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Abstract

We study how effectively edge-centric dynamics solve machine learn-
ing tasks. The Edge Domination System is an algorithm to reveal
patterns and obtain information of the underlying complex network.
The algorithm consists in the simulation of a collective dynamical
system based on particle competition for the dominance of edges. In
this paper, we propose a vertex-centric version of this model and as-
sess the differences between the edge-centric model. The edge-centric
system offers better features in machine learning task, such as greater
exploration behavior and faster convergence.

©2016 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

We study emergent collective behavior in dynamical systems and how it can benefit an algorithm in data
learning tasks. The study of systems with the emergence of collective dynamics has led to algorithms
based on the behavior of birds, bees, ants, bacterial colony, and many other forms of intelligence. In
these biological situations, the driving factor of interactions ultimately aims at the individuals’ survival,
which manifests in the behavior of cooperation, competition, or a compound of them. Such behaviors
often inspire machinery for solutions in optimization and learning problems, and are increasingly found
in the literature [1–3].

We introduced in [4] the Edge Domination System (EDS), an algorithm that deterministically
obtains information of the underlying complex network by exploring patterns revealed by the collective
dynamics of particle competition. The algorithm models particles randomly walking a complex network,
represented by a graph, in which teams of particles dominate the edges they visited more frequently than
their rivals. Afterward, the algorithm promotes an unfolding : it breaks the network down in subnetworks
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induced by the edges and their dominant label. The unfolded networks allow the algorithm to finally
draw conclusions regarding the labels of the vertices, which is the result for the learning task.

Unlike similar approaches with particle competition [5], the edges are the resource the particles
compete for instead of the vertices. Since this approach is rather new, the advantages of edge compe-
tition is still unclear and need to be explored. We presented an initial assessment in [6], and in this
paper, we will further explore the differences between the two resources of competition. We will model
a comparable algorithm of particles competing for vertices, and we will compare it with EDS, whose
particles compete for edges.

We conclude that the edge-centric dynamics is preferred over the vertex-centric, since it acquires
more information and converges faster at the same computational cost.

The remaining of this paper is organized as follows. Section 2 reviews the original EDS and in-
troduces an artificial network model to represent learning problems. The effectiveness of a simplified
version of EDS and its vertex-based counterpart are compared in section 3. The convergence of the
classification results in both systems is studied in section 4. Finally, section 5 concludes the paper.

2 Methods

In this section, we review the original Edge Domination System and propose a artificial network model.
We use this network model to represent the learning scenarios in which we compare EDS and its vertex-
based counterpart. Specifically, it generates binary classification tasks with controllable difficulty.

2.1 Review of Edge Domination System

The Edge Domination System [4] models a process in a complex network in which teams of particles
compete to dominate the largest number of edges. The interaction network is represented by a graph
G = (V ,E ) that is simple, unweighted, and undirected. The set of vertices V = L ∪U splits vertices
in l labeled vertices, L = {v1, . . . ,vl}, and u unlabeled vertices, U = {vl+1, . . . ,vl+u}, with a total of
|V |= l +u vertices, where we suppose few labeled vertices, l� u. The problem contains C > 1 possible
labels, and each vi from the labeled set L has the label yi ∈ {1, . . . ,C}. The set of edges E ⊆ V ×V
contains an edge (i, j) if vi and vj are connected. The network is also represented by the adjacency
matrix A = (aij) where aij = aji = 1 if the edge (i, j) exists.

One team of particles exists for each possible label, totalizing C teams of particles and of vertices.
All the particles randomly walk from vertex to vertex, one vertex at a time. When any particle passes
through an edge, the edge counts the visit for the particle’s team. An edge registers two values for
a team: the number of visits solely from the current time, and the cumulative number of visits since
the beginning. At any moment, the team that dominates an edge is determined by the team with the
highest number of visits. The system models no cooperation between teams, and any two particles or
vertices are rival if they belong to different teams. Particles are always bonded to the same team, but
the size of the teams vary because particles can be removed from the system or new particles can be
generated by the labeled vertices. These rules are described below as three actions, which combine to
model the evolution rule of the system.

Walking. A particle is always in a vertex and chooses a connected vertex to move at each time,
with equal probability between the neighbors of the current vertex.

Absorption. The transitory team domination is the number of visits in an edge by team that
occurred at the last time. In the next movement, the transitory team domination determines the success
rate of particles moving to their next vertices, or to fail and being removed from the system—the higher
the presence of a team, the easier particles from the same team pass through the edge. Additionally,
all the labeled vertices thwart every rival particle trying to reach them, automatically removing those
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particles from the system—this action characterizes such vertices as sinks.
Generation. Besides being sinks, the labeled vertices are also sources for new particles. A source

vertex generates particles for its team according to the neighborhood size and the size of the population.
This rule maintains the size of the population close to its initial size.

Every edge has transitory and cumulative values of team domination, which assist an algorithm
solving machine learning problems. An approach considers only the team that dominates each edge,
grouping the edges by the team that dominates. The algorithm unfolds the interaction network in
subnetworks by group: the unfolding of team c at time t is the subnetwork containing all the edges
dominated by team c at time t. Over the evolution of the competition process, the network’s unfoldings
change less and less until they converge to stable subnetworks that are afterward analyzed to the
machine learning task.

In [4], we proposed a system that describes the expected evolution of the particles over time. This
system models deterministic evolution rules, and it is denoted as

X(t) =


nnnc(t) =

[
nc

i (t)
]

i=1,...,|V |

Nc(t) =
(
nc

ij(t)
)

i, j=1,...,|V |

∆c(t) =
(
δ c

ij(t)
)

i, j=1,...,|V |


c=1,...,C

, (1)

where nnnc(t) is a row vector whose elements nc
i (t) describe the population of particles from team c in

each vertex vi at time t. Stored in sparse matrices, the elements nc
ij(t) ∈ Nc(t) and δ c

ij(t) ∈ ∆c(t) are the
transitory directed domination and the cumulative domination, in that order. At time t, nc

ij(t) is the
portion of particles from team c that moved from vi to v j, while δ c

ij(t) is the accumulated portion of
visits since the beginning.

The system X is a nonlinear Markovian dynamical system with the deterministic evolution function

φ :


nnnc(t + 1) = nnnc(t)×Pc(X(t))+ gggc(X(t))

Nc(t + 1) = diagnnnc(t)×Pc(X(t))

∆
c(t + 1) = ∆

c(t)+ Nc(t + 1)

, (2)

where diagvvv is a square matrix with the elements of vector vvv on the main diagonal and × stands for
the vector–matrix product.

The function Pc(X(t)) of the system X at time t is a square matrix whose elements are

pc
ij(X(t)) =

0 if vj ∈L and yj 6= c ,
aij

degvi

(
1−λσ

c
ij(X(t))

)
otherwise,

(3)

where

σ
c
ij(X(t)) =


1−

nc
ij(t)+ nc

ji(t)

∑
C
q=1 nq

ij(t)+ nq
ji(t)

if ∑
C
q=1 nq

ij(t)+ nq
ji(t) > 0,

1− 1
C

otherwise.

(4)

Given that we know the initial state X(0) of the system, the function gggc(X(t)) of the system X at
time t returns a row vector where the i -th element is

gc
i (X(t)) = ρ

c
i max{0, 111 ·nnnc(0)−111 ·nnnc(t)} , (5)
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Fig. 1 Example of network G(60,6,0.8,1). Vertices are colored according with their label and positioned
according with their associated point in the space.

where 111 is a row vector whose elements are 1, ‘·’ is the inner product between vectors, and

ρ
c
i =


degvi

∑vj∈G c degvj
if vi ∈ G c,

0 otherwise.

(6)

Using the cumulative domination, we group edges by team domination. For each team c, the subset
of edges E c(t)⊆ E contains the edges dominated by the team c,

E c(t) =

{
(i, j)

∣∣∣∣argmax
q

(
δ

q
ij (t)+ δ

q
ji (t)

)
= c
}

. (7)

We define the subnetwork
Gc(t) = (V ,E c(t)) (8)

as the unfolding of network G obtained with the edges of team c at time t.
The initial state of the system X is determined by an arbitrary population size nc

i (0) of initial active
particles and {

nc
ij(0) = 0 ,

δ
c
ij(0) = 0 .

(9)

2.2 Artificial network model

To study the EDS, we introduce a random network with labeled vertices. The network model represents
a binary classification task with controllable overlap between instances with different labels.

The undirected random network G(n,k,q,b) has n vertices of which half of them are positive-labeled.
The other half has negative label. Each vertex vi is associated with a point xi in a bi-dimensional space.
Let yi ∈ {+,−} be the label of vertex vi, the points xi such that yi =− is uniformly distributed in the
interval

[
0,b−1

]
× [0,b], and the points xj such that yj = + is in the interval

[
(2−q)b−1,(3−q)b−1

]
× [0,b].

The two vertices vi and vj are connected if xi is one of the k -neighborhood of xj according to the Euclidean
metric, or vice-versa.

The parameter q ∈ [0,2] controls the overlapping area between the surfaces from which the points
are sampled. If q < 1, the surfaces do not overlap and the inter-label region of the resulting network is
less dense than the intra-label. If q = 1, the density of the resulting graph is uniform along the graph. If
q > 1, the surfaces overlap and there are high density of edges in the overlapping region. In the extreme
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q = 2, points with different labels are sampled from the same surface. The parameter b > 0 controls
the size of the border, increasing the number of vertices that may have at least one connection with
vertices with other label.

The networks G(n,k,q,b) are, thus, spatial networks with controllable border and overlap between
vertices with different labels. The border size is b and the overlapping area is max(0,q−1).

3 Effectiveness in learning problems

We assess the differences between the edge-based competition system and its vertex-based counterpart.
To simplify our studies, we slightly modify the original EDS under certain assumptions that should
not impair the performance in machine learning problems. We compare both models in the synthetic
networks that provide controllable learning scenarios, see section 2.2.

3.1 Simplified systems

To simplify the EDS, we assume two properties: the system’s unfoldings always converges, and the
initial population is balanced between vertices with different labels.

Assumption of unfolding convergence The original model considers the domination accumulated
over time to unfold the network. After few iterations, we observed the current domination becomes
proportional to the accumulated value, leading us to simplify the model. We dropped the accumulated
domination strategy to only observe the current domination.

In fact, if the matrices Nc(t) converge for all c,

lim
t→∞

argmax
c

(
δ

c
ij(t)+ δ

c
ji(t)

)
= lim

t→∞
argmax

c

(
nc

ij(t)+ nc
ji(t)
)

.

We can obtain the same limiting unfoldings without the accumulated domination. The convergence
of the unfoldings are analytically and experimentally studied in section 4. (We have verified that the
unfoldings of all simulations are convergent in this paper.)

Assumption of no preferred label In Verri, Urio, and Zhao [4], the semi-supervised learning
method based on the EDS uses an initial population of particles distributed by the vertex degree,
without considering the particles’ team. Conversely, we adopt a less restrictive assumption of the initial
condition. We assume there is no preferred label, that is, given n0 > 0,

∑
i

nc
i (0) = n0, (10)

for all labels c.
With this assumption, and relying in the scale invariant property of the system, we simplify the

particle generation term, Eq. (5). The scale invariant property means that multiplying the initial
population of particles in every vertex by a positive constant scales the population at any time by the
same factor. Because we need to know which team dominates and not the size of each team, we may
scale any initial population to be a discrete distribution of particles and maintain the same resulting
unfoldings. To do so, we multiply the initial population of each vertex by n−1

0 . The summation over a
distribution is always 1, so is the total population of the teams at the beginning.

Under such assumptions, we prove the size of every team never exceeds 1. The population limit
enables us to drop the max function in Eq. (5).

Theorem 1. Population limit. The total population ∑i nc
i (t) of every label c is less than or equal to 1
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if the initial population is ∑i nc
i (0) = 1.

Proof. We know that

nc
i (1) = ∑

j
nc

j (0)pc
ji(X(0))≤∑

j
nc

j (0)
aji

degvj

(
1−λ

C−1
C

)
and thus

∑
i

nc
i (1)≤

(
1−λ

C−1
C

)
∑

j
nc

j (0)∑
i

aji

degvj
≤∑

j
nc

j (0) = 1.

Now, we assume ∑i nc
i (t)≤ 1 for all c and t > 1, and prove the inequality for t + 1.

nc
i (t + 1) = ∑

j
nc

j (t)pc
ji(X(t))+ gc

i (X(t))≤

∑
j

nc
j (t)

aji

degvj

(
1−λσ

c
ji(X(t))

)
+ ρ

c
i max{0, 111 ·nnnc(0)−111 ·nnnc(t)} ≤

∑
j

nc
j (t)

aji

degvj

(
1−λσ

c
ji(X(t))

)
+ ρ

c
i max{0, 1−111 ·nnnc(t)} ≤

∑
j

nc
j (t)

aji

degvj

(
1−λσ

c
ji(X(t))

)
+ ρ

c
i

(
1−∑

k
nc

k(t)

)
(11)

and thus

∑
i

nc
i (t + 1)≤∑

i
∑

j
nc

j (t)
aji

degvj

(
1−λσ

c
ji(X(t))

)
+

(
1−∑

k
nc

k(t)

)
∑

i
ρ

c
i ≤

∑
j

nc
j (t)∑

i

aji

degvj

(
1−λσ

c
ji(X(t))

)
+ 1−∑

k
nc

k(t)≤∑
j

nc
j (t)+ 1−∑

k
nc

k(t)≤ 1. (12)

By mathematical induction, theorem 1 is proved for all time t and team c.

3.1.1 Simplified Edge Domination System

From the assumptions, the simplified edge-based system is

X(t) =

 nnnc(t) =
[
nc

i (t)
]

i=1,...,|V |

Nc(t) =
(
nc

ij(t)
)

i, j=1,...,|V |


c=1,...,C

, (13)

with evolution

φ :

{
nnnc(t + 1) = nnnc(t)×Pc(X(t))+ gggc(X(t))

Nc(t + 1) = diagnnnc(t)×Pc(X(t)) ,
(14)

such that Pc(X(t)) is Eq. (3) and gggc(X(t)) is a row vector where the i -th element is

gc
i (X(t)) = ρ

c
i (1−111 ·nnnc(t)) . (15)

The initial state is given by an arbitrary discrete distribution nnnc(0), and the zero matrix Nc(0). The
unfoldings are now based on the current domination instead of the cumulative. Thus, the unfoldings
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are Gc(t) = (V ,E c(t)) such that

E c(t) =

{
(i, j)

∣∣∣∣argmax
q

(
nq

ij(t)+ nq
ji(t)
)

= c
}

. (16)

3.1.2 Simplified Vertex Domination System

From system in Eq. (13), it is straightforward to shift the competition to the vertices. We eliminate the
states that track the current domination in the edges and rewrite σ , Eq. (4), in terms of the current
domination in the vertices. The Vertex Domination System (VDS) is

X(t) =
[
nnnc(t) =

[
nc

i (t)
]

i=1,...,|V |

]
c=1,...,C

, (17)

with evolution function
nnnc(t + 1) = nnnc(t)×Pc(X(t))+ gggc(X(t)) , (18)

where Pc(X(t)) is Eq. (3) with

σ
c
ij(X(t)) =


1−

nc
j (t)

∑
C
q=1 nq

j (t)
if ∑

C
q=1 nq

j > 0,

1− 1
C

otherwise,

(19)

and gggc(X(t)) is a row vector where the i-th element is Eq. (15).
The initial state of the system X is given by an arbitrary discrete distribution nnnc(0). The concept

of unfoldings is not defined in this system.

3.2 Experimental results

To compare the systems Edge Domination System (EDS) and Vertex Domination System (VDS), we
formulate a simple example where the systems behave quite differently. The toy example motivates us
to explore the reasons of the differences and the impact of them in machine learning tasks. We further
compare the effectiveness of each system in artificial data.

3.2.1 Toy example

Consider the network whose vertices are points in a two-dimensional plane depicted in Fig. 2(a). The
vertices of this network can be either positive (blue, light, shaping a vertical pattern) or negative (red,
dark, shaping a horizontal pattern). The central vertex (grey, light) has no label. Four vertices (square-
shaped) are labeled. We connect each vertex to its nearest neighbor. Using this network as the input
for EDS and VDS, one shall expect the fraction of positive and negative particles to be the same in
the central vertex for both systems. Figure 3(a) demonstrates this behavior.

Now, consider adding a new vertex to this dataset as shown in Fig. 2(b). Notice that the modifica-
tion barely changes the network’s topology. However, in this network both systems behave differently,
see Fig. 3(b). In the edge-centric system, the proportion of different kinds of particles in the central
vertex alternates about the same. In the vertex-centric system, on the other hand, the central vertex
is dominated by positive-labeled particles. This example indicates the two models are not equivalent,
and it motivates us to investigate the advantages of the edge-centric model against the vertex-centric
one.
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Fig. 2 Toy networks with (a) 9 vertices and (b) 10 vertices.
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Fig. 3 Fraction of positive particles in each vertex over time with (a) 9-vertices and (b) 10-vertices networks as
input.

3.2.2 Classification error

We compare the classification error of the systems for increasing levels of difficulty. The error is obtained
from 30 independently sampled networks G(250,k,q,b) for each k ∈ {6,8, . . . ,12}, q ∈ {0.8,0.9, . . . ,1.4},
and b ∈ {1,2,3}. We fixed λ = 1 and the fraction of initially labeled vertices in 10%.

We start both systems with population size

nc
i (0) =

degvi

2 |E |

independently of label c. To classify an unlabeled vertex vi, we adopt the original strategy in Verri,
Urio, and Zhao [4] for the EDS at time τ = 100, yi = argmaxc |E (N c

i (τ))| , where |E (N c
i (τ))| stands for

the number of edges in the neighborhood of vi in Gc(τ). In VDS, we just consider the dominating label
of the vertex at time τ = 100, that is, yi = argmaxc nc

i (τ) .
The classification results varying the network G is shown in Fig. 4. Consistently, as q and b increases,

the problem becomes harder, and the systems obtain higher error rates. Besides both systems having
similar results, EDS slightly outperforms VDS when the overlapping area is large, b = 3 and q > 1.
VDS, on the other hand, performs better when there is no overlap, q < 1. We also note that the EDS
benefit most from the increasing number of edges.

The lower error rate of EDS in problems with large overlap supports the hypothesis that this system
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Fig. 4 Classification error of both systems in different networks G(250,k,q,b) for 10% of initially labeled
vertices.

can obtain more information of the border than the VDS. In the next subsection, we address this issue.

3.2.3 Overlap prediction error

In [4], EDS shows the ability of recognize data items of different labels sharing the same attribute
space. We question whether VDS has this capacity. We use the fraction of positive-labeled particles in
each vertex, similarly to how we have done in section 3.2.1, to predict the fraction of positive-labeled
neighbors of each vertex.

Let Pi be the set of positive neighbors of the vertex vi, we use the root-mean-square error

RMSE

([
n+

i (τ = 100)

n+
i (τ = 100)+ n−i (τ = 100)

]
i
,

[
|Pi|
degvi

]
i

)
, i ∈ V \L

to assess the effectiveness of the overlap prediction. The error is obtained from the same networks
G(250,k,q,b) and initially labeled vertices as the experiment in section 3.2.2.

Fig. 5 summarizes the results. Unlike the results of the classification error, EDS consistently out-
performs VDS in all cases. Such result demonstrates that EDS achieve more information than VDS,
but the classification mechanism proposed in [4] fails in taking advantage of the extra information.

We also show that a vertex tends to be totally dominated by either positive or negative particles
in VDS. To study this property, we define the entropy hi(t) of vertex vi at time t as

hi(t) =− ∑
c∈{+,−}

nc
i (t)

n+
i (t)+ n−i (t)

log2

(
nc

i (t)
n+

i (t)+ n−i (t)

)
. (20)

On one extreme, entropy hi(t) = 0 means that the vertex vi has the same population of positive and
negative particles at time t. On the other extreme, entropy hi(t) = 1 indicates that only one kind of
particles is present in vertex vi at time t.
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Fig. 5 Root-mean-square error of the overlap prediction for both systems in different networks G(250,k,q,b)
for 10% of initially labeled vertices.
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Fig. 6 Mean vertex entropy in both systems at time τ = 100 for different networks G(250,k,q,b) with 10% of
initially labeled vertices.
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The measurements of the average entropy at time τ = 100 in the same networks as the previous
experiment are shown in Fig. 6. We verify that the entropy of the vertices in the VDS are extremely
low. However, in EDS, the entropy increases as the overlapping area becomes larger. We imply that
this increasing corresponds to the detection of the border. High entropy also suggests that particles
propagate farther, reaching larger regions dominated by rival particles. As a result, a greater exploration
behavior emerges, and particles are more likely to learn from the network’s topology.

4 Convergence of the classification results

In the previous experiments, we assess the effectiveness of each system in learning problems. Classifica-
tion accuracy, however, is not the only important feature in machine learning. A high time complexity
order may restrict the application of a learning algorithm.

Both VDS and EDS have linear time complexity regarding the number of vertices in the input
network. However, one may be interested in the convergent state of the systems. In such case, the
complexity order might be much higher if the convergence time is not sublinear regarding the input. In
this section, we address the classification result convergence in both system with maximum competition
(λ = 1).

4.1 Further simplification

Both systems are further simplified fixing the competition parameter in λ = 1. Considering two labels,
+ and −, we rewrite both system to contain a variable explicitly related to the classification output.
We restrict the initial conditions of both systems to eliminate the conditional terms in Eq. (3) and
Eq. (4). Two requirements over the network are also necessary: every vertex should be connected with
at least one non-labeled vertex, and two labeled vertices may be connected only if they share the same
label. Mathematically, it is  ∑

j |vj∈V \L
aij > 0, for all i ∈ {1, . . . , |V |}, and

aij = 0 if vi,vj ∈L and yi 6= y j.

(21)

4.1.1 Further simplified Edge Domination System

In EDS, the classification result depends on the unfoldings. These are convergent if

lim
t→∞

argmax
q

(
nq

ij(t)+ nq
ji(t)
)

= c

for c = + or c =−. To further simplify EDS, we substitute the nonzero entries of the current domination
matrix Nc(t) for a set of variables sij(t) that represents the probability of a positive-labeled particle
surviving at time t given it has decided to move from vertex vi to vertex vj. So, let

sij(t) =
n+

ij (t)+ n+
ji (t)

n+
ij (t)+ n+

ji (t)+ n−ij (t)+ n−ji (t)
(22)

and imposing the restrictions {
nc

i (0) = 0 if vi ∈L and yi 6= c,

nc
i (0) > 0 otherwise,

(23)

∑
i

nc
i (0) = 1, and
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nc
ij(0) =


0 if vi ∈L and yi 6= c,

0 if vj ∈L and yj 6= c,

1 otherwise,

(24)

we rewrite the evolution function of EDS as

φ :



n+
i (t + 1) = ρ

+
i

(
1−∑

j
n+

j (t)

)
+∑

j
n+

j (t)
aji

degvj
sji(t)

n−i (t + 1) = ρ
−
i

(
1−∑

j
n−j (t)

)
+∑

j
n−j (t)

aji

degvj
[1− sji(t)]

sij(t + 1) =

(
n+

i (t) aij
degvi

+ n+
j (t) aji

degvj

)
sij(t)(

n+
i (t) aij

degvi
+ n+

j (t) aji
degvj

)
sij(t)+

(
n−i (t) aij

degvi
+ n−j (t) aji

degvj

)
[1− sij(t)]

, (25)

with initial conditions

sij(0) =



0 if vi ∈L and yi =−,

0 if vj ∈L and yj =−,

1 if vi ∈L and yi = +,

1 if vj ∈L and yj = +,

0.5 otherwise.

(26)

The unfoldings Gc(t) = (V ,E c(t)) are also rewritten in terms of sij, that is,

E +(t) =
{

(i, j)
∣∣sij(t)+ sji(t) > 1

}
, and E −(t) =

{
(i, j)

∣∣sij(t)+ sji(t) < 1
}

. (27)

To find out the equations for si j(t + 1), n+
ij (t + 1), and n−ij (t + 1), we first simplify Eq. (3) under the

previous assumptions.

Lemma 1. Assuming λ = 1, the network requirements in Eq. (21) and the initial conditions in Eqs. (23)
and (24),

pc
ij(X(t)) =

aij

degvi

nc
ij(t)+ nc

ji(t)

n+
ij (t)+ n+

ji (t)+ n−ij (t)+ n−ji (t)
,

for all time t and labels c ∈ {+,−} in EDS.

Proof. Let sinkcvi be a logical function that yields true if vi is a sink for particles of team c. We observe
the evolution of nc

i (t), nc
ji(t), and nc

ij(t) in vertices vi such that sinkcvi holds true. From Eqs. (23) and (24),
nc

i (0) = nc
ij(0) = 0, for all j. For any t ≥ 0,

nc
i (t + 1) = ∑

j
nc

j (t)pc
ji(t)+ ρ

c
i

(
1−∑

j
nc

j (t)

)
= 0,

nc
ji(t + 1) = nc

j (t)pc
ji(t) = 0,

since pc
ji(t) = ρc

i = 0 if vi is a sink for particle of team c, see Eq. (3). Once nc
i (t) = 0 for any time t,

nc
ij(t + 1) = nc

i (t)pc
ij(t) = 0,

as well.
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For the other vertices vi and vj, such that sinkcvi and sinkcvj holds false, we show that nc
i (t), nc

ji(t)> 0
by mathematical induction. Eqs. (23) and (24) guarantee these inequalities for t = 0. Assuming they
hold true for t, we extend to t + 1:

nc
i (t + 1) = ∑

j
nc

j (t)pc
ji(t)+ ρ

c
i

(
1−∑

j
nc

j (t)

)
≥∑

j
nc

j (t)pc
ji(t) = ∑

j
nc

j (t)
aji

degvj

(
1−σ

c
ji(X(t))

)
=

∑
j |¬sinkcv j

nc
j (t)

aji

degv j

(
1−σ

c
ji(X(t))

)
> 0,

nc
ji(t + 1) = nc

j (t)pc
ji(t) = nc

j (t)
aji

degv j

(
1−σ

c
ji(X(t))

)
> 0,

since

σ
c
ji(X(t)) = 1−

nc
ij(t)+ nc

ji(t)

n+
ij (t)+ n+

ji (t)+ n−ij (t)+ n−ji (t)
< 1,

for all i, j such that ¬sinkcvi and ¬sinkcvj, and every vertex has a non-labeled neighbor.
From these results, n+

ij (t)+n+
ji (t)+n−ij (t)+n−ji (t) > 0, as a vertex cannot be a source for both positive

and negative particles. Thus, we drop the conditional in Eq. (4),

pc
ij(X(t)) =


0 if sinkcvj,

aij

degvi

nc
ij(t)+ nc

ji(t)

n+
ij (t)+ n+

ji (t)+ n−ij (t)+ n−ji (t)
otherwise.

However, nc
ij(t)+ nc

ji(t) = 0 if sinkcvj, eliminating the need of the conditional.

From lemma 1, it is straightforward derive the simplified system. The restriction of two rival sinks
not being connected guarantees the coherence of the initial state.

4.1.2 Further simplified Vertex Domination System

Analogously, we introduce to VDS a set of variables si(t) that is the probability of a positive-labeled
particle surviving at time t given it has decided to move to vertex vi independently of its origin. Thus,
let

si(t) =
n+

i (t)
n+

i (t)+ n−i (t)

and considering the restriction in Eq. (23), the VDS is rewritten as

n+
i (t + 1) = ρ

+
i

(
1−∑

j
n+

j (t)

)
+ si(t)∑

j
n+

j (t)
aji

degvj

n−i (t + 1) = ρ
−
i

(
1−∑

j
n−j (t)

)
+[1− si(t)]∑

j
n−j (t)

aji

degvj

si(t + 1) =
si(t)∑ j n+

j (t) aji
degvj

si(t)∑ j n+
j (t) aji

degvj
+[1− si(t)]∑ j n−j (t) aji

degvj

, (28)
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with initial conditions

si(0) =


0 if vi ∈L and yi =−,

1 if vi ∈L and yi = +,

0.5 otherwise.

(29)

The classification mechanism adopted in this paper for VDS becomes

yi =

{
+ if si(t) > 0.5,

− otherwise.
(30)

The proof is analogous to the EDS simplification.

4.2 Analytical results

The introduced variables sij and si are directed related to the classification results of the EDS and VDS,
respectively. Thus, their convergence imply the convergence of the classification results.

In EDS, we show that once an edge is completely dominated by particles of the same team, its
domination level will not change anymore. Let sij(t +1) = sij(t) = sij at some time t and some i, j. Thus,

sij =

(
n+

i (t) aij
degvi

+ n+
j (t) aji

degvj

)
sij(

n+
i (t) aij

degvi
+ n+

j (t) aji
degvj

)
sij +

(
n−i (t) aij

degvi
+ n−j (t) aji

degvj

)
[1− sij]

implies that sij = 0 and sij = 1 are fixed points.
The same is true for the vertex dominance in VDS. Let si(t + 1) = si(t) = si for some t and for all i.

Thus,

si =
si ∑ j n+

j (t) aji
degvj

si ∑ j n+
j (t) aji

degvj
+[1− si]∑ j n−j (t) aji

degvj

implies that si = 0 and si = 1 are fixed points.

4.3 Experimental results

Regarding the convergence speed, we experimentally compare the time the variables sij and si take
to converge. The convergence time is obtained from 30 independently sampled networks G(n,k,q,b)
for every n ∈ {50,100, . . . ,500}, k ∈ {6,7, . . . ,10}, q ∈ {0.8,1.2}, and b ∈ {1,2,3}. We set the fraction of
initially labeled vertices in 10%.

We start both systems with population size

nc
i (0) =

{
0 if vi ∈L and yi 6= c,∣∣V \{vj|vj ∈L and yj 6= c}

∣∣−1
otherwise,

to comply with the simplification requirements.
Fig. 7 depicts the convergence time by the number of edges in the network. The convergence time

is quite different depending on the overlap of the networks.
For q = 0.8, only a few vertices have neighbors with different label; which results in less competition

between particles of different teams. In this scenario, VDS benefits from the increasing number of edges
and the variables si of VDS take fewer iterations to converge than the variables sij of EDS. It may
happen because particles generated in the source reach all vertices of the same team earlier with more
edges; which decreases the networks diameter.

For q = 1.2, however, the overlapping area is substantial. Since there is more competition, both
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Fig. 7 Convergence time of variables sij in EDS and si in VDS for increasing number of edges in networks
G(n,k,q,b) with 10% of initially labeled vertices.

systems need more time to converge as the number of edges increases. In this case, the classification
results of EDS converge faster than those of VDS.

Besides the differences between the systems, the convergence time in both of them is clearly sublinear
in the number of edges of the network. Machine learning models can employ the convergent results of
these systems with subquadratic time complexity order. EDS, however, offers much lower deviance in
the time of convergence.

5 Conclusion

In this paper, we study the advantages of an edge-centric collective dynamics in machine learning tasks.
The previously proposed Edge Domination System (EDS) [4] is a particle competition system that can
be used to solve data classification tasks. We present a vertex-based version of the system, Vertex
Domination System (VDS), and study their differences.

We show that the original system can be simplified without impairing its performance in learning
problems. In summary, the models offer the same performance in classification and the same time
complexity order. However, we conclude that EDS is preferred over VDS, as

• EDS acquires more information about the overlapping area between vertices with different labels,
see section 3.2.3;

• particles in EDS tend to propagate farther producing a greater exploration behavior, see sec-
tion 3.2.3;

• average convergence time of the classification results in EDS are lower than in VDS, see section 4.3;

• standard deviation of the convergence time of the classification results in VDS seems to increase
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with the number of edges, see section 4.3.

In future works, we will propose a new classification mechanism for EDS that takes more advantage
over the unfoldings. We expect that this classification mechanism will increase the classification accuracy
of EDS. We also intend to estimate the expected time of convergence analytically.
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