Distribuidor de capacidade (solucao)
Tipo de problema: paradigmas, divisao e conquista.

A condig¢do de que o limite de um projeto deve ser proporcional a sua importancia implica
que devemos calcular um valor x que é o limite por unidade de importancia. O limite de
um projeto é x * importance se este valor estiver entre minLimit e maxLimit, ou
minLimit ou maxLimit caso contrario.

Agora, resolvamos um problema um pouco diferente: em vez de calcular um valor x,
suponhamos que x seja dado. Devemos verificar se esse x é valido. Os limites podem ser
calculados diretamente: o limite de cada projeto sera dado por limit[i] =
min(maxLimit[i], min(minLimit[i], x * importance[i])). O valor x é valido se e somente se

o min(usageli], limit[i]) < capacity. Essa verificagdo pode ser feita em 0(n), onde n é
o0 numero de projetos.

Voltando ao problema original, devemos calcular o maximo x que seja valido para
minimizar o excesso. Percebemos que se um valor x, € valido, entdo todo valor x < x,
também é valido. Também percebemos que se um valor x, é invalido, entdo todo valor x >
xo também é invalido. Assim, podemos fazer busca binaria do maior valor de x que é
valido. O algoritmo executa em O(nlog C), onde n é nimero de projetose C é a
capacidade do cliente.

Coadigo:

import Jjava.io.*;

import java.util.*;
import java.text.*;
import java.math.*;

import Jjava.util.regex.*;
public class CapacityDistributor ({
public record Project (int minLimit, int maxLimit, int importance) {}
static List<Integer> distribute (List<Project> projects, List<Integer>
usage, int capacity) {

int lo = 0, hi = capacity+l;
while (hi > lo + 1) {

int x = (lo + hi) / 2;

if (isValid(projects, usage, capacity, x)) {
lo = x;

} else {
hi = x;

1
}

List<Integer> limits = new ArrayList<>();



for (Project project : projects) {
limits.add(calculatelLimit (project, 1lo));

}

return limits;

}

static boolean isValid(List<Project> projects, List<Integer> usage,

int capacity, int x) {

int combinedUsage = 0;

for (int 1 = 0; 1 < projects.size(); i++) {

combinedUsage += Math.min (usage.get (i),

calculatelimit (projects.get (i), x));

}

return combinedUsage <= capacity;

}

static int calculatelimit (Project project, int x) {
int limit = x * project.importance();
limit = Math.min(limit, project.maxLimit()):;
limit = Math.max(limit, project.minLimit())
return limit;

I3

}

public static void main(String[] args) {

List<Project> projects = List.of(

new Project (100, 1000, 1),

new Project (100, 1000, 1),

new Project (100, 1000, 3),

new Project (100, 1000, 5)

new Project (0, 100, 5));
List<Integer> usage = List.of(

0,

800,

800,

100,

400) ;
List<Integer> expectedLimits = List.of(

200,

200,

600,

1000,

100) ;
List<Integer> actuallimits = distribute (projects, usage, 1000);
System.out.println ("Wanted: " + expectedLimits);
System.out.println ("Got: " + actuallimits);

4



