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Abstract—Machine learning algorithms are in the fastest-
growing fields of interest in recent years. In this work, a semi-
supervised learning algorithm based on complex networks is
adapted to exploit distributed processing of vertices. This is an
algorithm based on the propagation of particles generated by
labeled vertices to other edges of this complex network. Particles
are absorbed at the edges and provide a dominance relationship
between the vertices of the network and how the classes make up
the problem. However, this algorithm is formulated by some sums
that are performed throughout the database, which decreases the
speed-up in parallel implementation due to underutilization. Our
work focuses on stipulating an estimator of these values of this
sum that decreases the need of the reduction. We demonstrate the
formulation of the estimator and we show that the modification
increases the classification performance of the original algorithm
while increasing the parallelization potential of the algorithm.

Index Terms—Semi-supervisioned learning, complex networks,
computational efficiency, graph processing.

I. INTRODUCTION

Semi-supervised Learning (SSL) is a machine learning
paradigm that combines elements of methods with supervision
and unsupervised learning [1].

In real situations, it is common not to have complete
knowledge of the desired target variables of our problem [2].
For example, in the context of image processing where you
want to identify objects in the image, it is usually unrealistic
to have full knowledge of the presence of every object in the
image. Another example is to evaluate customer satisfaction
where only a small part of them responds to a satisfaction
survey [3]. In other situations, it is only possible to know all of
our information if a large amount of data is labeled manually
[4]. However, this labeling process is, in many situations, tiring
and very expensive. In situations like these, the SSL techniques
are the most indicated to solve these problems, because they
combine the two paradigms of learning and are able to work
around this restriction of data [5].

Throughout a few years of study, many SSL techniques have
been developed: generative models [3], transductive models
techniques [4] and graph-based methods [6], [7]. Of all the
approaches already mentioned, graph-based methods have
proved to be very interesting for solving many issues [8].
In such techniques, a graph is constructed from the input
dataset. To solve the semi-supervised classification problem,

the graph-based techniques “propagate” the labels of the few
labeled samples to every other vertex in the graph by using
an optimization framework [5].

Our work is carried out on a step of the SSL classification
algorithm in graphs called Network Unfolding map [2]. As
part of the classification process, the algorithm simulates a
complex system named Label Component Unfolding (LCU)
[2]. This system can retrieve label information of the unlabeled
data by analysing the complex network constructed from the
input dataset [9]. Here, we call complex network a sparse,
undirected, weightless, simple graph with nontrivial connec-
tion between vertices [10].

The LCU system models a propagation of labeled particles
on the complex network structure. In this way, particles
compete for the domination of the edges [2]. This dominance
relationship indicates that certain edges are more influenced
by some label [2], [11]. This information is further used to
classify the unlabeled data of the original partially labeled
dataset.

The core of the system computation corresponds to the
simulation of particle propagations over the network, imposing
computational challenges especially for large graphs, e.g.,
proper dynamic partitioning of the vertices or edges among
the computing units of a cluster in order to reduce the com-
munication latency. In addition, many calculations performed
on graphs are costly, usually in the cubic order [5].

During the simulation, at every time step (called epoch),
dynamics of the LCU system is performed by realizing several
reductions in all edges and vertices of the network. As any
reduction of n elements takes a minimum of log2(n) steps
independently of the computing availability, as shown in
Figure 1, it may drastically decrease the speed-up of a large
parallel system due to underutilization.

In this work, we propose a modification of the original
LCU system that increases the speed performance in parallel
implementation by removing a sum reduction. We show that
the proposed change increases the classification performance
and the exploration behavior of the original technique.

In section II and III, we review the concepts of graph-
parallel systems and the formulation of the original LCU
system. In section IV, we formulate an estimator to drop a
critical sum reduction of the LCU system. Finally, we conclude
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the paper in section VI.

II. GRAPH-PARALLEL SYSTEMS REVIEW

Modern parallel systems apply many different techniques
in order to hide the latency introduced by the dependencies
among calculations or tasks. Currently, Spark and Apache
Hadoop are the two most famous cluster systems for large
data. Hadoop is based on the MapReduce programming model,
which implements batch processing with intermediate comput-
ing persisted on disks for recovery purpose [12].

Apache Spark exposes a dataflow programming model
through a programming interface and it is usually deployed
on top of other distributed ecosystems in order to take ad-
vantage of their low layers [13]. For example, the computing
resources can be managed by the solutions Hadoop YARN,
Mesos, Kubernetes and it may access data on distributed file
systems as Hadoop Distributed File System (HDFS), Apache
Cassandra, and others.

The Resilient Distributed Datasets (RDD) is the distributed
memory abstraction that Spark uses to create a Directed
Acyclic Graph (DAG) of coarse-grained functional operations,
which is used to compose a fine-grained data flow [14].
This approach is better than batch-based model for iterative
problems because it does not require barrier synchronizations
between iterations (epochs). Instead, just necessary depen-
dencies are included on very small portions of data, called
partitions. Figure 2 shows the effect of introducing barrier
synchronizations instead of the dependencies among partitions.

Pregel is an another programming model based on dataflow
suitable for iterative computing and initially proposed to solve
large graph problems. Basically, it implements a parallel
message-passing interface among the vertices of a graph [15].

Although Pregel is a proprietary system from Google, many
other graph-parallel systems have been emerged in recent years
based on it. GraphX, a Spark API which implements the
Pregel framework, can be used to expose an easy programming
interface for graph problems while taking advantage of all
the previous mentioned features of the Spark ecosystem [16].
Thus, in this article, we implement the LCU using the GraphX
API of the Spark ecosystem to check the performance of our
solution.

Both the complexity of the problem and dependencies are
considered to be great impediments to the implementation
of the LCU by parallel processing. Thus, in this article,
we propose a new φ estimator which simplifies the system
equations and eliminates some reductions of the LCU. In
this way, we can decrease the complexity of the operations
involved at each iteration of the algorithm and remove possible
bottleneck in the parallelization of the LCU. We will compare
the original algorithm with our proposal to indicate that we
get a formulation that leaves the algorithm more efficient, but
without a performance cost in the classification.

III. MODEL REVIEW

LCU is a dynamical system that runs over a complex
network whose vertices are partially labeled. In the system,
labeled particles propagate in the network at random and
compete against rival particles (that is, particles with different
labels) for edges. As a result of the system simulation, the
network is divided in labeled components that describe each
of the classes of the input data [2]. In this section, the
mathematical formulation of the LCU is reviewed considering
the simplifications and considerations in [11].

A complex network can be expressed by a simple, weight-
less, undirected graph [10], that is, G = (V, E), where V is the
set of vertices and E are the edges that connect the vertices,
where E ⊆ V × V .

The LCU system assumes that the input network contains
|V| = l + u vertices that are either labeled or unlabeled. The
set L = {v1, . . . , vl} contains the labeled vertices, where each
vertex vi ∈ L has a label yi ∈ {1, . . . , C}, with C � l.
If a vertex is labeled with c, it belongs to class c. Also, the
set U = {vl+1, . . . , vl+u} contains the unlabeled vertices. The
labeled and unlabeled are disjoint and comprise all vertices,
that is, L ∩ U = ∅ and V = L ∪ U .

In the system dynamics, the network is represented by the
adjacency matrix A = (aij) where aij = aji = 1 if vi is
connected to vj . The notation (i, j) refers to the edge between
vertices vi and vj .

For practical reasons, LCU considers the following charac-
teristics of the network:
• Most of the vertices are unlabeled, that is l� u;
• The network is connected, that is, there is only one

connected component;
• At least one labeled vertex of each class is present;
• The neighborhoods are sparse, that is,

∑
j aij � |V| for

every i.
Three dynamics are considered in the LCU system:



Walking. At each time, particles travel from one vertex to
a neighbor one with equal probability.

Absorption. The label domination is the fraction of visits
in an edge of class of particles that occurred at the last time. In
the next movement, the transitory label domination determines
the success rate of particles moving to their next vertices, or
to fail and being removed from the system.

Generation. The labeled vertices act as sources for new
particles. This rule maintains the size of the population close
to its initial size.

The values of label domination assist the algorithm that
solves machine learning problems. LCU unfolds the interac-
tion network in subnetworks by group: the unfolding of label c
at time t is the subnetwork containing all the edges dominated
by label c at time t. Over the evolution of the competition pro-
cess, the network’s unfoldings converge to stable subnetworks
that are afterward analyzed to the vertex classification task
[11]. (Although more robust vertex classification rules can be
devised, in this paper we consider the majority-neighborhood
rule for labeling [11]).

Formally, the LCU system (with maximum competition and
proper initialization [2], [11]) is

X(t) =

 nc(t) =
[
nci (t)

]
i=1,...,|V|

N c(t) =
(
ncij(t)

)
i,j=1,...,|V|


c=1,...,C

, (1)

where nc(t) is a row vector whose elements nci (t) describe the
expected population of particles from label c in each vertex
vi at time t. Stored in sparse matrices, the elements ncij(t) ∈
N c(t) are the label domination at time t, that is, the portion
of particles with label c that moved from vi to vj . In other
words, the system counts the fraction of particles with label c
at each vertex (nci ) and through edge (ncij) at a given time.

The system X is a nonlinear Markovian dynamical system
with the deterministic evolution function

φ :

{
nc(t+ 1) = nc(t)× P c(X(t)) + gc(X(t))

N c(t+ 1) = diagnc(t)× P c(X(t))
, (2)

where diagv is a square matrix with the elements of vector
v on the main diagonal and × stands for the vector–matrix
product. Basically, it redistributes the particles to new edges
considering the previous expected amount of particles in each
edge and the generation (vector gc) of new particles.

The function P c(X(t)) gives a square matrix whose ele-
ments are

pcij(X(t)) =
aij

deg vi

ncij(t) + ncji(t)∑C
q=1 n

q
ij(t) + nqji(t)

, (3)

describing the probability of a particle with label c to suc-
cessfully move from vi to vj given the label dominations
on this edge. Such probability is proportional to the relative
dominance of the class c to the edge.

The function gc(X(t)) of the system X at time t returns a
row vector where the i-th element is

gci (X(t)) = ρci max

0, 1−
|V|∑
q=1

ncq(t)

 , (4)

and

ρci =


deg vi∑

vj∈Gc deg vj
if vi ∈ Gc,

0 otherwise,
(5)

with the set of source for particles with label c given by Gc =
{vi|vi ∈ L and yi = c}. The term gci represents the abundance
of generated particles among the sources of the class c and
keeps the total abundance of particles of class c close to 1.

Using the label domination, the subset of edges Ec(t) ⊆ E
contains the edges dominated by the particles with label c,

Ec(t) =
{
(i, j)

∣∣∣∣argmax
q

(
nqij(t) + nqji(t)

)
= c

}
. (6)

The unfolding of network G obtained with the edges of
class c at time t is Gc(t) = (V, Ec(t)) .

The initial state X(0) has restrictions:{
nci (0) = 0 if vi ∈ L and yi 6= c,
nci (0) > 0 otherwise,

(7)

∑
i

nci (0) = 1, and (8)

ncij(0) =


0 if vi ∈ L and yi 6= c,
0 if vj ∈ L and yj 6= c,
1 otherwise.

(9)

IV. DISTRIBUTED MODEL

The parallel approach in this work is to rewrite the original
system’s evolution function in order to attach time-varying
quantities in all vertices and edges of the graph. If the
proposed evolution rules of the quantities associated with
vertices depend only on the neighbors, and the ones of the
quantities associated with edges depend only on the endpoints,
we can design a concurrent implementation that eliminates the
need of barrier synchronization between epochs. Frameworks
like Spark GraphX and Pregel can exploit such properties
to pipeline fine-grained dependent operations efficiently, as
shown in Figure 2.

In the original formulation of the LCU system, the gen-
eration function, Eq. (4), depends on the value of the total
population of particles of each class at a given time. However,
calculating this amount violates the condition aforementioned
since the summation in Eq. (4) implies in a global reduction
over all vertices in the graph.

Thus, this work proposes the estimator φi,c(t) which acts
as a local estimator (at the vertex i) of the total particles of
class c throughout the system at the time t.

In addition to the fine-grained task pipeline without barriers,
as shown in Figure 3, this approach also eliminates the runtime
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part related to the reduction over all the vertices for each
epoch. It is important as we have more computational units
p, once the reduction starts to dominate the runtime with
minimum complexity order of log(|V|), even with large p,
while the other n independent and simple calculations have
complexity order of n/p.

A. Proposed model

Let Ai = {j : aij = 1} be the set with the indices of the
neighbors of vertex vi, the evolution function of the system
X , Eq. 2, can be rearranged as

ncij(t+ 1) =
nci (t)

deg vi

ncij(t) + ncji(t)∑C
q=1 n

q
ij(t) + nqji(t)

, and (10)

nci (t+ 1) =
∑
j∈Ai

ncji(t+ 1) +

ρci max

0, 1−
|V|∑
q=1

ncq(t)

 . (11)

In this form, it is clear that the evolution of nci depends on
ncq for all q. In order to restrict the dependencies, we propose
the following system X̂ .

The variables in each vertex vi in system X̂ are

{n̂ci (t), φci (t)}c=1,...,C , (12)

where φci (t) is going to estimate the summation
∑|V|

q=1 n
c
q(t)

for every i and c at time t.
Each existing (undirected) edge ij, such that aij = 1, carry

variables {
n̂cij(t), n̂

c
ji(t)

}
c=1,...,C

. (13)

The proposed evolution rules of system X̂ are

n̂cij(t+ 1) =
n̂ci (t)

deg vi

n̂cij(t) + n̂cji(t)∑C
q=1 n̂

q
ij(t) + n̂qji(t)

, (14)

n̂ci (t+ 1) =
∑
j∈Ai

n̂cji(t+ 1) + ρci max{0, 1− φci (t)} , and

(15)

φci (t+ 1) =
|V| n̂ci (t+ 1) +

∑
j∈Ai

φcj(t)

deg vi + 1
. (16)

Note that the formulation of system X̂ guarantees that the
evolution of the variables in each vertex vi depends only on
itself, the neighbors vj , and adjacent edges ij, such that j ∈
Ai. In the same manner, the evolution of the variables in each
existing edge ij depends only on itself and its endpoints vi
and vj .

V. MODEL VALIDATION

In this section, we validate that the proposed improvement
on the LCU system does not hinder its performance on clas-
sification tasks. We also provide evidence that the estimator φ
can successfully estimate the total abundance of particles in
few iterations.

We evaluate both versions of the system, X and X̂ , in
the benchmark proposed by [11]. Such benchmark comprises
partially-labeled networks that represent semi-supervised clas-
sification problems with different levels of difficulty.

The main parameters of the benchmark are: q which controls
the class overlap, b which controls the class border, and k
which controls the average number of connection in each
vertex. Increasing the values of q and b increases the difficulty
of the problem. For more information about the benchmark,
consult [11].

For the following experiments, wherever not specified, we
fix the size of the network and the maximum number of epochs
to 250 and 100, respectively, and we label randomly 10% of
the vertices. Also, we repeat the experiments 30 times for each
parameter configuration.

Initially, we discuss whether the proposed φ is a good
estimator of the abundance of particles of each class. Figure 4
indicates the efficiency of our estimator. The curves in these
graphs indicate the evolution of the average error between our
estimator and the correct summation that we have tried to
approximate over the epochs of our algorithm.

The graphs of the results showed us a very interesting result:
in all situations, the φ values converged to the real values of
the summation, arriving at errors very close to 0. Another
important fact is that this convergence was very fast. In all
situations, the estimators have already converged in 15 epochs
of simulation.

Although the estimator approximates the real value of the
summation, the errors in the first iterations could hinder the
performance of the algorithm in terms of data classification.
Therefore, we compare both versions of the system in terms
of performance.

Figure 5 shows a comparative result between the original
algorithm and the introduction of the φ estimator value. In
the figure, we expose the average accuracy of the methods in
different network configurations.

From the experiment, the accuracy rates of the methods
seem similar, however, by the Wilcoxon signed rank test with
continuity correction [17], we reject the hypothesis that the
accuracy achieved by our method is less than or equal to the
one achieved by the previous formulation (p-value 0.0314).
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Fig. 5. Average accuracy of algorithm with (dark purple) and without (light orange) estimation φ applied in different levels of difficulty.

In addition to measuring the classification accuracy, we also
assess the exploitation and the exploration behavior of the
particles. As in [2], we measure the exploitation behavior by
assessing the ability of the algorithm of identifying the border
of the classes. Figure 6 plots the root mean squared error
(RMSE) on predicting the purity of each vertex (consult [2]
for more details of the metric).

Similar to the accuracy, using the same statistical test, we
reject the hypothesis that our technique obtain higher or equal
RMSE than the previous method (p-value 1.251e−18).

Finally, the measure of exploration was the entropy of the
particles among vertices, that is, the entropy of the class
dominance in each vertex. Larger values of entropy mean that
particles travel more and explore better the network, since they
reach vertices far from the sources. The comparative results
between the two versions of the algorithm, Figure 7. Our
method explores the network a little less in easy problems, and
a little more in difficult problems. By the same statistical test
we reject the hypothesis that our technique reaches smaller
or equal entropy compared to the other method (p-value
5.885e−6).

VI. CONCLUSIONS

In this paper, we discuss an enhancement on the Labeled
Component Unfolding system [2]. We propose a new for-

mulation of its particle propagation equations, in which the
summation of class dominance at each vertex is estimated.
The main advantage of our formulation is that it can bypass
bottlenecks produced from parallel processing [15] of the
model by tools such as GraphX [16].

The proposed equation of the estimator φ is a good es-
timator since it converges to the value of the sum of the
dominance in a few iterations of the system. Also, our
modification presents slight better classification performance
than the original formulation, as demonstrated experimentally.
The increase in performance is probably due to the greater
exploration behavior in the first few iterations of the system.
The exploration increases because the proposed estimator φ
underestimates the total population, and, as a consequence,
more particles are generated at the beginning of the simulation.
Such a phenomenon will be studied in further works.

In future works, we intend to evaluate different parallel
implementations of the LCU with and without our estimator
to assess the speed-up in different frameworks.
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