
Distribuidor de capacidade (solução)

Tipo de problema: paradigmas, divisão e conquista.

A condição de que o limite de um projeto deve ser proporcional à sua importância implica
que devemos calcular um valor x que é o limite por unidade de importância. O limite de
um projeto é 𝑥 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 se este valor estiver entre 𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡 e 𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡, ou
𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡 ou 𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡 caso contrário.

Agora, resolvamos um problema um pouco diferente: em vez de calcular um valor x,
suponhamos que x seja dado. Devemos verificar se esse x é válido. Os limites podem ser
calculados diretamente: o limite de cada projeto será dado por 𝑙𝑖𝑚𝑖𝑡[𝑖] =

min(maxLimit[i], min(minLimit[i], x ∗ importance[i])). O valor x é válido se e somente se
∑ min(𝑢𝑠𝑎𝑔𝑒[𝑖], 𝑙𝑖𝑚𝑖𝑡[𝑖]) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛−1
𝑖=0 . Essa verificação pode ser feita em 𝑂(𝑛), onde n é

o número de projetos.

Voltando ao problema original, devemos calcular o máximo x que seja válido para
minimizar o excesso. Percebemos que se um valor 𝑥0 é válido, então todo valor 𝑥 ≤ 𝑥0
também é válido. Também percebemos que se um valor 𝑥0 é inválido, então todo valor 𝑥 ≥

𝑥0 também é inválido. Assim, podemos fazer busca binária do maior valor de x que é
válido. O algoritmo executa em 𝑂(𝑛 log 𝐶), onde n é número de projetos e C é a
capacidade do cliente.

Código:

import java.io.*;

import java.util.*;

import java.text.*;

import java.math.*;

import java.util.regex.*;

public class CapacityDistributor {

 public record Project(int minLimit, int maxLimit, int importance) {}

 static List<Integer> distribute(List<Project> projects, List<Integer>

usage, int capacity) {

 int lo = 0, hi = capacity+1;

 while (hi > lo + 1) {

 int x = (lo + hi) / 2;

 if (isValid(projects, usage, capacity, x)) {

 lo = x;

 } else {

 hi = x;

 }

 }

 List<Integer> limits = new ArrayList<>();

 for (Project project : projects) {

 limits.add(calculateLimit(project, lo));

 }

 return limits;

 }

 static boolean isValid(List<Project> projects, List<Integer> usage,

int capacity, int x) {

 int combinedUsage = 0;

 for (int i = 0; i < projects.size(); i++) {

 combinedUsage += Math.min(usage.get(i),

calculateLimit(projects.get(i), x));

 }

 return combinedUsage <= capacity;

 }

 static int calculateLimit(Project project, int x) {

 int limit = x * project.importance();

 limit = Math.min(limit, project.maxLimit());

 limit = Math.max(limit, project.minLimit());

 return limit;

 }

 public static void main(String[] args) {

 List<Project> projects = List.of(

 new Project(100, 1000, 1),

 new Project(100, 1000, 1),

 new Project(100, 1000, 3),

 new Project(100, 1000, 5),

 new Project(0, 100, 5));

 List<Integer> usage = List.of(

 0,

 800,

 800,

 100,

 400);

 List<Integer> expectedLimits = List.of(

 200,

 200,

 600,

 1000,

 100);

 List<Integer> actualLimits = distribute(projects, usage, 1000);

 System.out.println("Wanted: " + expectedLimits);

 System.out.println("Got: " + actualLimits);

 }

}

