Distribuidor de capacidade

Modelos largos de linguagem (large language models ou LLMs) sdo modelos de
inteligéncia artificial (artificial intelligence ou Al) que analizam linguagem natural e sdo
treinados com uma vasta quantidade de textos. Textos sdo decompostos em tokens, e 0
processo de inferéncia envolve varios rounds onde uma sequéncia de tokens chamada
input sdo processados por uma sequéncia de transformadores generativos pré-treinados
(Generational Pre-trained Transforms ou GPTs) a fim de calcular uma lista de quais os
proximos tokens mais provaveis e suas probabilidades. O proximo token mais provavel é
adicionado ao input e o processo se repete. A sequéncia de tokens gerada a partir do input
inicial é chamada de output.

A principal forma de medir o uso de LLMs é o throughput do total de tokens processados
(input + output). A unidade é tokens por minuto (tokens per minute ou TPM).

Vocé é um desenvolvedor de uma plataforma de Al que prové servigos de LLM para
clientes. Para cada cliente é designada uma capacidade (capacity) medida em TPM. Cada
cliente pode criar um projeto dentro da plataforma. Dentro de cada projeto o cliente pode
criar aplicacdes de LLMs, como agentes de Al, data pipelines com etapas de inferéncia,
chatbots, visdo computacional, entre outros.

Cada projeto acaba por ter um uso (usage) de LLMs, e um limite (limit), medidos em TPM.
Quando o uso do projeto esta acima do limite, as aplicagdes de LLM dentro do projeto
reduzem seu throughput, o que as tornam mais lentas e menos responsivas. O excesso € 0
quanto o uso esta acima do limite.

Para cada projeto, o cliente pode configurar:

e Um limite minimo (maximum limit ou minLimit), o menor valor para o limite
daquele projeto. A soma dos limites minimos ndo pode ser maior que a capacidade
do cliente. O intuito é preservar usabilidade minima.

e Um limite maximo (minimum limit ou maxLimit), o maior valor para o limite
daquele projeto. O intuito € conseguir controlar o gasto de tokens de um uUnico
projeto.

e Uma importancia (importance), medido em uma unidade arbitraria. O limite de um
projeto deve ser proporcional a importancia do projeto desde que nao viole os
limites maximo e minimo. O intuito é dar ao cliente controle para priorizar um
projeto sobre outro quando estes competem por recursos.

Seu trabalho como desenvolvedor dessa plataforma de Al é criar um algoritmo que
distribui dinamicamente a capacidade do cliente pelos seus projetos, ou seja, que calcula



o limite de cada projeto em determinado instante baseado no uso daquele instante. O
algoritmo deve respeitar as condicoes acima e deve minimizar o excesso de forma 6tima.
O algoritmo deve garantir que a soma do minimo entre o limite e o uso de cada projeto nao

ultrapasse a capacidade do cliente. Ou seja, Z::Ol min(usage(i], limit[i]) < capacity.

Esbocgo do codigo:

import java.io.*;

import java.util.*;
import java.text.*;
import java.math.*;
import Jjava.util.regex.*;

public class CapacityDistributor {
public record Project(int minLimit, int maxLimit, int importance) {}

static List<Integer> distribute (List<Project> projects, List<Integer>
usage, int capacity) {
return List.of ();

}

public static void main(String[] args) {

List<Project> projects = List.of(

new Project (100, 1000, 1),

new Project (100, 1000, 1),

new Project (100, 1000, 3),

new Project (100, 1000, 5)

new Project (0, 100, 5));
List<Integer> usage = List.of(

0,

800,

800,

100,

400) ;
List<Integer> expectedLimits = List.of (

200,

200,

600,

1000,

100) ;
List<Integer> actuallimits = distribute (projects, usage, 1000);
System.out.println ("Wanted: " + expectedLimits);
System.out.println ("Got: " + actuallimits);

4



