CES-11

Algoritmos e Estruturas de Dados

Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Objetivos gerais

- Compreensão da necessidade de uma boa estruturação das informações processadas no computador
- Capacidade de escolher a estrutura de dados mais adequada para uma determinada aplicação
- Capacidade de programar métodos que criam e manipulam essas estruturas
- Famoso livro de Niklaus Wirth: Algorithms + Data Structures = Programs
- "Estar alfabetizado" versus "saber redigir"

Algoritmo

- Informalmente, um algoritmo é qualquer procedimento computacional bem definido que recebe um conjunto de valores como entrada e produz outro conjunto de valores como saída
- Algoritmo correto
 - Para cada instância de entrada, termina e produz uma saída adequada
- Algoritmo incorreto
 - Quando para com uma resposta indesejada
 - Quando não para (ou seja, permanece em loop)

Exemplos de algoritmos

- Projeto Genoma Humano
 - O DNA humano possui cerca de 100 mil genes e
 3 bilhões de pares de bases químicas
 - Necessidade de armazenar esses dados e analisá-los
 - Inserção, eliminação e atualização dos dados
 - Ordenação, classificação e pesquisa de informações
 - Correlação entre os dados
 - Cálculos científicos envolvendo grandes matrizes multidimensionais

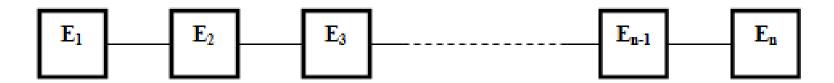
Internet

- Emprega algoritmos para gerenciar e manipular um enorme volume de dados
 - Localização de rotas por onde os dados trafegam
 - Mecanismos de pesquisa de páginas

Exemplos de algoritmos

- Comércio eletrônico
 - Necessidade de manter informações privativas (número de cartões, senhas, etc.)
 - Criptografia de chave pública e assinaturas digitais
 - Compactação e descompactação
- Indústria e comércio
 - Alocação adequada de recursos escassos
 - Onde localizar os poços de petróleo para maximizar o lucro?
 - Onde investir em publicidade? Público? Região?
 - Como designar tripulações de voo de um modo menos dispendioso?
 - Qual melhor investimento: ações, opções, títulos públicos?

Desenvolvimento de um algoritmo

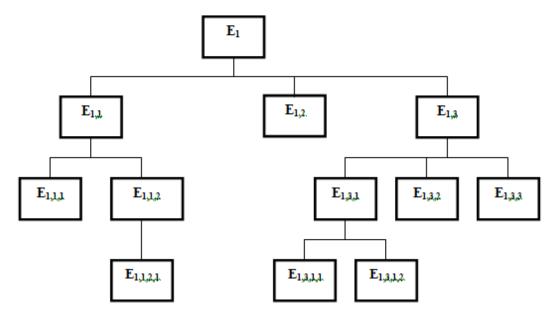

- Características dos algoritmos
 - Considere um problema prático
- Convém conhecer os algoritmos existentes para então adaptá-los às suas necessidades
- Existem muitas resoluções candidatas, mas provavelmente não serão exatamente aquilo de que você precisa...
- Qual o melhor algoritmo?
 - Basta que forneça a resposta correta?
 - Também é importante a sua eficiência
 - Tempo de computação
 - Memória utilizada

Estruturas de dados

- O consumo de tempo e de memória torna-se extremamente crítico quando o universo de informações é muito grande...
- A eficiente utilização dos recursos computacionais e a redução do tempo de resposta dependem de dois fatores:
 - Boa estruturação das informações
 - Bons algoritmos que manipulem essas estruturas
- Principais modelos para visualizar, interpretar e armazenar dados:
 - Listas lineares
 - Árvores
 - Grafos

Listas lineares

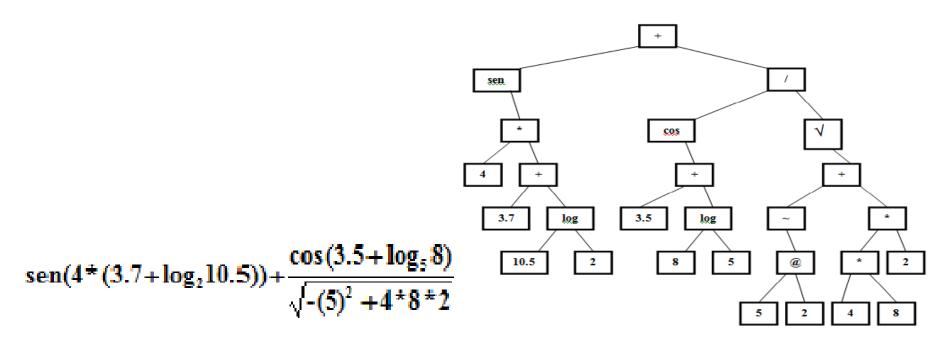
Seus elementos formam uma sequência linear:


- Cada elemento possui um antecessor e um sucessor (exceto o primeiro e o último)
- Tabelas, em geral, se enquadram neste modelo:

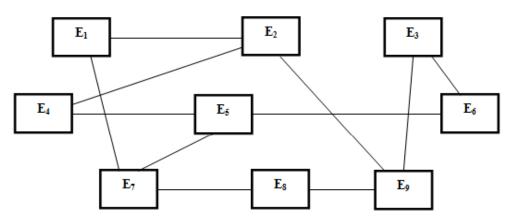
Nome	Endereço	Outros

- Listas telefônicas
- Folhas de pagamento
- · Livros de uma biblioteca
- Tabelas de um banco de dados relacional

Árvores


Há uma hierarquia entre os elementos:

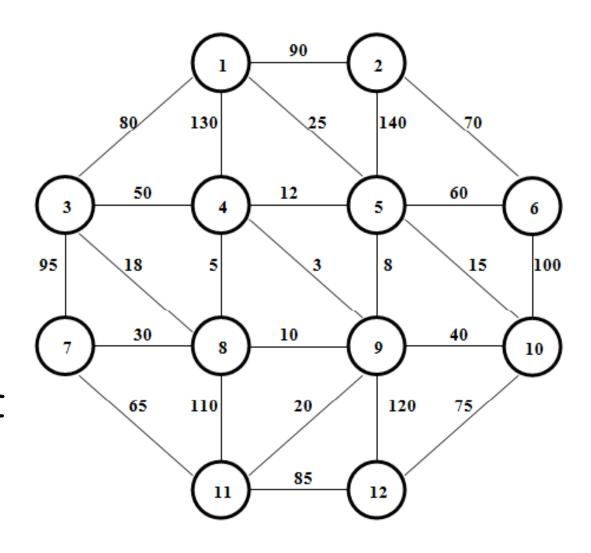
- Cada elemento:
 - Tem um único pai (exceto a raiz)
 - Pode ter vários filhos
 - Não pode ser pai de nenhum ancestral


Exemplos de árvores

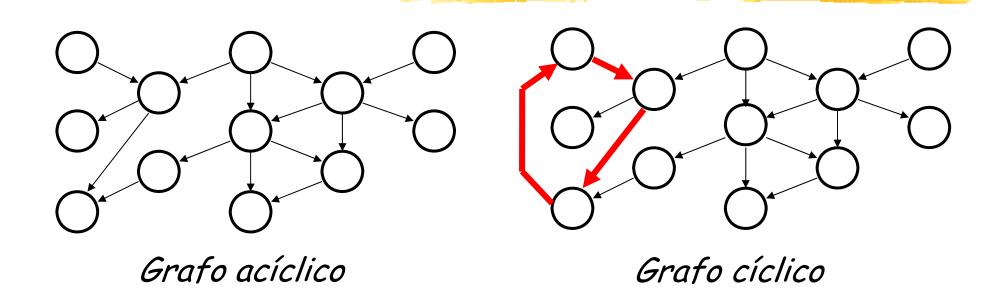
- Organograma de empresas
- Organização de livros e cursos
- Jogos eliminatórios de um campeonato
- Expressões aritméticas

Grafos

 Há uma interligação geral entre os elementos, sem formar sequências ou hierarquias:


- Exemplos:
 - Tarefas de um projeto
 - Sistema rodoviário
 - Redes de interconexão
 - Fornecimento de produtos entre fábricas
 - Máquinas de estados finitos
 - etc.

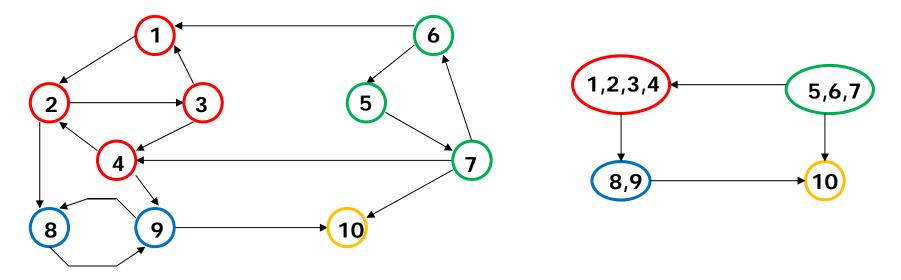
Importância da disciplina


- Na Ciência da Computação:
 - Processo de compilação
 - Gerenciamento de programas e de memória
 - Construção de bancos de dados
 - etc.
- Mesmo sem ser um especialista na área, um engenheiro nos dias de hoje deve ser capaz de elaborar algoritmos não triviais.
- Alguns exemplos de problemas em grafos:
 - Caminhos mais curtos
 - Validação de grafos acíclicos
 - Componentes fortemente conexos
 - Pontos de articulação
 - Árvore geradora de custo mínimo

Caminhos mais curtos

- Distâncias a partir de um dado vértice
- Aplicações:
 - Transporte terrestre ou aéreo
 - Robótica
 - Projetos de VLSI

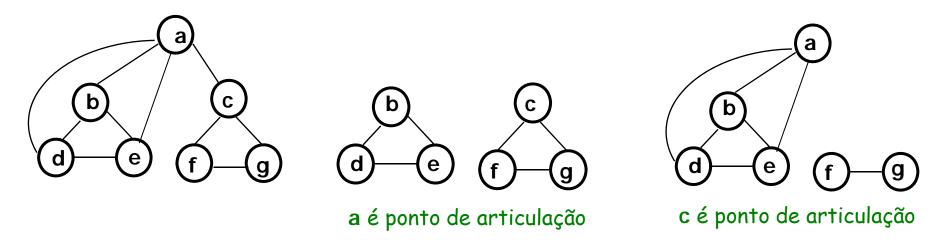
Validação de grafos acíclicos



Aplicações:

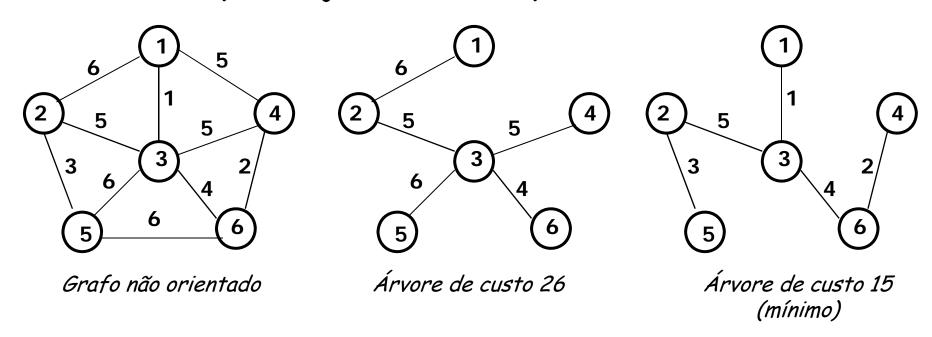
- Gerenciamento de projetos (redes PERT-CPM: *Program Evaluation and Review Technique, Critical Path Method*)
- Simulação de circuitos combinacionais

Componentes fortemente conexos


 Subconjuntos maximais de vértices onde há caminhos de qualquer vértice a todos os demais.

- Aplicações:
 - Privacidade em sistemas de comunicação
 - Classes de equivalência em circuitos digitais
 - Redução do tamanho de determinados problemas

Pontos de articulação


 Um vértice é ponto de articulação se, ao ser removido, desconecta o grafo.

- Aplicações:
 - Sistemas de transmissão de energia elétrica
 - Sistemas de distribuição hidráulica
 - Redes de interconexão em geral

Árvore geradora de custo mínimo

As vezes, é necessário encontrar um subgrafo gerador (todos os vértices e um subconjunto das arestas) que seja árvore e que tenha custo mínimo.

- Aplicações:
 - Redes de interconexão em geral

Plano do curso

Primeiro Bimestre:

- Breve revisão
- Noções de complexidade de algoritmos
- Listas lineares
- Pilhas, filas e deques
- Árvores
- Árvores binárias

Segundo Bimestre:

- Algoritmos de ordenação
- Paradigma da Divisão-e-Conquista
- Grafos
 - Representações
 - Soluções de alguns problemas clássicos
- Noções de Programação Orientada a Objetos

Avaliações individuais

- Em cada bimestre:
 - 2 provas
 - 3 laboratórios
- Pesos:
 - Provas: 50%
 - Média dos laboratórios: 50%

Premissas éticas nos laboratórios

É permitido:

- Consultar material didático (slides, apostilas, códigos) de outros professores do ITA ou disponível na internet (neste último caso, se for código, sem fornecê-lo a outros colegas)
- Pensar na solução junto com um colega, antes de programarem
- Trocar ideias com outro colega, mas sem olhar o código que ele escreveu
- Ajudar um colega a encontrar erros de codificação, desde que já tenha terminado o próprio laboratório

Não é permitido:

- Utilizar código pronto encontrado na internet
- Olhar ou copiar soluções de outro aluno (da mesma turma ou de anteriores)
- Fazer o exercício (mesmo parcialmente) de um colega com dificuldades
- Escrever o código junto com outro colega

Bibliografia

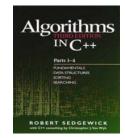
W. Celes, R. Cerqueira, J.L. Rangel
 Introdução a Estrutura de Dados

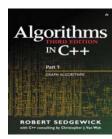
P. Feofiloff
 Algoritmos em Linguagem C

A. Drozdek
 Estrutura de Dados e Algoritmos em C++

Bibliografia complementar

T.H. Cormen, C.E. Leiserson, R.L. Rivest


Introduction to Algorithms



 A. V. Aho, J. E. Hopcroft, J. D. Ullman Data Structures and Algorithms

R. Sedgewick
 Algorithms [in C, C++, Java]

Bibliografia complementar

 A.M. Tanenbaum, Y. Langsam, M.J. Augenstein Estruturas de Dados usando C

M.T. Goodrich, R. Tamassia
 Projeto de Algoritmos

B.R. Preiss
 Estruturas de Dados e Algoritmos

