mean return of 0.005 and median return of 0.003, represented by the red
and green dotted lines.



Figure 10

Analyzing the Performance of the Test Portfolios and their Returns Distribution. The left chart illustrates
the distribution of portfolio values for over 4,160,000 sampled test portfolios, depicted by a fan chart with
percentiles at 45, 65, 80, 90, and 99. These portfolios were utilized to assess the effectiveness of our
models in forecasting the portfolio's returns over the following 48 hours, with the value at hour zero
serving as a reference point indexed at 1 (or 100%). The models are expected to predict the �uctuation of
the portfolio's value with respect to hour zero. The right chart displays the distribution of returns for the
same test portfolios, with the mean return of 0.005 and median return of 0.003, represented by the red
and green dotted lines.



Figure 11

Comparison of sMAPE across N-BEATS Architectures and Loss Functions. The line chart displays the
median sMAPE for N-BEATS models across architectures and loss functions. The x-axis shows the loss
functions and the y-axis sMAPE values. Colored lines show each architecture's median sMAPE, with
99.99% con�dence intervals, colored around the median.



Figure 12

Comparison of sMAPE across N-BEATS Architectures and Lookback Windows. The line chart displays the
median sMAPE for N-BEATS models across architectures and lookback windows. The x-axis shows
lookback windows, in hours, and the y-axis sMAPE values. Colored lines show each architecture's median
sMAPE, with 99.99% con�dence intervals, colored around the median. The N-BEATS Transformer's longer
lookback windows are shown to outperform its shorter ones, while the opposite is true for all remaining
architectures.



Figure 13

Comparison of the original N-BEATS models using ReLU and Mish Activation. The box plot of the
variation in sMAPE for N-BEATS using ReLU and Mish activation are presented. The x-axis depicts the
activation functions and the y-axis shows the sMAPE values. The box plots depict the median, quartiles,
and outliers of each activation function's sMAPE. The results con�rm that the use of Mish activation
leads to more accurate predictions and more consistent performance across different scenarios.



Figure 14

Box plot Representation of sMAPE Across N-BEATS Architectures. Each box plot summarizes the
distribution of sMAPE values for a single architecture, showing the median, quartiles, and outliers. The
architectures are sorted by median sMAPE, lowest �rst. The x-axis indicates architectures and the y-axis
sMAPE values.



Figure 15

Proposed Architecture for N-BEATS Perceiver Model. The �gure depicts our proposed architecture for the
N-BEATS Perceiver model, a deep neural network designed for time series forecasting. The network is
composed of 20 N-BEATS blocks, each containing a Perceiver Encoder, Perceiver Embeddings, a 4-Layer
MLP, a Linear layer, and a Mish activation function. The Perceiver Encoder layer is responsible for
extracting features from the input time series, while the Perceiver Embeddings layer learns embeddings
for the extracted features. The 4-Layer MLP acts as a decoder layer responsible for generating the
Backcast and the Forecast, and the Linear layer applies a linear transformation to the input before the
Mish activation function's �nal transformation of the outputs. The model contains 251,455,360 trainable
parameters in total. All backcasts are transferred to the subsequent block, and all forecasts are added to
produce the model's �nal forecast.
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