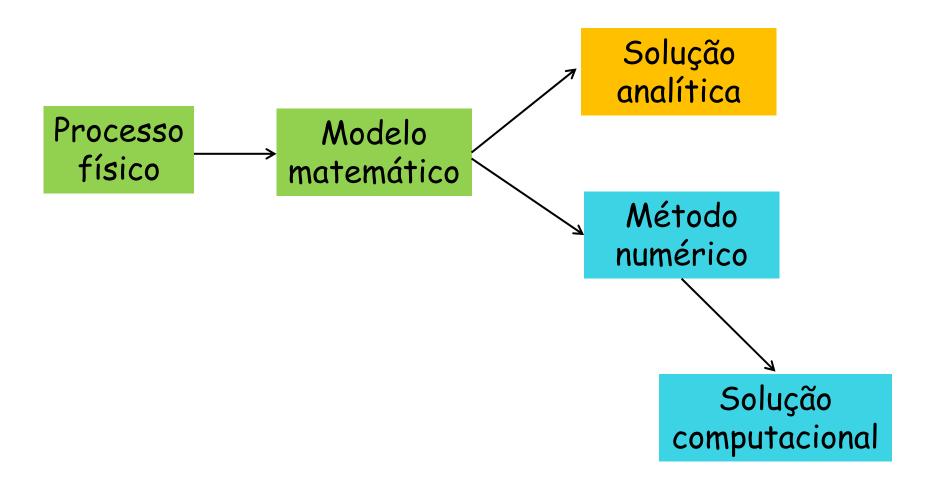


Matemática Computacional

Carlos Alberto Alonso Sanches Juliana de Melo Bezerra


Introdução e Motivação

Conteúdo, Avaliação, Bibliografia

Conteúdo

- Em muitas universidades, este curso costuma ser chamado de Cálculo Numérico
- Corresponde a um conjunto de ferramentas ou métodos para a obtenção de uma solução aproximada de problemas matemáticos
- Exemplos: raízes de equações, interpolação de valores coletados, integração numérica, etc.
- Sua aplicação refere-se a problemas numéricos que não possuem uma solução exata

Finalidade

Justificativas

- Em alguns problemas, a resolução analítica é impraticável
 - Exemplo: sistemas lineares com muitas variáveis
- Há problemas que não podem ser resolvidos analiticamente
 - Exemplo: determinadas integrais e equações diferenciais
- Nos problemas reais, os dados são medidas físicas não exatas, com erros inerentes
 - É preciso considerar suas aproximações

Um caso real

- Em 04/06/1996, na Guiana Francesa, o lançamento do foguete Ariane 5 falhou por uma limitação da representação numérica (quantidade insuficiente de bits)
- Houve um erro na trajetória, 36,7 segundos após o lançamento, seguido de explosão
- Prejuízo: US\$ 7,5 bilhões

Plano do curso

Primeiro bimestre:

- Representação numérica, erros e arredondamento
- Ferramentas de suporte
- Raízes de sistemas de equações (lineares e não lineares)

Segundo bimestre:

- Interpolação polinomial e ajuste de curvas
- Integração e diferenciação numéricas

Avaliação

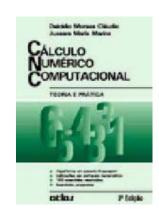
- Em cada bimestre:
 - 1 prova
 - 2 exercícios de laboratório (trabalho individual)
- Pesos:
 - Prova: 50%
 - Média dos exercícios: 50%

Premissas éticas nos laboratórios

• É permitido:

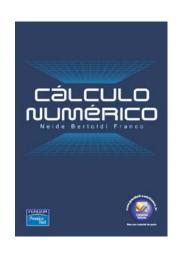
- Consultar material didático (slides, apostilas, códigos) de outros professores do ITA ou disponível na internet (neste último caso, se for código, sem fornecê-lo a outros colegas)
- Pensar na solução junto com um colega, antes de programarem
- Trocar ideias com outro colega, mas sem olhar o código que ele escreveu
- Ajudar um colega a encontrar erros de codificação, desde que já tenha terminado o próprio laboratório

Não é permitido:

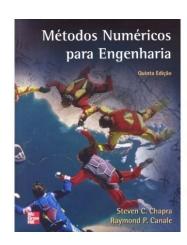

- Utilizar código pronto encontrado na internet
- Olhar ou copiar soluções de outro aluno (da mesma turma ou de anteriores)
- Fazer o exercício (mesmo parcialmente) de um colega com dificuldades
- Escrever o código junto com outro colega

Bibliografia

M.A.G. Ruggiero e V.L.R. Lopes
 Cálculo Numérico
 Aspectos Teóricos e Computacionais
 Pearson Makron Books



D.M. Cláudio e J.M. Marins
 Cálculo Numérico Computacional
 Teoria e Prática
 Atlas



Bibliografia complementar

N.B. Franco
 Cálculo Numérico Prentice-Hall

 S.C. Chapra e R.P. Canale Métodos Numéricos para Engenharia McGraw-Hill

1) Representações numéricas

Sistemas de Numeração, Mudanças de Base, Representações

- Sistemas de numeração
 - Bases: decimal, binária, etc.
 - Números fracionários
 - Mudanças de base
- Representação de números
 - Inteiros
 - Reais

- Sistemas de numeração
 - Bases: decimal, binária, etc.
 - Números fracionários
 - Mudanças de base
- Representação de números
 - Inteiros
 - Reais

Sistemas de numeração

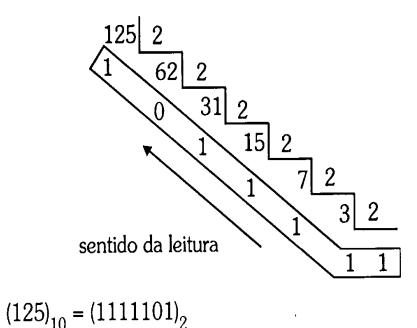
- Base decimal
 - 10 dígitos disponíveis: 0, 1, 2, ..., 9
 - "Posição" indica a potência positiva de 10
 - Exemplo:
 - $-5432 = 5.10^3 + 4.10^2 + 3.10^1 + 2.10^0$
- Base binária: é análogo
 - 2 dígitos (<u>binary digits</u>): 0, 1
 - "Posição" indica potência positiva de 2
 - Exemplo:
 - $1011_2 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 8 + 0 + 2 + 1 = 11_{10}$

- Sistemas de numeração
 - Bases: decimal, binária, etc.
 - Números fracionários
 - Mudanças de base
- Representação de números
 - Inteiros
 - Reais

Números fracionários

- Base decimal
 - Potência negativa de 10 para parte fracionária
 - Exemplo:
 - $54.32 = 5.10^1 + 4.10^0 + 3.10^{-1} + 2.10^{-2}$
- Base binária: também é análogo
 - Potência negativa de 2 para parte fracionária
 - Exemplo:
 - $(10,11)_2 = 1.2^1 + 0.2^0 + 1.2^{-1} + 1.2^{-2}$
 - $(10,11)_2 = 2 + 0 + \frac{1}{2} + \frac{1}{4} = (2,75)_{10}$
- Idem para outras bases: octal, hexadecimal, etc.

- Sistemas de numeração
 - Bases: decimal, binária, etc.
 - Números fracionários
 - Mudanças de base
- Representação de números
 - Inteiros
 - Reais


Conversão ou mudança de base

- Uma caixa alienígena com o número 25 gravado na tampa foi entregue a um grupo de cientistas. Ao abrirem a caixa, encontraram 17 objetos. Considerando que o alienígena tem um formato humanóide, quantos dedos deverá ter nas duas mãos?
- Solução:
 - $(17)_{10} = (25)_{b}$
 - $-17 = 2.b^1 + 5.b^0$
 - 17 = 2b + 5
 - **b** = 6

Outro exemplo

- Um sistema de numeração ternário tem três trits, que podem ter valor 0, 1 ou 2. Quantos trits são necessários para representar um número de seis bits?
- Solução:
 - $2^6 1 \le 3^9 1$
 - $6.\log_2 2 \le y.\log_2 3$
 - $y = \lceil 6/\log_2 3 \rceil$
 - y = 4
 - Comprovando: 3³=27 < 64 < 3⁴=81

Da base decimal para outra

$$(538)_{10} = (?)_{16}$$

$$538 \boxed{16}$$

$$10 \quad 33 \quad 16$$

$$1 \quad 2$$
A quantidade 10 é representada pelo algarismo A

 $(538)_{10} = (21A)_{16}$

Entre a base 2 e uma base 2ⁿ

 $(1011110010100111)_2 = (?)_{16}$

$$(A79E)_{16} = (?)_{2}$$

Conversão de números fracionários

- Operação inversa: multiplicar por 2 a parte fracionária do número até que a parte fracionária do resultado seja zero
- Exemplo: converter (0,625)₁₀ para binário
 - 0,625 . 2 = 1,25: a primeira casa fracionária será 1, e a nova fração será 0,25
 - 0,25 . 2 = 0,5: a segunda casa fracionária será 0, e a nova fração será 0,5
 - 0,5 . 2 = 1,0: a terceira casa fracionária será 1, e a nova fração será zero
 - Resultado: $(0,625)_{10} = (0,101)_2$

Outro exemplo

$$(8,375)_{10} = (?)_2$$

- parte inteira: $(8)_{10} = (1000)_2$
- parte fracionária:

Exercícios

- Verificar:
 - $(5,8)_{10}$ = $(101,11001100...)_2$, ou seja, é uma dízima
 - (11,6)₁₀ = (1011,10011001100...)₂
 - Repare que a vírgula foi deslocada uma casa para a direita, pois 11,6 = 2 . 5,8
- Portanto, todo computador que trabalha com a base 2, como possui uma quantidade limitada de bits, armazenará uma aproximação para números como 5,8 ou 11,6
- Não se pode esperar resultados exatos em seus cálculos...

- Sistemas de numeração
 - Bases: decimal, binária, etc.
 - Números fracionários
 - Mudanças de base
- Representação de números
 - Inteiros
 - Reais

Representação de números inteiros

- No armazenamento de um número inteiro, os computadores utilizam geralmente uma quantidade fixa de m bits, chamada palavra
- O primeiro bit à esquerda representa o sinal, e os demais, o módulo do número
- Dentro desse esquema, há duas maneiras de representar os números inteiros:
 - Pelo módulo
 - Pelo complemento de 2

Representação pelo módulo

- O primeiro bit é o sinal, e os demais m-1 bits representam o módulo do número
- Exemplo para palavras com m = 4 bits:

```
(0\ 000)_2 = +0 (1\ 000)_2 = -0 (0\ 100)_2 = +4 (1\ 100)_2 = -4

(0\ 001)_2 = +1 (1\ 001)_2 = -1 (0\ 101)_2 = +5 (1\ 101)_2 = -5

(0\ 010)_2 = +2 (1\ 010)_2 = -2 (0\ 110)_2 = +6 (1\ 110)_2 = -6

(0\ 011)_2 = +3 (1\ 011)_2 = -3 (0\ 111)_2 = +7 (1\ 111)_2 = -7
```

Problemas:

- Duas representações para o zero
- Incoerência nos cálculos $5 2 = 5 + (-2) = (0101)_2 + (1010)_2 = (1111)_2 = -7$

Representação pelo complemento de 2

- O primeiro bit continua sendo o sinal
- Os demais bits obedecem à seguinte regra:
 - Se o número for positivo, representarão o seu módulo
 - Exemplo: $(5)_{10} = (0101)_2$
 - Se o número for negativo, representarão seu módulo complementado e acrescido de 1
 - Exemplo: (-5)₁₀
 - Módulo: 101
 - Complemento: 010
 - Acréscimo de 1: 011
 - Portanto, $(-5)_{10} = (1011)_2$

<u>Ideia de fundo:</u>

ao serem somados, resultado final será (0000)₂

Representação pelo complemento de 2

Exemplo para palavras com m = 4 bits:

$$(0\ 000)_2 = +0$$
 $(0\ 100)_2 = +4$ $(1\ 000)_2 = -8$ $(1\ 100)_2 = -4$
 $(0\ 001)_2 = +1$ $(0\ 101)_2 = +5$ $(1\ 001)_2 = -7$ $(1\ 101)_2 = -3$
 $(0\ 010)_2 = +2$ $(0\ 110)_2 = +6$ $(1\ 010)_2 = -6$ $(1\ 110)_2 = -2$
 $(0\ 011)_2 = +3$ $(0\ 111)_2 = +7$ $(1\ 011)_2 = -5$ $(1\ 111)_2 = -1$

- Valor de (1xx...x)₂: (0xx...x)₂ 2^{m-1}
- Intervalo de representação: [-2^{m-1}, 2^{m-1}-1]
 - Zero e positivos: [0, 2^{m-1}-1]
 - Negativos: [-2^{m-1}, -1]

- Sistemas de numeração
 - Bases: decimal, binária, etc.
 - Números fracionários
 - Mudanças de base
- Representação de números
 - Inteiros
 - Reais

Representação de números reais

- A representação de números reais é chamada de ponto flutuante (*float*), porque o ponto (a vírgula, em português) pode variar (ou flutuar) de posição conforme a potência da base
- Exemplo:
 - $54,32 = 54,32 \cdot 10^0 = 5,432 \cdot 10^1 = 0,5432 \cdot 10^2 = 5432,0 \cdot 10^{-2}$

Representação em ponto flutuante

- Considere, por exemplo, o número 0,10111.b¹⁰¹:
 - (0,10111)₂: mantissa (ou significando)
 - $(101)_2$: expoente
- Representação genérica: ±0,d₁d₂...d_n.b^{exp}
 - n é o número de dígitos da mantissa
 - $d_1d_2...d_n$: mantissa, com $0 \le d_i < b \in d_1 \ne 0$
 - exp: expoente (inteiro com sinal)
 - b: base numérica (geralmente é 2 nos computadores), que não precisa ser armazenada, pois é padrão em cada arquitetura

Armazenamento de floats

- Na arquitetura de cada computador, está definido:
 - A quantidade de bits da mantissa (é a sua precisão)
 - A quantidade de bits do expoente
 - Um bit de sinal
 - Geralmente, é o primeiro à esquerda
 - 0 é positivo e 1 é negativo
- Um exemplo com 8 bits:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Sinal	Expoente (+/-)			Mantissa			