
Distribuidor de capacidade

Modelos largos de linguagem (large language models ou LLMs) são modelos de
inteligência artificial (artificial intelligence ou AI) que analizam linguagem natural e são
treinados com uma vasta quantidade de textos. Textos são decompostos em tokens, e o
processo de inferência envolve vários rounds onde uma sequência de tokens chamada
input são processados por uma sequência de transformadores generativos pré-treinados
(Generational Pre-trained Transforms ou GPTs) a fim de calcular uma lista de quais os
próximos tokens mais prováveis e suas probabilidades. O próximo token mais provável é
adicionado ao input e o processo se repete. A sequência de tokens gerada a partir do input
inicial é chamada de output.

A principal forma de medir o uso de LLMs é o throughput do total de tokens processados
(input + output). A unidade é tokens por minuto (tokens per minute ou TPM).

Você é um desenvolvedor de uma plataforma de AI que provê serviços de LLM para
clientes. Para cada cliente é designada uma capacidade (capacity) medida em TPM. Cada
cliente pode criar um projeto dentro da plataforma. Dentro de cada projeto o cliente pode
criar aplicações de LLMs, como agentes de AI, data pipelines com etapas de inferência,
chatbots, visão computacional, entre outros.

Cada projeto acaba por ter um uso (usage) de LLMs, e um limite (limit), medidos em TPM.
Quando o uso do projeto está acima do limite, as aplicações de LLM dentro do projeto
reduzem seu throughput, o que as tornam mais lentas e menos responsivas. O excesso é o
quanto o uso está acima do limite.

Para cada projeto, o cliente pode configurar:

• Um limite mínimo (maximum limit ou 𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡), o menor valor para o limite
daquele projeto. A soma dos limites mínimos não pode ser maior que a capacidade
do cliente. O intuito é preservar usabilidade mínima.

• Um limite máximo (minimum limit ou 𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡), o maior valor para o limite
daquele projeto. O intuito é conseguir controlar o gasto de tokens de um único
projeto.

• Uma importância (importance), medido em uma unidade arbitrária. O limite de um
projeto deve ser proporcional à importância do projeto desde que não viole os
limites máximo e mínimo. O intuito é dar ao cliente controle para priorizar um
projeto sobre outro quando estes competem por recursos.

Seu trabalho como desenvolvedor dessa plataforma de AI é criar um algoritmo que
distribui dinamicamente a capacidade do cliente pelos seus projetos, ou seja, que calcula

o limite de cada projeto em determinado instante baseado no uso daquele instante. O
algoritmo deve respeitar as condições acima e deve minimizar o excesso de forma ótima.
O algoritmo deve garantir que a soma do mínimo entre o limite e o uso de cada projeto não

ultrapasse a capacidade do cliente. Ou seja, ∑ min(𝑢𝑠𝑎𝑔𝑒[𝑖], 𝑙𝑖𝑚𝑖𝑡[𝑖]) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑛−1

𝑖=0
.

Esboço do código:

import java.io.*;

import java.util.*;

import java.text.*;

import java.math.*;

import java.util.regex.*;

public class CapacityDistributor {

 public record Project(int minLimit, int maxLimit, int importance) {}

 static List<Integer> distribute(List<Project> projects, List<Integer>

usage, int capacity) {

 return List.of();

 }

 public static void main(String[] args) {

 List<Project> projects = List.of(

 new Project(100, 1000, 1),

 new Project(100, 1000, 1),

 new Project(100, 1000, 3),

 new Project(100, 1000, 5),

 new Project(0, 100, 5));

 List<Integer> usage = List.of(

 0,

 800,

 800,

 100,

 400);

 List<Integer> expectedLimits = List.of(

 200,

 200,

 600,

 1000,

 100);

 List<Integer> actualLimits = distribute(projects, usage, 1000);

 System.out.println("Wanted: " + expectedLimits);

 System.out.println("Got: " + actualLimits);

 }

}

