
A GUIDE TO MAP APPLICATION
COMPONENTS TO SUPPORT MULTI-USER

REAL-TIME COLLABORATION

Mauro C. Pichiliani and Celso M. Hirata
Department of Computer Science

Instituto Tecnológico de Aeronáutica
São José dos Campos, Brazil, 12.228-90

{pichilia,hirata}@ita.br

Abstract - Building a collaborative application from scratch is a
hard task. In the last decade many advances have been made to
help the developers to construct collaborative applications,
however little effort has been made to extend existing single-user
applications to support real-time collaboration. This work
presents a mapping from the main components of an existing
single-user Model-View-Controller based application to multi-
user real-time components of the collaborative application. The
mapping allows reuse of existing single-user components by
facilitating the construction of collaborative applications. This
paper describes the mapping, the extension of an existing single-
user application and discusses an experiment of the prototype
application where the mapping was applied.

I. INTRODUCTION

Building a groupware application from scratch is a hard and
lengthy task, mostly because the designers of such applications
need to consider the functionalities of the application and the
collaborative aspects of the user’s interactions. Another
approach is to reuse an existing application, which the users
already know and are used to it, to support real-time
collaboration.

According to Xia et al. [13], leveraging single-user
applications to allow multi-user collaboration has the potential
to both significantly increase the availability and improve the
usability of collaborative applications. Some research efforts
have been made in the Computer Supported Cooperative Work
(CSCW) area in the last decade to reduce the effort needed to
extend and adapt existing single-user application to support
collaboration. These approaches are suitable to adapt existing
applications without changing their inner components, but few
of them focus on a more general modification targeting the
architectural style of the existing single-user application.

This paper presents a mapping to extend single-user
applications to support multi-user real-time collaboration over
the Internet. For this mapping, it is assumed that the single-user
application is built using the Model-View-Controller (MVC)
architecture style.

Using this mapping, existing single-user applications that
are based on the MVC architecture style can be benefited and
become collaborative. Since there is a great variety of single-

user applications available based on the MVC architecture
style, the mapping can help developers to implement new
collaborative features on their existing applications, expanding
the use of groupware to new classes of applications.

The proposed approach has been applied to convert
ArgoUML, a widely used open-source CASE (Computer Aided
Software Engineering) tool [1], to a multi-user real-time
collaborative CASE tool, named CoArgoUML.

The paper is structured as follows. Section 2 describes the
existing approaches to leverage single-user applications to
multi-user collaboration. Section 3 presents the requirements
and the proposed mapping to support collaboration on
applications based on the MVC architectural style. Section 4
shows how the mapping is used to extend the ArgoUML tool as
a proof of concept. Section 5 describes the experiment
conducted to evaluate the use of the extended tool. Finally,
conclusions and future work are presented.

II. RELATED WORK

Groupware toolkits make easier the implementation of new
collaborative applications by providing group components and
awareness-enhanced widgets (e.g. shared user interface
components) designed to be reusable, allowing the creation of
powerful new collaborative applications in a timely manner [3].

The reuse of the components of a groupware toolkit can
help the development of a new application but these
components cannot help the adaptation of an existing single-
user application to become collaboration-aware. This happens
because, in general, to reuse components of the toolkit the
application developers need to implement very specific details
of the toolkit, which is not always compatible with the most
existing single-user applications. Although the toolkits cannot
be used to extend existing application on most cases, they can
be useful to help the application developers that desire to adapt
some existing application. They can provide insights and ideas
needed to make the necessary adaptations on the applications to
support essential aspects of communication, collaboration and
cooperation. The literature presents many well-established
groupware toolkits such as GroupKit [8], COAST [11], and
MAUI [7].

Collaboration-transparent systems are a general approach to
provide computer support of real-time collaboration, usually
synchronous collaboration in existing single-user applications.
The sharing provided by this approach is unknown or
"transparent" to the single-user application and its developers
[2] provided by some external application that masks the
necessary communications and notifications needed to support
basic aspects of collaboration among multiple users at different
sites. Examples of application-sharing based on the
collaboration-transparency strategy are the Microsoft
Netmeeting [10], SunForum 3D [12] and SharedX [5].

Intelligent Collaboration Transparency, or ICT [9], presents
a variation of the collaboration-transparency system, using an
application sharing infrastructure interposed between the
heterogeneous applications to be shared and their window
environment at each site. Due to the heterogeneity, users can
collaborate on the common task with their favorite single-user
applications but a specific platform event capture/replay
module has to be used.

The approach of replacing some components of a single-
user application by collaborative ones was first introduced by
flexible JAMM (Java Applets Made Multi-user) [2]. The
approach provides support of multiple styles of collaboration
by dynamically replacing certain single-user interface objects
with collaborative user interface components. To use these
collaborative components the single-user application that
receives the collaborative components must meet certain
conditions, which include capabilities for process migration,
run-time component replacement, dynamic binding, and user
input event interception and replay [2]. The main limitation of
this approach is that the interface components offered by
Flexible JAMM only support the awareness aspects of
collaboration, leaving to the collaborative application
developer all the remaining work to adapt the single-user
application.

The Transparent Adaptation (TA) was proposed to help
modifying commercial applications that do not provide source
code. This approach is based on the use of the shared
application and its execution environment's API (Application
Programming Interface) to intercept the user's local
interactions, convert these interactions into abstract operations,
manipulate these operations by collaborative techniques, and
interpret the modified operations by means of the application's
API at remote collaborating sites [13].

The term transparent is used because this approach does not
require any change of the single-user application's source code,
but it requires the application's API to be capable of handling
the application’s data and the collaboration mechanisms.

III. REQUIREMENTS AND THE MAPPING OF COMPONENTS

Applications that support essential CSCW features have
specific requirements that are not addressed by single user
applications. CSCW researchers studied several kinds of
requirements for CSCW applications over the last 20 years,
from user interface requirements to architectural styles
requirements. The minimal requirements described here
originate from the areas of CSCW and object-oriented
programming.

For the sake of simplicity only the minimal requirements
that could be implemented on applications to make it somehow
collaborative are addressed in this article.

Support for communication is often a requirement for
synchronous CSCW systems. For distant and synchronous
collaboration, in particular, it is very important for users of the
system to know what other users want to do and their intentions
provided by the effective communication with each other. The
channel used by users to communicate and exchange thoughts
and ideas during the collaboration may assume different types
such as text, audio, and video.

To provide group awareness to help users coordinate their
work the model has to capture the relationships between users
and the tools or artifacts they currently use, i.e. the current
collaborative context.

Furthermore, collaboration has to be structured according to
the collaborative context. For example, working groups are
established when users join the same session. Other users may
want to create a new collaborative session to initiate a new
group work or may be latecomers, joining an active session.
This collaborative session management also must have some
kind of security access control to allow only users who have
permission to collaborate on a specific task or job.

Compared to single-user applications, collaborative
designers do not always want to give to all users full control
over the artifact that are being worked by the group.
Concurrency control techniques may be necessary to
coordinate users and define who is allowed to work, when they
work and how they work. Flexible solutions are required to
allow fine-grained control over parts of the application and
switch of control between different modes according to the
activity being made.

To summarize, the following minimal collaborative
requirements should be applied to single user applications to
make them collaborative (in addition to the already
implemented single-user application requirements):
communication, group awareness, session management and
concurrency control.

It is challenging to design and build a system that supports
the requirements mentioned above effectively, especially on
single user application that already has many features and a
complete set of functionalities for its domain. However, even
complex applications follow basic rules of storage and data
manipulations, such as several types of data structures and
operations that transform and show the data for the users. In
general those data structures and applications are extensible
and can be modified to support new operations and structures
needed to implement the collaborative requirements.

According to Schuckman et al. [11] the step from single-
user application development towards groupware development
requires more than just sharing common artifacts or connecting
a set of distributed user interfaces. Therefore, our proposed
mapping allows a uniform handling of the minimal groupware
specific aspects: communication, session management,
concurrency control, and group awareness on a high abstraction
level, which provides a good basis for designer of applications
from the conceptual point of view.

Nowadays the MVC architectural style is the most accepted
and used architectural style in single-user applications,
providing the developers with a common framework for single-
user architecture. MVC is a widely used architectural style that
separates the data underlying the application (the model) from
the input handling code (the controller) and the display
maintenance code (the view).

We believe that with specific modifications on the MVC
components, multi-user real-time collaborative applications can
be derived from this single-user architecture style. For
example, the Groove system [4] has shown that the single user
MVC model can be modified to include a command processor
which intercepts changes to the local model, and sends them to
other MVC agents as they happen or when other agents
connect.

Starting from a generic MVC-based application, we can
assume that a logical a consistent distribution of functional
components on the application has been made. For the View
part is common to find components that handle the display of
data and allow the capture of the user interactions on the
Graphical User Interface (GUI). On the Controller part there
are components that handle user’s data, such as components
that validate the user inputs and take care of session data. The
Model part usually contains persistence components and
customized components that represent specific domain rules.
Infrastructure components are spread across all the parts of the
architectural style.

The communication requirement may act upon two
functional aspects: the communications between the users and
the communication between the models of the distributed
applications. Theses two functional aspects involve,
respectively, components of the View and Model part of the
application. Besides these functional aspects, the developers
also need to consider the infrastructure necessary to exchange
data between the applications.

The user’s communications do not change the state of
model because it is used only to support the conversation
between the users during the collaborative session. In order to
support the user’s communications the user interface of the
applications has to be modified to capture and replay the
communications according to the channel and the media used.

The communication between the models of the applications
requires a more detailed solution. Since the single-user
applications do not expect external changes on the model
during the user session, a direct mapping of components cannot
be made. However, these external changes are related to the
components that handle the model’s internal representation.

The modification on the local model, and consequently the
changes that are propagated on the remote sites, need to be
merged on the local and remote models to maintain consistency
among the user’s models. The merge is handled by the
concurrency control mechanism chosen by the designer and all
the details that it carries with it. Again, the single-user
application does not have any concurrency control, leaving to
the developer to implement this functional aspect or use some
pre-built component. The concurrency control mechanisms
affect primarily the components that handle the internal

representation of the model and the persistence components,
mapping the concurrency control mechanisms directly to these
components.

The users need to be notified of the external modification
made on the model by remote users. The notification can
assume the form of an update on the user interface to inform
the users of the changes presenting to the users a new
functional aspect: group awareness. This functional aspect, as
with the user’s communications, is directly related to the user
interface, mapping the user interface components to multi-user
widgets, which is a common approach to support group
awareness on applications.

Another aspect of group awareness is the notification of the
participation of the users during the collaborative session. A
session access control must be created to guarantee that the
right users access the right session to do the right task. Most
single-users applications do not present a way to authenticate
and authorize users but multi-user real-time applications must
handle authorizations and authentications not only to control
session access but also to inform the other users who are
participating on the collaborative session.

The implementation of this session control must not be
made entirely on the application. On replicated architectures, a
special host is designed to store the data about the current and
past collaborative sessions and to concentrate the access of
users that wish to participate on collaborative sessions. The
server host also stores the most updated model of the current
collaboration, allowing late-comers to receive the most recent
state of the shared model when they enter in active
collaborative session.

From the components perspective it is necessary to create
new interfaces to support the new behaviors of the components
mapped to the collaborative requirements. These interfaces are
based on the desired collaborative functional aspects for which
component is responsible. Interfaces for user communication,
group awareness and session management are the requirements
that must generate new interfaces that must be implemented on
the View and Controller components.

The concurrency control collaborative requirement must be
implemented on the model components, allowing the
concurrent access of the data by multiple remote users. Since
most operations supported by the single-user application are
based on serialized access, the developers must remove the
components of the Control part that do not provide interfaces
for the concurrency access and replace them by new
components that support concurrency access to data.

New interfaces are not always the best alternative to
implement the collaborative requirements. Overwrite existing
methods, creating wrappers and adapters for the components
and the ability to listen to events triggered by some user action
are alternative ways to modify the components without
spending too much development effort.

The View components are mapped directly to User
Interface controls and Multi-user Widgets, addressing the
group awareness requirements. Control and Model components
are mapped to components that handle concurrency control
mechanisms and Network communication, which is responsible

for the model communication, session and concurrency control
requirements. The mapped suggested multi-user components
can be implemented based on a pre-built component, a
framework or a user interface control.

In some applications the components are not as manageable
as necessary to be modified or the components do not have
enough interfaces to allow change of behavior. In these
situations, more radical approaches, such as a complete
reprogramming of the components or the replacement of them
with components more susceptible to changes, must be worked.

Some functional aspects, such as the concurrency control,
cannot be mapped because they do not exist on the single-user
applications. In these cases, the most recommended approach is
to implement these functional aspects using new components
that provide the desired functionality. If some components that
possess the desired functionality cannot be found, the
developer has no choice other than constructing it from scratch.

The proposed mapping maintains the local model of the
users, allowing them to work with and without the
collaboration on the same application. On existing groupware
applications it is common to find the replicated distributed
architecture that allows the users to maintain their local model
and the server to have a master copy. Replicated architectures
make good usage of network resources because display data are
not transmitted over the network: only the control events need
to be transmitted.

Since no structural modifications are suggested by the
mapping on the MVC architectural style, the replicated
distributed architecture is highly recommended to allow the
sharing of the model and to handle the collaborative sessions
across remote sites. The host server of the replicated
architecture, hereafter referred to as the Collaboration Server, is
based on simple client/server architecture. It must have a
simple security control access to the collaborative sessions and
must store the model. It can also be used to implement portions
of a distributed concurrency control algorithm.

The proposed mapping raises many technical issues
including distributed architectures, concurrency control, view
update, networking communications, and so on. These issues
must be addressed by the developer considering the resources
available to solve them during the development phase.

The goal of our mapping is to provide a generic
component-based guide to applications based on the popular
model-view-controller (MVC) architectural style. The mapping
aims to help designers in the analysis and design discipline
during the elaboration phase of the development of groupware.
It is important to mention that these guidelines are abstract and
conceptual and do not address technical implementation details.

IV. PROOF OF CONCEPT

After reviewing several different tools and technology we
have chosen an existing single-user drawing editor called
ArgoUML [1] to verify the applicability of the proposed
mapping as a proof of concept. This open-source CASE tool
provides partial support in UML editing, has a strong
community of developers and has received good assessments
from the specialized press.

The application has a highly modularized structure and is
organized on several subsystems, distributed across the MVC
architecture. Every subsystem in ArgoUML has a name and it
is implemented as a single directory/Java package which can
have a Facade class and or Plug-in interface to allow the use of
the subsystem’s classes.

ArgoUML uses the MVC architectural style separating the
Model, the Control and the View into many related subsystems.
The Model is implemented across several packages and does
not rely on any other part of ArgoUML. However, it depends
on one external component to handle graphs, called Graphic
Editing Framework (GEF) [6], which is a separated framework
that handles the internal representation of the UML diagram
that ArgoUML manipulates.

The Control and View are implemented in subsystems such
as the Diagram subsystem or the Explorer subsystem. These
subsystems rely on the components of the Swing and AWT
libraries and the Java Core Components (JCC).

The main collaborative requirements applied to ArgoUML
include a chat tool integrated with the GUI of ArgoUML for
communication, a shared diagram workspace that shows the
user telepointers and automatic refresh upon changes on the
local models for group awareness and a distributed lock
technique for concurrency control. All the session control is
implemented on the Collaboration Server, which was built
based on Java sockets classes, with a simple user/password
authentication mechanism. The distributed lock technique is
also implemented on the Collaboration Server.

The mapping indicates that the GEF components needed to
be extended to allow the multiple editions on its internal
elements. The main modifications include code for support
external concurrent modifications on the internal hash table and
code to make the Collaboration Server modify the internal
representation of the diagrams elements.

Three user interface widgets for awareness were
implemented: a text box and a button to allow the chat tool, the
painting of the diagrams elements to display the lock (green: no
lock; red: locked by some user) and a telepointer with the
user’s name.

To maintain the current implemented features of ArgoUML
few the modifications were made on the classes of the
ArgoUML. In most situations the original classes were
inherited and their functional methods overwritten.
Composition was also used in many cases, especially in classes
where notifications must be propagated. To organize and apply
the necessary modifications and the new code we used many
design patterns, such as the Singleton, Observer and Factory
Pattern [14], into the original code.

The main technical problems encountered during the
implementation of the mapping on of ArgoUML were related
to the large number of classes that were modified (the 0.16
version of ArgoUML has more than 1,000 classes) and the lack
of documentation about design of the project.

V. EXPERIMENTATION OF THE PROTOTYPE

In order to evaluate the prototype tool, an experiment was
conducted in a controlled environment. The experiment
involved twelve students divided into six pairs randomly
without repetitions. All the students have a degree on
computing courses and their ages range from 23 to 34 (mean:
26; standard deviation: 2.27) with 6 of male sex and 6 female
sex.

Each member of the pair was taken to a separated room
where he/she could only communicate with his/her pair
through the chat embedded on prototype tool. Before the start
of the experiment every student received a questionnaire asking
about his/her previous knowledge of UML, collaboration
technologies and others social aspects. Then the students
received tutorials introducing them to the prototype and
explaining how to elaborate simple UML class and Use Case
diagrams with the help of the prototype.

After this training period the students started the main part
of the experiment. Each pair completed three collaborative
modeling sessions in which they received a fictitious scenario.
They were asked to design collaboratively UML diagrams
based on the presented scenarios and using the prototype tool.

At the end of each task the students received the effort
perception questionnaire about the task that was completed. At
the end of the last task each student participated on a quick
interview with the observer.

We are still analyzing the data collected from the
experiment but preliminary results indicate that the
collaborative models produced by the students with a high level
of interaction during the sessions (e.g. more dialogs or high
number of elements created/deleted on the diagram) were more
complete than those made by students that do not interact much
with their partners. The data also suggest that the prototype
should be used more often during the modeling of UML
diagrams, since the majority of the students involved with the
experiment enjoyed the experience and prefer to use a
collaborative modeling tool instead of a single-user modeling
tool.

Although we do not complete the analysis of the data
collected the initial results indicated that the mapping allowed
the building a collaborative prototype that satisfy the basic
collaborative requirements.

The implications of this experiment can lead to new
opportunities not only on real software projects but also on
distant learning environments.

VI. CONCLUSIONS & FUTURE WORK

In this paper we presented an approach to extend single-
user application to allow minimal collaborative aspects based
on a mapping of the components of a MVC-based application.
We showed that, by using the proposed mapping and extending
existing components, core functionalities in groupware design
can be implemented on new classes of applications that do not
support collaboration.

This paper also has shown the implementation of the
proposed mapping in a single-user open-source application

called ArgoUML, which allows the modeling of UML
diagrams. The prototyped application, called CoArgoUML,
was used on an experiment to help evaluate if the collaborative
requirements were met.

The proposed mapping creates precedent for a guide that
helps the developers of open-source applications to implement
aspects of collaboration on their projects. The presence of such
mapping could encourage the open-source community to
extend existing applications therefore increasing the number of
domains of groupware applications.

Researches interested on the CoArgoUML prototype can
download the version used on the experiment from the web site
http://www.comp.ita.br/~pichilia/argo.htm.

ACKNOWLEDGMENT

The authors wish to thanks the anonymous reviewers that
made suggestions to significantly improve the presentation of
this paper and the individuals involved in the experiment.

REFERENCES

[1] ArgoUML, ArgoUML, <http://argouml.tigris.org/>, July 2006.

[2] J. C. A. Begole, M. B. Rosson, and C. A. Shaffer. “Flexible
collaboration transparency: supporting worker independence in
replicated application sharing systems”. In ACM Transactions on
Computer-Human Interaction, pp. 95-132, 1999.

[3] P. Dourish and W. K. Edwards. “A tale of two toolkits: relating
infrastructure and use in flexible CSCW toolkits”. In Computer
Supported Cooperative Work, vol. 9, pp. 33-51, 2000.

[4] C. A. Ellis, and S. J. Gibbs. “Concurrency control in groupware system”.
In Proc. Of the 1989 ACM SIGMOD International Conference on
Management of data (SIGMOD'89), pp. 399-407, 1989.

[5] D. Garnkel, B. Welti, and T. Yip. “SharedX: A tool for real-time
collaboration”. HP Journal, vol. 45, pp. 23-36, 1994.

[6] GEF, Graph Edition Framework, <http://gef.tigris.org/>, July 2006.

[7] J. Hill, and C. Gutwin. “The MAUI toolkit: groupware widgets for group
awareness”. In Computer Supported Cooperative Work, vol. 13, pp. 539-
571, 2004.

[8] C. Gutwin, and S. Greenberg. “A Descriptive framework of workspace
awareness for teal-time groupware”. In Computer-Supported
Cooperative Work, vol. 11, pp. 411-446, 2002.

[9] D. Li, and R. Li. “Transparent sharing and interoperation of
heterogeneous single-user applications”. In Proc. of the 8th ACM Conf.
on Computer Supported Cooperative Work (CSCW'02), pp. 246-255,
2002.

[10] Microsoft Corporation, Microsoft NetMeeting,
<http://www.microsoft.com/netmeeting>, July 2006.

[11] C. Schuckmann, L. Kirchner, J. Schümmer, and J. M. Haake.
“Designing object-oriented synchronous groupware with COAST”. In
Proc. of the 3rd ACM Conf. on Computer Supported Cooperative Work
(CSCW'96), pp. 30-38, 1996.

[12] Sun Microsystems, Sun Forum 3D, <http://www.sun.com/products-n-
solutions/hardware/docs/Software/collaboration_communication/sunforu
m/sunforum_3d/index.html>, July 2006.

[13] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. “Leveraging single­user
applications for multi­user collaboration: the CoWord approach”. In
Proc. of the 9th ACM Conf. on Computer Supported Cooperative Work
(CSCW'04), pp. 162-171, 2004.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

