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Abstract—Positive-unlabeled learning is a semi-supervised task
in which only some positive-labeled and many unlabeled samples
are available. The goal of its transductive setting is to label all
unlabeled data at once. In this paper, we developed a technique
to grade positive-class pertinence levels of each sample, and
we interpret the grades to classify the unlabeled ones. In our
method, a sparse binary matrix represents the input data,
which determines the feature–sample network whose vertices
represent samples and attributes. The limiting probabilities of
a random walk in the network estimate the pertinence levels.
The results are evaluated regarding both class discrimination
and classification accuracy. Computer simulations reveal that our
model performs well in positive-unlabeled learning, especially
with few labeled samples. Notably, the outcomes compare to
the results from supervised methods, which profit from most
data labeled. Additionally, the technique has linear time and
space complexity if the input dataset is already in a sparse
representation. The low computational cost of the construction
and update of the feature–sample network allows for extensions
of the technique to several learning problems, including online
learning and dimensionality reduction.

Index Terms—Semi-supervised classification, complex net-
works, positive-unlabeled learning, random walk.
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I. INTRODUCTION

Several machine learning techniques can learn not only from
labeled data but also from unlabeled instances. Such models
belong to the semi-supervised learning paradigm [1]. Partially
labeled datasets are plentiful because more information is
generated in our world than we can label by hand.

Many semi-supervised techniques model the input data
either as graphs or as complex networks [2]–[5]. In both
cases, each vertex usually represents a data sample, and an
edge exists if its endpoints satisfy a predefined affinity rule.
In graph-based techniques, an optimization process propagates
the labels from labeled vertices to the unlabeled ones. In tech-
niques based on complex networks, the algorithm classifies

data by exploring topological and evolution properties of a
certain collective dynamics. These methods provide a flexible
and robust learning process.

A special scenario of semi-supervised classification com-
prises only few positive-labeled and many unlabeled samples;
this problem is called positive-unlabeled (PU) learning [6]–
[8]. The goal of PU learning tasks is either to build a classifier
that discriminates positive and negative samples or to label all
unlabeled input samples at once. Techniques that accomplish
the former are inductive; while the ones that achieve the
latter are transductive. Some graph-based techniques have been
proposed [9], [10], but no complex-network approach exists.

We introduce a transductive PU learning technique based
on complex networks with steps: a) The input dataset is
converted into a sparse binary representation. (We use the
terms feature and attribute interchangeably.) b) The binary
representation models a network in which a vertex represents
either a sample or an attribute. c) A random walk process is
performed over the network taking into account the labeled
samples; this process is a discrete Markov chain with states
associated with the network’s vertices. d) The positive-class
pertinence level of each unlabeled sample is calculated from
the limiting distribution of the Markov chain. e) Unlabeled
samples are classified using the positive-class pertinence and
with knowledge of the positive-class prior probability.

The model is evaluated regarding both class discrimination
and classification accuracy. To assess how well it discriminates
positive from negative samples, we introduce a measurement
of class discrimination and a fair baseline algorithm to com-
pare with. Concerning the classification accuracy, the results
are compared with state-of-the-art techniques.

The proposed scheme excels on PU learning problems.
Compared with PU classifiers, the technique surpasses other
methods if the prior probabilities are known. Compared with
supervised classifiers, the results are similar, even though those
classifiers profit from much more labeled samples available
during the training step. The research shows potential for a
broad range of applications.

The rest of this paper is organized as follows. Sections II
and III describe the proposed model and its computational
complexity. In Section IV, computer simulations illustrate the
learning process and assess its performance. Finally, Sec-
tions V and VI discuss and conclude this paper.



II. MODEL DESCRIPTION

Let D = {~x1, . . . , ~xN} be the dataset where each data item
~xi is either a positive or a negative sample. Examples ~xi are
positive labeled for all i ∈ P , and the remaining samples
are unlabeled. The prior probability P+ of the positive class
is known. Our goal is to estimate a positive-class pertinence
level f(~xi) of each unlabeled data ~xi, i 6∈ P , and to classify
them using the priors.

In the next subsections, we explain the steps of our learning
algorithm to solve the stated problem.

A. Conversion to the Binary Sparse Representation

In our model, the input dataset must satisfy three require-
ments: each sample is a binary feature vector, an attribute with
value 1 indicates the presence of a characteristic of that data
instance, and the similarity of two samples depends on the
number of shared characteristics but not on mismatching and
absent features. Such requirements likely cause feature vectors
to be sparse.

Most of the datasets are easily converted to this repre-
sentation. We converted datasets composed of numerical and
categorical attributes as follows: a) Replace each categorical
feature x ∈ {X1, . . . , XK} of each sample by a binary feature
vector {bk}k=1,...,K such that bk = 1 ⇐⇒ x = Xk. The
sparsity of the new features is proportional to the number
of possible categorical values K. b) Discretize numerical at-
tributes disregarding the class information. The most common
approaches are by equal interval width and by equal frequency.
c) Convert the categorical features obtained from discretization
to vectors of binary features as well.

B. Construction of the Feature–Sample Network

We derive a complex network from the binary dataset. Let
B = {~x1, . . . , ~xN} be the set where each element ~xi is a
binary feature vector (xi1, . . . , xiM ) ∈ {0, 1}M . The Feature–
Sample Network G is the bipartite complex-network whose
edges associates samples and features of the dataset D. A
simple, unweighted, undirected graph (V, E) represents such
network. The vertex set V is {v1, . . . , vN , vN+1, . . . , vN+M}
and an edge exists between sample vi and feature vN+j if
xij = 1. The adjacency matrix A = (aij) of G has elements

aij = aji =

{
xi,j−N if 1 ≤ i ≤ N and N < j ≤ N +M ,
0 otherwise.

(1)
We suppose that G has a single connected component. If it is

false in an experiment, we consider only the largest connected
component that contains all (or most) of the labeled samples.

C. Modeling of the Random Walk Process

The next step is to perform a random walk over the network.
This random process is a discrete Markov chain with transition
matrix P = (pij), such that pij is the probability of going
from vi to vj . We model P to guarantee the existence and
uniqueness of the limiting distribution of such Markov chain.

Since the G is connect, the process is a time-homogeneous
and irreducible Markov chain. An irreducible Markov chain
has a unique stationary distribution if and only if all states are
positive recurrent [11]. Since G is undirected and finite, all
states of a random walk over G are positive recurrent. Thus,
a unique stochastic vector ~π exists such that

~πP = ~π, (2)

if pij > 0 for all aij = 1.
We also want to reach the stationary distribution ~π from

any initial distribution. The limiting distribution of a random
walk is reached independently of the initial conditions if the
irreducible Markov chain is ergodic, that is, both aperiodic
and positive recurrent [11]. Since every state of a bipartite
graph has an even period, the limiting distribution of a random
walker in G may never reach the stationary distribution. To
achieve an ergodic Markov chain, we include non-zero entries
on the main diagonal of P .

Finally, the transition probabilities are

pij =
wijνj
λνi

, (3)

where W = (wij) such that

wij =

{
1 if i = j,
βiaij otherwise,

(4)

and ~ν = (ν1, . . . , νN+M ) is the eigenvector associated with
the leading eigenvalue λ of the matrix W . The scaling factor
βi is β > 1 if ~xi is a positive-labeled sample. Otherwise, the
scaling factor is 1.

D. Estimation of the Positive-class Pertinence Level

The transition matrix P describes a system with the desired
behavior: the limiting distribution ~π is reached independently
of the initial setting; the states associated with features relevant
to the positive class will have high stationary probabilities;
and the limiting probabilities related to positive samples are
expected to be greater than the ones associated with negative
samples.

We estimate the positive-class pertinence level f(~xi) = πi
for all i 6∈ P . The stochastic vector ~π = (πi) is a eigenvector
associated with the leading eigenvalue of the matrix PT .
Alternatively, it can be calculated by iterating the system
~π(t+ 1) = ~π(t)P with any initial configuration.

E. Classification of the unlabeled samples

We classify a unlabeled sample ~xi, i 6∈ P , as positive if its
pertinence level f(~xi) is greater than a certain threshold; which
satisfies the expected number positive samples according to the
prior probability P+

The predicted class c(~xi) of an unlabeled sample ~xi is

c(~xi) =

{
+1 if f(~xi) > f ordered

d(N−|P|)P+e

−1 otherwise,
(5)

where f ordered
n is the n-th greatest value of f(~xi) for all i 6∈ P .
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Figure 1. PCA projection of the Iris dataset, with samples of species Iris
setosa (left-hand plot) and Iris virginica (right-hand plot) as the positive class.

III. TIME AND SPACE COMPLEXITY

We analyze the computational complexity of our algorithm
regarding N and D, the number of samples and features.

The conversion of the input dataset into a sparse binary
representation takes O(DN log2N). The worst case scenario
happens when all D numerical attributes must be discretized.
Since the features along all samples would need to be sorted,
the average sorting time adds up to the time complexity.

The construction of the feature–sample network takes
O(DN), since it highly sparse, and the number of edges is
limited by DN .

Both modeling the process and searching the stationary
distribution take O(DN). The two depend on the choice of
the eigenvalue algorithm and the matrix representation. With
sparse matrices and iterative algorithms – for example, the
power iteration algorithm – the time and space requirement is
proportional to DN .

In summary, our method runs in O(DN) if the input dataset
is binary, and in O(DN log2N) otherwise. Since we only
store matrices with up to DN nonzero entries, our method
has space complexity O(DN).

IV. EXPERIMENTAL SIMULATIONS

In the following subsections, we provide computer simula-
tions to illustrate the learning process and assess its perfor-
mance in real-world datasets.

A. Illustrative Example

The UCI Iris dataset [12] comprises 50 samples for each
of three species of Iris flower—Iris setosa, Iris virginica, and
Iris versicolor. Each data item contains 4 numerical features
which stand for measurements of the width and length of the
sepals and petals in centimeters.

Similarities between samples of the three classes vary
considerably. Iris setosa samples are quite distinct from the
other two species. Iris virginica and Iris versicolor samples,
on the other hand, share more similarities between themselves.
Figure 1 clarify this property, showing the first two principal
components of the PCA projection. We consider two input
setups: a) Iris setosa as the positive class and only a single
positive sample labeled; and b) Iris virginica as the positive
class and two positive samples labeled. The labeled samples
are circled in Figure 1. For both scenarios, we describe our
learning process step by step.

Table I
FEATURES OF LABELED SAMPLES SHOWN IN FIGURE 1.

Class Sepal Length Sepal Width Petal Length Petal Width
setosa 5.0 3.4 1.5 0.2

virginica 7.7 2.8 6.7 2.0
virginica 6.2 3.4 5.4 2.3

Iris setosa Iris virginica

Figure 2. Feature–sample network for Iris dataset with samples of species
Iris setosa (left-hand side) and Iris virginica (right-hand side) as the positive
class. Circles are vertices associated with samples and squares with features.
Positive samples are highlighted in orange (light).

1) Binary Sparse Representation: We convert the dataset
into a sparse binary representation; independently of the
labeled samples. Numerical attributes are discretized in 3
intervals by frequency.

The discretized representation reduce the numerical detail
while holding sufficient information for the classification task.
Tables I and II compare both representations. The first line
represent Iris setosa samples, and the remaining represent
the Iris virginica samples. The discretization intervals are
below the features names in Table II. Although the discrete
representation loses information, the sophistication of the
learning process overcomes its simplification.

2) Feature–Sample Network: With the binary representa-
tion of data and Equation (1), we construct the feature–sample
network. Figure 2 illustrates two networks for the Iris dataset.
Circles are vertices of samples, and squares are vertices of
features. The left-hand network, in which Iris setosa is the
positive class, has positive samples in light orange, and the
labeled samples are bigger. The right-hand network, in which
Iris virginica is the positive class, has the same characteristics.

Uniform Initialization π : β = 1

0.002

0.004

0.006

0 10 20 30 0 10 20 30

t

π

Figure 3. Evolution of the probability distribution with two different initial
distribution. The process is modeled from Iris dataset with one labeled sample
of class Iris setosa and β = 6. Only values associated with unlabeled samples
are shown. Solid orange lines and dashed purple lines are associated with
positive and negative samples in that order.



Table II
SPARSE BINARY REPRESENTATION OF THE SAMPLES IN TABLE I.

Sepal Length ∈ Sepal Width ∈ Petal Length ∈ Petal Width ∈
[4.3, 5.5) [5.5, 6.4) [6.4, 7.9] [2.0, 3.0) [3.0, 3.3) [3.3, 4.4] [1.0, 3.0) [3.0, 5.0) [5.0, 6.9] [0.1, 1.0) [1.0, 1.7) [1.7, 2.5]

1 0 0 0 0 1 1 0 0 1 0 0
0 0 1 1 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0 1 0 0 1

18.5

48
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Figure 4. (Top) Limiting distribution of the process modeled from the Iris
dataset with two labeled sample of class Iris virginica for varying β. Only
values associated with unlabeled samples are shown. Solid orange lines and
dashed purple lines are associated with positive and negative samples in that
order. (Bottom) Accuracy for varying β, which the former is the number of
positive samples among the 50 samples with greatest scores.

3) Random Walk: With the network and Equation (3), we
compute the transition matrix P . For one labeled sample of
species Iris setosa, we find the stationary distribution ~π itera-
tively, with β = 6. Independently of the initial distribution, we
should obtain the same results. Figure 3 shows the evolution of
πi(t), i such that ~xi is unlabeled, for two initial distributions
~π(0): the uniform distribution, on the left-hand plot, and the
limiting distribution of a process P given that β = 1, that is,
ignoring the labeled sample.

The probability of a random walker be in a state of unla-
beled positive samples (solid orange lines) surpasses the same
on negative samples (dashed purple lines). This behavior holds
for both initial distributions and is guaranteed independently
of the initial configuration. Starting with the limiting distri-
bution ignoring the labeled sample, the limiting probabilities
associated with positive samples clearly increase over time.

We also study the learning process for the second scenario.
For β = 1, 1.5, . . . , 20, Figure 4 shows the limiting distribution
and the accuracy, which is the number of samples of class Iris
virginica among the 50 samples with greatest scores f(~x).
Differently from the former scenario, for small β the proba-
bility of a random walker be in a state associated with positive
samples (solid orange lines) is not consistently superior to
the same on negative samples (dashed purple line). However,
for β > 11, more than 40 out of 50 samples are from the
Iris virginica class. With β = 18.5, only two samples are

Table III
UCI DATASETS ALONG THE CLASS CHOSEN TO BE THE POSITIVE ONE. P+

IS THE PROPORTION OF SAMPLES IN THE INDICATED CLASS.

Dataset Positive class P+

Breast 2010 adi 0.21
Ecoli cp 0.43
Glass building windows non float processed 0.36
Iris setosa, versicolor, virginica 0.33

Wine two 0.40

misclassified.

B. Performance Comparison

We compare our model with a baseline semi-supervised
method. Such baseline method is based on the neighborhood
graph. Both approaches not only rely on the same assumptions
for the input dataset but also use the same classification
mechanism; providing a fair comparison of the positive-class
pertinence levels.

1) Learning from the Neighborhood Graph: The k-NN
graph of a dataset D = {~x1, . . . , ~xN} is a graph where each
vertex vi, associated with sample ~xi, connects with all vertices
vj such that ~xj is within the k-neighborhood of ~xi. We use
the asymmetric binary similarity—proportional to the number
of attributes that are present in both samples—to calculate the
neighborhoods.

The positive-class pertinence level fk-NN(~xi), for all i 6∈
P , is (minj∈P lij)

−1, where lij is the length of the shortest
path between vertices vi and vj in the k-NN graph. In other
words, the positive class pertinence of a sample is inversely
proportional to the shortest distance from the associated vertex
to any labeled vertex.

2) Benchmark Datasets: Five UCI datasets [12] are used to
compare our model with the k-NN method. In each dataset, the
largest class is the positive one. In the Iris dataset, however,
the classes are of the same size, and all three possible cases
were considered. Table III presents the datasets along with
the proportion P+ of positive samples; which we use as the
positive-class prior probability.

3) Separateness: The separateness evaluates how well a
model differentiates positive from negative samples. Given
the positive pertinence f(~xi) for all unlabeled samples ~xi, the
separateness is

1

N − |P|
∑
i 6∈P

f̃(~xi)δ(~xi) (6)

where f̃ is the pertinence level of unlabeled samples normal-
ized with standard score, and δ(~xi) is +1 if ~xi is positive or



Table IV
SEPARATENESS OF THE METHODS ON THE UCI DATASETS. FOR EACH

SETTING, THE BEST PARAMETER COMBINATION IS SHOWN.

Dataset Our method (β, m) k-NN graph (k, m)
1% labeled

Breast 2010 0.60± 0.11 (10, 5) 0.53± 0.13 (20, 4)
Ecoli 0.60± 0.12 (50, 3) 0.56± 0.07 (15, 4)
Glass 0.12± 0.14 (50, 4) 0.15± 0.14 (15, 4)

Iris (setosa) 0.91± 0.01 (20, 3) 0.75± 0.05 (20, 5)
Iris (versicolor) 0.77± 0.04 (20, 3) 0.58± 0.08 (20, 3)
Iris (virginica) 0.65± 0.01 (35, 2) 0.53± 0.29 (20, 3)

Wine 0.61± 0.06 (5, 5) 0.40± 0.19 (7, 4)
10% labeled

Breast 2010 0.65± 0.04 (15, 5) 0.54± 0.09 (19, 4)
Ecoli 0.78± 0.02 (50, 3) 0.78± 0.04 (19, 4)
Glass 0.23± 0.08 (50, 3) 0.25± 0.07 (14, 4)

Iris (setosa) 0.91± 0.00 (5, 3) 0.81± 0.04 (20, 5)
Iris (versicolor) 0.81± 0.03 (50, 3) 0.68± 0.14 (15, 3)
Iris (virginica) 0.79± 0.03 (35, 3) 0.54± 0.13 (17, 3)

Wine 0.77± 0.04 (20, 3) 0.55± 0.15 (17, 4)

−1 otherwise. The standard score normalization subtracts all
pertinence levels f by the average value and divides by the
standard deviation.

The separateness is positive when the majority of positive-
labeled samples has score above the average. Negative values
or near zero indicate failure to distinguish between positive
and negative classes.

4) Discrimination Results: To evaluate our technique, the
binary representation was created with numerical attributes
discretized in m = 2, 3, 4, 5 intervals. The parameter k ranges
from 1 to 20, and the parameter β in {5, 10, . . . , 50}. The
number of initially labeled positive samples are 1% or 10%
of positive samples.

Our method separates better in seven out of eight settings.
The results are independent of the number of labeled samples,
which are listed in Table IV along with the k-NN’s results.
The table shows the mean separateness and the standard
deviation for 20 independent sets of labeled items, with the
parameters that yield the best performance. The proposed
technique present relative low standard deviation, implying the
model is less sensible to the choice of labeled samples.

5) Classification Results: Excellent accuracy is observed
in our method for few labeled samples and the naive clas-
sification mechanism. Using the predicted class c and the
same parameter settings, Table V shows the accuracies for the
UCI datasets. Surprisingly, the k-NN method obtained better
accuracy for the Ecoli dataset besides its worse separateness.
Our method’s results compare to those acquired by recently
proposed techniques that profit from more than twice of
labeled samples [13].

C. Document Classification

We also perform tests on the Reuters-21578 ApteMod
dataset. This dataset is a collection of 10,788 documents
from the Reuters financial newswire service. Each document
belongs to one or more of the 90 categories.

Our method is compared with state-of-the-art algorithms
studied in [14]. All methods are adaptations of support vector

Table V
ACCURACY OF THE METHODS ON THE UCI DATASETS. FOR EACH

SETTING, THE BEST PARAMETER COMBINATION IS SHOWN.

Dataset Our method (β, m) k-NN graph (k, m)
1% labeled

Breast 2010 0.91± 0.07 (5, 5) 0.88± 0.05 (20, 4)
Ecoli 0.87± 0.02 (5, 3) 1.00± 0.00 (1, 2)
Glass 0.58± 0.07 (50, 2) 0.57± 0.08 (20, 4)

Iris (setosa) 1.00± 0.00 (10, 3) 1.00± 0.00 (1, 2)
Iris (versicolor) 0.90± 0.03 (40, 3) 0.80± 0.14 (16, 5)
Iris (virginica) 0.84± 0.15 (30, 3) 0.81± 0.18 (20, 3)

Wine 0.78± 0.03 (5, 5) 0.71± 0.11 (14, 3)
10% labeled

Breast 2010 0.95± 0.02 (15, 5) 0.86± 0.05 (12, 5)
Ecoli 0.91± 0.02 (10, 3) 1.00± 0.00 (1, 3)
Glass 0.64± 0.05 (50, 3) 0.66± 0.05 (13, 4)

Iris (setosa) 1.00± 0.00 (5, 3) 1.00± 0.00 (1, 2)
Iris (versicolor) 0.93± 0.02 (40, 3) 0.91± 0.03 (20, 4)
Iris (virginica) 0.95± 0.03 (20, 3) 0.76± 0.06 (14, 3)

Wine 0.91± 0.03 (35, 4) 0.79± 0.07 (18, 4)

Table VI
AVERAGE F-SCORE ON THE REUTERS DATASET WITH DIFFERENT CLASSES

AS POSITIVE. FOR EACH SETTING, THE BEST NUMBER OF SELECTED
FEATURES D IS SHOWN. COMPARATIVE RESULTS OBTAINED FROM [14].

Positive class Our method (D) EN D SNOB MC D TBSVM
Earn 0.431 (28) 0.573 0.575 0.536
Acq 0.347 (23) 0.445 0.495 0.431

Money-fx 0.243 (8) 0.188 0.215 0.174
Grain 0.228 (4) 0.190 0.233 0.166
Crude 0.290 (4) 0.191 0.226 0.172
Trade 0.213 (12) 0.180 0.195 0.162

Interest 0.249 (5) 0.135 0.152 0.133
Ship 0.274 (5) 0.116 0.143 0.105

Wheat 0.441 (3) 0.122 0.144 0.113
Corn 0.256 (2) 0.097 0.108 0.084

Average 0.267 (5) 0.224 0.249 0.208

machines. For each of the top 10 most populated categories,
we derive a learning scenario where documents that belong
to that category are treated as positive. We label 20% of the
positive samples using a biased labeling process, which labels
highly correlated documents; refer to [14] for more details.

This learning setting represents real PU learning tasks
excellently. The biased labeling process reproduces the most
common scenario where the positive examples are labeled
based on search queries – for example, searches filtered by
keywords – rather than uniformly at random [14].

For each document, we tokenize the text in words and stem
each word, obtaining 21,173 different word stems. The binary
representation of the dataset is straightforward: each stem is
a feature, and a sample document has value 1 for a stem if
it occurs in the document. Since there are many features, we
pre-select only the D most frequent stems in the set of labeled
positive samples. For all experiments, we fix β = 105; which
has been found empirically for best results.

Table VI presents the classification results. Each value is
the average F-score from 5 independent labeled seeds; except
for our method, where we consider 20 independent random
seeds. For each topic, we indicate the best number of selected
features D.
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Figure 5. Average F-score and 95% confidence interval obtained by our
method over the number of selected features D. The solid horizontal lines
indicate the results of the state-of-the-art technique SNOB MC Double [14].

In Figure 5, one can observe the F-score average and the
95% confidence interval obtained for our method over the
number of selected features. The horizontal lines indicate the
state-of-the-art results.

Our model has the best results for almost all categories,
except for the two most frequent topics. In average, our tech-
nique also outperforms the other methods. Both the number
of selected features and the prior probabilities play a crucial
role in the process. In future works, we shall conduct studies
to estimate their optimal values.

V. DISCUSSION

The proposed model is simple to understand, to implement¸
and efficient to solve PU learning tasks with few or several
labeled samples. Moreover, if the input dataset comes in a
sparse representation, the computational complexity is linear.
Nonetheless, three limitations will be addressed in the future.

Separateness is unsuitable for imbalanced datasets because
it normalizes the class pertinence towards the average. A
measurement that normalizes towards an estimated prior prob-
abilities might provide better results.

The optimal β is nontrivial, and a lower bound estimative
that results in greater limiting probabilities for labeled samples
should be possible.

The classification step depends on the assumption of know-
ing the positive-class prior. Such information may not feature
in real datasets.

We can also extend our technique to several other learning
problems: a) An alternative method for multi-class datasets
can be obtained with competition dynamics instead of random
walking [5]. b) Since addition and removal of samples in the
feature–sample network and updates on the eigenvalues and
eigenvectors cost little resources, the method can be adapted
to deal with concept drift, outlier detection, classification on
data streams, and active learning. c) An analysis of the limiting

probabilities for the states associated with features would lead
to new techniques for feature selection and dimensionality
reduction.

VI. CONCLUSION

We presented a PU learning system for transductive clas-
sification. We map the input data into a sparse binary rep-
resentation and, afterward, into a complex network whose
vertices represent samples and attributes. From only positive-
labeled and unlabeled instances, we model a Markov Chain
that outputs positive-class pertinence levels for the unlabeled
samples. Knowing the priori probability of the positive class,
we classify the unlabeled samples.

The model is illustrated step by step and evaluated against
a baseline method and other techniques in literature. The
proposed scheme offers high performance on PU learning
problems, even with few labeled samples. However, two
main limitations can impair its use on real applications: the
estimation of the parameter β and the class priors.

Once we address these issues, we can further explore the
feature–sample network, generalize and extend the technique
to other learning problems.
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