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Abstract—In the context of Artificial Intelligence, Online
learning is focused on environments that are not independent
and identically distributed, i.e. the environment may changes its
behavior as time goes by. Blum proposed a famous algorithm to
this problem, which was called randomized weighted majority
algorithm. In this paper, we propose an adaptation of such
algorithm to autonomous valuation of financial assets. Our
approach is based on learning from expert’s advices, in order to
create a more adaptable solution and reuse some results achieved
for other researchers. We also briefly review some papers in
the field. The proposed approach is materialized through an on-
line learning algorithm that defines an analysis derived from
many different analyses performed by autonomous analysts.
Such analysts may be created using techniques from finance
or machine learning fields. Our algorithm is able to take into
account different costs of analysis errors. We believe that this
skill in fundamental to an efficient analyst. We implemented the
algorithm and tested it using several different techniques from
finance and one (very simple) algorithm from machine learning
area. This implementation was tested and the achieved results
are analyzed and discussed. Furthermore, we proved that our
algorithm’s cost of error is limited by an expression of the cost
of error of the best autonomous analyst. We believe that this
algorithm may contribute to development of better systems that
intend to estimate the price of financial assets in an autonomous
way.

I. INTRODUCTION

Through a review of relevant papers in the big field of
autonomous investment analysis (see [1], for a short list) is
possible to notice that many of the papers on the subject
use historical time series of price and/or volume to motivate
inferences about investment decisions. This usage of historical
time series to predict future prices is controversial. Despite
that this practice, usually known as Technical Analysis, is
also largely adopted by analysts at least as part of the a
more complex analytic process that also includes economic
and market information such as profit, market share, EBITDA,
price / profit relation and so on. The methods that utilize
information of companies, the market and/or economic are
commonly classified as fundamentalists. Actually, there are
many articles that feature trading algorithms based on tech-
nical or fundamentalist information and on some artificial
intelligence technique.

We can also notice that these algorithms feature some
parameters. However, there is not a good understanding of
how the value of each parameter affects the performance

of algorithm and how changing the value of one parameter
affects the configuration of other parameters. This makes it
very difficult to define these values even for a small set of
parameters.

The environment faced by the autonomous investment an-
alyst may be classified as: partially observable, sequential,
stochastic, dynamic, continuous and multiagent, according to
the taxonomy of Russel and Norvig [2], which is the most
complex class pointed out by them. However, it does not rep-
resent the entire problem’s complexity. More than stochastic,
this environment is a non-stationary process (the probability
distribution changes over time) and is strategic in the sense
that two investors compete for a more precise evaluation
of the assets and their actions may change the behavior of
other agents. Besides, the financial markets are non-stationary
environments, i.e. the probability distributions may change
over the time. Hence, a particular algorithm may have a
great performance in some period of time but a terrible
performance in the next one. In addition, different assets may
demand different information and different algorithms, e.g. the
oil companies are very sensitive to changes in the price of
gasoline, but the same cannot be said about the banks.

In addition to the aforementioned questions: definition of
relevant information, non-stationary processes and different
character of the assets, we can observe different requirements
with respect to another dimension: the investment horizon.
We employ this term to refer to the period of time in which
the investor intends to maintain their resources invested in
the same set of assets. It ranges from many years to a few
milliseconds. This wide range leads to algorithms that may be
very efficient in short horizons but perform badly in the long
run. Another aspect that have to be taken into consideration
by any autonomous investment analyst (AIA) is that people do
not have the same investment preferences, e.g. some investors
may show a much greater risk-aversion than others may. An
AIA must be aware of the preferences of its investor in order
to provide adequate advice.

In short, it is possible to establish some important char-
acteristics about the AIA environment: the financial market
does not have a stationary probability distribution function but
it changes slowly. So the optimal calibration of parameters
tends to change slowly over time. Besides that, the number of
probability distribution functions is finite and these functions



repeats themselves from time to time. There are several pitfalls
in overfitting machine learning models in the financial domain,
as pointed out by Prado [3]. Overfitting must be avoided
by keeping the training limited in terms of iterations or
computational time and re-training must take place as new
data is observed. . It consists of a problem of the on-line
learning problems class [2]. For a more in depth discussion
about on-line learning see [4].

II. MODELING THE AUTONOMOUS INVESTMENT
ANALYSIS AS A CLASSIFICATION PROBLEM

The problem of carrying out the analysis may be simplified
to a classification by means of the discretization of the returns.
As pointed out in the Modern Portfolio Theory, trying to
predict returns has the advantage of being dimensionless and
dealing with narrower domain. The return is lower bounded by
-1 and upper bounded by the impossibility of infinity return,
but it is frequently less than 1 given reasonable horizons.
This is simpler than the direct prediction of the asset prices,
which may vary from some tenths to several thousands of
some monetary unity. The current price is always known,
which makes it trivial to calculate the future price given the
return. The discretization of the returns makes close values of
return indistinguishable, which is compatible with the general
preferences of an investor. If the analyst signals a return of
85% and in reality it turns out to be of 84,9% or 85,1%,
the investor will probably interpret as a correct analysis, not
as a mistake. Besides that, small variations in the predicted
return would hardly impact the investment decision, being
thus unimportant to the performance of the investment. On
the other hand, modeling the the autonomous analysis as a
classification problem allows the usage of various known and
tested techniques of Machine Learning, as well as facilitating
the understanding of the problem. It is also interesting to notice
that the degree of simplification can be controlled, since it is
always possible to arbitrate the number of classes employed
in the discretization, from the simplest possible case with two
classes: positive and negative return up to cases with a high
number of classes. In fact, since the very real numbers are
always discretized to be represented in the finite memory of a
computer, by means of the floating-point notation, it is possible
to assert that the predicted return will always be discrete, even
when the modeling approach is continuous.

Besides the discretization of the return, another consider-
able simplification of the autonomous analysis’ work is the
discretization of the investment horizon. It is assumed that the
investment decisions will be different for different horizons, so
it is assumed that the is an specific system to analyze each one
of the possible horizons, which by simplicity will be restricted
to three possible values: one day (D), one week (W) and one
month (M).

Another fundamental characteristic to the modeling is the
specification of the Analyst’s Memory. This is the time period
for which the analyst is capable of storing information it
considers relevant to its decision process, be it prices, trading
volumes or any other. Which information are relevant change

Fig. 1. Example of discretization with five classes.

from analyst to another, but the maximum time for which the
information are retained is kept the same. For instance, if the
current time is t and the analyst has memory m and stores data
about past prices and volumes, this means that it may use in
its decision process the prices pt−m, ...., pt−1, pt and volumes
vt−m, ..., vt−1, vt).

A. Discretization Approach

The discretization of the return can be done in various
ways. Our approach adopts some premises: one class identifies
small alterations in the current price (neutral class or N),
it is centered on zero with a small interval and there is
symmetry in the number of classes above (H) and below
(B) the neutral class. The classes that indicate positive return
(H1, H2, ...Hn) and the classes that indicate negative return
(Ln, ....L2, L1) need not have the same dimension due to the
possible difference in the positive and negative domain, which
is limited to -1, provided that assets with price limited to zero
are considered.

Classes =
[
Ln, ....L2, L1, N, H1, H2, ... Hn

]
Thus, our approach presupposes establishing a lower bound

(negative) and an upper bound for the return in a given invest-
ment horizon and dividing the intervals between the classes,
considering the neutral class divided among the two intervals.
In the example of the figure 1, which has seven classes, the
interval of the classes L is given by —Min—/(3+1/2), while
for the classes H it would be given by Max/(3+1/2).

Once established the classes, it is easy to observe that there
will be errors perceived by an investor as much graver than
others are. For example, if the analyst points to a return H2
for a given asset when the correct return would be H3 would
be much less alarming than if he had predicted L2. In another
words: the cost of error is not uniform. It is possible to address
this issue with a cost of error matrix, select in a way that
it represents the preferences of the investor. This is further
discussed in the next session.

B. Cost of Error

As already mentioned previously, an error may have a cost
significantly different to the cost of another error in the context
of autonomous analysis. This way, it would be inadequate to
evaluate an analyst only by its accuracy rate. A more suitable
form would be to evaluate by the accuracy rate weighted by
the cost of error. Since the objective of an analyst is not to



obtain return, but to make correct predictions, it is reasonable
that its performance be measured by the accuracy rate, but also
taking the cost of error into consideration. For this purpose,
we will employ a cost of error matrix suited to the investment
preferences/profile of the investor. An uniform cost of error
matrix for five classes would have the format below, where
the columns represent the real classes and the lines represent
the predicted classes. The error rate can be calculated as the
number of errors divided by the total number of classifications,
with the accuracy rate being the complement.

However, when the cost of error is not necessarily the same,
it is necessary to employ a cost of error matrix adjusted by
the gravity of the error, such as seen below. Where c1,2 is the
attributed cost to the error made by the analyst of predicting
the class L2 (1) when the correct would have been L1 (2).
That is, the cost of error of predicting the class i when the
real class would be j is represented by ci,j , a positive number
for any i different from j. That defines an adjusted cost of
error matrix C, as presented below.

L2 L1 N H1 H2
0 c1,2 c1,3 c1,4 c1,5 L2
c2,1 0 c2,3 c2,4 c2,5 L1
c3,1 c3,2 0 c3,4 c3,5 N
c4,1 c4,2 c4,3 0 c4,5 H1
c5,1 c5,2 c5,3 c5,4 0 H2


It is then possible to define the classification distribution

(hits and misses) of any analyst as a NxN matrix (N is the
number of classes) with the format seen below, still for the
five classes example. di,j corresponds to the number of times
the classifier predicted i and the real class was j.

With the classifier’s distribution matrix and the adjusted
cost matrix, it is possible to determine the expression for the
average cost of error of this classifier (eq. 1).

AverageClassifierError =
1

τ
∗
∑
i

∑
j ci,j ∗ di,j
cmax

(1)

Where τ corresponds to the total number of realized classifi-
cations, cmax represents the greatest value of ci,j for any i and
j, ci,j e di,j correspond to the elements of the cost matrix and
the classifier’s distribution matrix, respectively. In the same
manner, it is possible to define an accuracy rate adjusted by
the cost of error, equation 2. It is easy to verify that this rate
belongs to the [0, 1] interval, being equal to one when the
classifier has not made any errors and equal to zero when the
classifier has only made errors with the worst possible cost
in all the instances. It can also be noticed that the greater the
value of the rate, the better the performance of the classifier,
accounting for the cost of its errors.

AdjustedAccuracyRate = 1− 1

τ
∗
∑
i

∑
j ci,j ∗ di,j
cmax

(2)

The 2 provides us with a simple and objective way
to evaluate the performance of an autonomous analyst and

judge which one is better suited for a given market situation.
However, as noted in section I, the investment analysis is a
non-stationary problem, so the agent better adapted or with
better performance in a given instant may quickly become
unsuited. In the same manner, another agent with a poor
performance may become one of the best in a way that is hard
to predict beforehand. A way to tackle this challenge would be
to have many autonomous analysts operating simultaneously
and select the decision of one of them (or the aggregate
of a small subset) as the final decision of the system. This
is precisely the problem addressed in on-line learning, the
prediction based on experts’ advice. The next session deals
with the theme and its adaptation to AIA.

III. ON-LINE LEARNING: PREDICTING BASED ON
EXPERTS’ ADVICE

The problem of making predictions based on the advice
of many experts is better explained by means of simple and
intuitive example. A learning algorithm should predict if it is
going to rain in a given day or not. The algorithm receives
as input the advice of n experts. Each expert predicts yes or
no and the learning algorithm has to use this information to
make its own prediction. No other information is given to
the algorithm besides the yes/no predictions produced by the
expert. The algorithm receives the information if it has or has
not rained after making its own prediction. Suppose there is no
previous knowledge as to the quality or independence of the
experts. A reasonable objective would then be to perform as
well as the better expert to that moment. Naturally, which is the
best expert changes over time. In the context of autonomous
analysis, the issue is similar. Even though more complex, since
the predictions would be over a real valued function (return)
or of many values, if we employ the discretization proposed
in section II. In the context of AI, this kind of situation is
commonly referred as on-line learning.

Blum [4] proposed two algorithms to solve the problem
with on-line learning. The first is quite simple and direct. It
initially establishes equal weights to each expert and halves the
weight of any expert that makes a mistake. The chosen output
is that with the biggest weight. Blum has shown that the errors
made by this algorithm are never greater than 2,41 (m + log n),
where m is the number of errors made by the best expert and n
is the number of experts. The second algorithm is an improved
version of the first. Blum has shown that the number of
errors of the second algorithm (called Randomized Weighted
Majority Algorithm) is limited to (m*ln(1/β) + ln(n))/(1 -β),
where β is a parameter of the algorithm [4].

Both methods implicitly assume that the cost of error is
always the same. In another words, they employ a standard
cost matrix, as show in section II-B. However, in the context
of autonomous analysis, this supposition is not acceptable,
as discussed in section II-B, the algorithm should take into
account that some errors are worse than other in AIA.

For this reason, we propose an adapted version of Blum’s
algorithm to deal with adjusted cost of error matrices that
we call Error Adjusted Randomized Weighted Majority



Algorithm. Besides that, we prove that this algorithm has a
cost of error (sum of all the cost of the errors made) limited to
(m * ln (1 / βmin) + ln (n)) / (βmin), where βmin is 1 / (cmax
+ 1) and cmax refers to the greatest element of the adjusted
cost matrix. In order to formalize the adapted version of the
algorithm, we need to redefine β, as shown in equation 3.

β(i, j) =
1

ci,j + 1
(3)

ci,j refers to the cost of predicting class i when the real
class is j, as defined in the adjusted cost matrix. Since ci,j
is greater than or equal to zero, bi,j belongs to (0, 1]. Using
equation 3, we need to some small changes in Blum’s original
algorithm to get the Error Adjusted Randomized Weighted
Majority Algorithm, shown in figure 2.

Theorem 1. In any sequence of experiments, the expected
cost of error M made by the Error Adjusted Randomized
Weighted Majority Algorithm (EARWMA) satisfies the fol-
lowing:

M ≤ m ∗ ln(1/βmin) + ln(n)

βmin
(4)

Where M is defined as the sum of costs of all the errors
made by the algorithm and m is the sum of the cost of
all the errors of the best expert so far. The proof is similar
to the original proof of the Randomized Weighted Majority
Algorithm [4] and is given below.

Proof of Theorem 1. Let Fi,j be the fraction of the total
weight of the wrong answer j in the ith test. Let τ be the
number of examples. We define M as the expected sum of
the cost of all errors made up to this moment, i.e. M =∑τ
x=1

∑E
j=1 Fx,j ∗ cx,j , where E is the number of classes.

In the ith iteration, the total weight W changes by:

W ←W (1−
E∑
j=1

(Fi,j − βi,jFi,j)) (5)

So, the final weight after τ iterations is:

W = n

τ∏
i=1

(1−
E∑
j=1

(Fi,j − βi,jFi,j)) (6)

Using the fact that the total weight must be greater than or
equal to the weight of the best expert b and letting m be the
number of errors of the best expert, we have that:

n

τ∏
i=1

(1−
E∑
j=1

(Fi,j − βi,jFi,j)) ≥
m∏
i=1

βi,b (7)

Taking natural logarithms:

ln(n) +

t∑
i=1

ln(1−
E∑
j=1

(Fi,j − βi,jFi,j)) ≥
m∑
i=1

ln(βi,b) (8)

−ln(n)−
t∑
i=1

ln(1−
E∑
j=1

(Fi,j−βi,jFi,j)) ≤
m∑
i=1

ln(
1

βi,b
) (9)

Since -ln(1-x)¿x for all x, we can write:

−ln(n) +
t∑
i=1

E∑
j=1

(Fi,j(1− βi,j))) ≤
m∑
i=1

ln(
1

βi,b
) (10)

Since M =
∑t
x=1

∑E
j=1 Fx,j ∗ cx,j and β(i, j) = 1

ci,j+1 ,
then (1 − βi,j) = ci,j/(1 + ci,j). Making the substitution in
the last equation we have:

−ln(n) +
t∑
i=1

E∑
j=1

Fi,j ∗ ci,j
(1 + ci,j)

)) ≤
m∑
i=1

ln(
1

βi,b
) (11)

Using the definition of M and taking cmax as the greatest
of all ci,j for all i and j, we have:

−ln(n) + M

cmax + 1
≤ m ∗ ln(cmax + 1) (12)

Solving for M and using the fact that βmin = 1/(cmax+1),
we may conclude that:

M ≤ ln(n) +m ∗ ln(1/βmin)
βmin

(13)

This concludes the proof of Theorem 1.

A. Error Adjusted Randomized Weighted Majority Algorithm
with Self-exclusion

The usage of advice from various experts may contribute
significantly to make an autonomous investment system more
adaptable to many situations while keeping the experts rel-
atively simple. A characteristic of one of these techniques is
that they point out moments for buying and selling when some
market patterns are observed. In the absence of occurrence
of these patterns, they solely indicate the maintenance of the
current price, even though this indication not being a factor
that should make the price maintenance scenario any more
likely, only shows the lack of conviction of the expert about
what will happen. The stochastic indicator [1] is an example of
this kind of behavior. This indicator outputs a buy signal when
the indicator is less than 20 and a sell signal when it is greater
than 80. Between values 20 and 80 there is a considerable
uncertainty as to which should be the path to follow by the
indicator, so its indication should be taken with reservations
or simply disregarded.

This way, it would be interesting to have experts that
always indicated a prediction, but also informed the degree
of certainty of it. Thus it would be possible to enhance the
performance of the algorithm EARWMA excluding the the
opinion of the experts with a low degree of confidence in their
own prediction from the weighted majority. The algorithm
EARWMA with Self-exclusion (EARWMA2) is presented in
the figure 3.

The cost of error of the algorithm would then be altered to
M

′
=
∑τ
x=1

∑E
j=1 F

′

x,j ∗ cx,j , where F
′

x,j is the fraction of
the weight with wrong answer j in test x, accounting only for
the non-excluded experts. It should be noted that the updating



1. Initialize the weights w1, w2, ...wn to 1
2. Given a set of predictions x1, ...xn of the respective experts,
return xi with probability wi/W, where W is the sum of all weights
3. Receive the correct answer L and penalize each mistaken expert multiplying its weight by βi,j .
4. Go back to step 2.

Fig. 2. Error Adjusted Randomized Weighted Majority Algorithm (EARWMA)

1...
2. Given a set of predictions x1, ...xn of the respective experts, if there are at least two predictions were the respective experts
have a degree of self-certainty greater than or equal to δ, eliminate from the set S the predictions with self-certainty smaller than δ,
return xi with probability wi/W, where W is the sum of all weights of the remaining experts
3....
4.....

Fig. 3. Error Adjusted Randomized Weighted Majority Algorithm (EARWMA) with Self-exclusion. Only step 2 changes from EARWMA.

of the weights is not altered, even though some experts are
filtered; the weight update is done for them all. Let Rx and R

′

x

be the fractions of the weight with correct answer in the test
x with the algorithms ARWMA and ARWMA2, respectively.
It is easy to verify that the sum of the weights of the selected
experts will be equal or less than the sum of the weights of
all the experts, so it is possible to wright:

R
′

x +

E∑
j=1

F
′

x,j ≤ Rx +
E∑
j=1

Fx,j (14)

Assuming that the confident experts have higher or equal
accuracy to the exclude experts, i.e. Rx ≤ R

′

x, then:

R
′

x +

E∑
j=1

F
′

x,j ≤ R
′

x +

E∑
j=1

Fx,j (15)

So:

E∑
j=1

F
′

x,j ≤
E∑
j=1

Fx,j (16)

Multiplying both sides by cx, j and summing over all tests
we have:

M
′
τ∑
x=1

E∑
j=1

F
′

x,j ∗ cx,j ≤
τ∑
x=1

E∑
j=1

Fx,j ∗ cx,j =M (17)

Therefore, if the assumption that the confident experts are
more accurate than the excluded ones is valid, the ARWMA2
should have a better performance than its previous version.

IV. IMPLEMENTATION AND RESULTS

One of the advantages of modeling the autonomous analysis
of investments as a classification problem is the possibility of
utilizing many already available algorithms and tools to deal
with this class of problem. Among this tools, we chose the
Weka [5] framework to carry out our implementation.

We employed five Technical Analysis based agents:
Stochastic, RSI, MACD, MA and Price Oscillator [6] and

two classifiers available in Weka adapted to be employed as
autonomous analysts. This reuse of classifiers is an example of
the advantages of modeling AIA as a classification problem.
In Weka’s specific case, this reuse is made possible by our cre-
ation of a class derived from the class AbstractClassifier that
implements the methods buildClassifier and classifyInstance.

The data for training is generated by the price (open, close,
high, low and mean) and volume time series with predefined
analyst’s memory (see section II) and stored in arff format. In
the experiments presented in section IV, we use a memory of
40 days.

In this section, we present the performance data obtained
by the autonomous analysts implemented, including the Error
Adjusted Randomized Weighted Majority Algorithm (EAR-
WMA). The performance is measured with the error adjusted
accuracy rate (equation 2). The simulations were made with
technical data from 2012 to 2016 with the eighteen most
traded stocks in the Brazilian stock exchange (BOVESPA,
recently renamed B3). The discretization was done with seven
target classes (L3,L2,L1,N,H1,H2,H3). Therefore, a complete
random classifier would have an expected accuracy rate of
14.2%. However, its error adjusted accuracy rate would be
36,97%. For that calculation we use equation 2 and assume a
cost matrix where ci,j = (1, 1)abs(i−j), if ineqj and ci,j = 0,
otherwise. That defines a symetric cost matrix with higher
costs for bigger erros. For instance, Let be H2 the predicted
class and N2 the actual class, that would cost 1, 16 ≈ 1, 77,
while if the actual class were H1 the cost would be only
1,1. It is consistent with the preferences of any investor. It
is interesting to note adjusted accuracy rate tends to be higher
than the traditional accuracy rate, except if the classifier is
biased to high cost errors.

In table I, we present the risk adjusted accuracy rate for
each autonomous analyst in the evaluated period (2012-2016)
for three horizons of investment: 1 day (D), 1 week (W) and
1 month(M). Taking as reference a random analyst which
would present approximately 36,97% of risk adjusted accuracy
rate, it is possible to notice that the analysts had a better
performance, but there is much room for improvement. In



J48 MA MACD PRIOSC RSI Stochastic ZeroR EARWMA
Asset D W M D W M D W M D W M D W M D W M D W M D W M Avg. Std. Dev.

BBAS3 48,4 53,1 44,3 48,9 40,2 35,4 48,4 55,4 53,2 46,7 55,2 52,4 45,9 42,0 56,8 47,4 40,3 52,2 48,4 45,8 41,4 49,7 55,4 53,2 48,3 5,7
BBDC4 47,7 62,2 49,9 43,1 38,3 32,6 54,8 65,4 58,6 54,4 63,2 57,8 37,8 35,2 44,7 41,6 33,9 42,9 54,8 41,1 33,0 39,3 65,4 58,6 48,6 11,0
BVMF3 53,3 47,0 41,0 34,2 37,0 28,2 55,9 64,7 56,6 56,6 63,7 54,8 36,5 34,3 43,8 39,6 32,6 36,9 55,9 44,2 34,8 41,4 64,7 56,6 46,4 11,3
CIEL3 46,2 75,2 65,9 30,4 36,1 29,0 57,9 77,1 67,7 57,8 75,6 66,8 34,3 31,4 29,5 44,5 30,6 29,3 57,9 51,6 44,2 35,1 77,1 67,7 50,8 17,7
CMIG4 36,7 50,6 44,0 40,6 38,4 31,3 44,1 63,5 55,7 43,4 62,4 54,6 45,9 43,4 49,9 40,8 42,2 46,3 44,1 40,6 34,9 47,7 63,5 55,7 46,7 8,8
CSNA3 41,5 47,3 45,1 44,3 46,7 32,6 42,7 51,5 47,4 43,0 49,8 48,1 49,8 47,3 56,6 45,0 45,6 50,8 42,7 51,4 36,0 48,9 51,5 39,2 46,0 5,3
GGBR4 39,4 46,5 45,8 45,1 40,9 46,0 44,1 49,8 40,4 42,5 48,9 40,8 51,4 48,7 68,1 50,7 49,1 68,8 44,1 53,7 43,2 52,5 49,8 40,4 47,9 7,6
GOAU4 27,8 34,3 45,6 46,1 46,9 55,1 41,3 46,9 45,0 40,3 47,4 45,4 50,9 52,5 75,6 49,0 49,3 71,6 41,3 50,2 46,9 41,3 46,9 45,0 47,6 9,9
HYPE3 49,2 46,7 39,3 36,5 40,8 37,8 59,0 71,5 68,8 58,1 70,7 67,0 37,2 31,4 33,6 44,6 30,4 29,7 59,0 52,2 49,6 39,1 71,5 68,8 49,7 14,5
ITSA4 49,2 59,7 65,8 39,8 35,6 35,4 57,8 69,6 62,1 55,6 67,7 60,0 38,0 35,4 39,7 42,6 35,2 39,3 57,8 48,3 35,8 38,3 69,6 62,1 50,0 12,7
ITUB4 46,3 60,4 64,3 42,8 34,6 34,7 61,4 64,2 64,2 60,9 63,9 63,7 41,5 34,4 44,0 41,9 32,8 42,3 61,4 35,5 34,6 42,1 64,2 64,2 50,0 12,7
JBSS3 41,6 47,0 50,1 36,7 33,2 25,7 53,1 67,5 47,4 52,8 66,0 47,0 41,0 36,9 40,4 42,7 36,7 40,4 53,1 43,0 32,9 41,7 67,5 47,4 45,5 10,7
PETR3 41,1 56,5 61,0 47,5 49,2 47,0 48,2 61,0 56,7 47,0 58,6 54,9 43,6 39,5 51,9 46,4 37,6 50,9 48,2 42,7 48,0 44,8 61,0 56,7 50,0 6,9
PETR4 47,0 49,5 51,3 48,8 48,7 46,4 45,7 56,9 50,1 44,7 55,4 50,0 47,5 42,9 61,4 47,4 42,9 61,4 45,7 49,5 57,7 47,7 56,9 50,1 50,2 5,3
SUZB5 41,7 58,4 49,4 45,7 40,4 33,2 49,8 63,4 59,2 48,9 63,3 59,3 42,4 34,6 39,7 40,0 34,6 39,7 49,8 37,2 28,2 43,2 63,4 59,2 46,9 10,7
USIM5 33,5 42,0 64,8 47,8 51,7 44,4 37,5 47,9 48,1 35,4 47,0 48,8 48,0 48,5 68,6 38,5 44,8 58,9 50,8 51,0 42,8 46,2 47,9 48,1 47,7 8,3
VALE3 35,1 53,6 46,7 43,8 41,3 36,2 44,8 55,9 56,2 43,9 54,7 56,6 47,6 46,8 63,4 45,0 46,8 63,4 44,8 47,7 35,5 45,2 55,9 56,2 48,6 8,0
VALE5 37,0 44,9 46,8 49,0 45,2 43,5 46,1 52,6 51,4 45,8 50,7 51,8 47,1 51,0 68,8 47,4 47,7 66,8 46,1 46,3 47,4 46,9 52,6 51,4 49,4 6,8

Avg. 42,37 51,94 51,16 42,84 41,41 37,47 49,58 60,27 54,93 48,77 59,11 54,43 43,68 40,89 52,03 44,17 39,61 49,53 50,32 46,23 40,39 46,9 60,27 54,47 - -
Std. Dev. 6,63 9,21 8,98 5,44 5,47 7,88 6,96 8,62 7,84 7,20 8,45 7,26 5,33 6,99 13,53 3,44 6,57 13,16 6,27 5,34 7,60 46,9 8,62 8,51 - -

TABLE I
ADJUSTED ACCURACY RATE (%) PER ASSET AND HORIZONS 1 DAY (D), 1 WEEK (W) AND 1 MONTH(M) WITH AVERAGES AND STANDARD DEVIATION

order to compare analysts’ performances, the table I presents
the average and standard deviation of the Adjusted accuracy
rate of each classifier in its last two rows. The two columns
in the right present the average and standard deviation of the
Adjusted accuracy rate per asset.

Analyzing the table I, it is possible to observe that there
is little variation by horizon, but greater deviation for larger
horizons. A sizable difference in performance is noticed be-
tween the analysts, from which tge best possible are MACD
and EARWMA, but even for those there is still room for
improvement, since the better accuracy rates were around
60%. It is also possible to notice that the EARWMA follows
closely the better analyst (MACD) for larger horizons, which
is compatible with the idea of the EARWMA indicator itself.
Possibly, if other analysts with better performance were em-
ployed, the EARWMA’s performance would also be higher. In
table I is possible to notice that the variations in performance
with respect to asset is relatively small.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a discrete multiagent approach
based on Online learning that uses information from several
different analysis algorithm to produce an aggregate analysis.
This approach was adopted based on some remarkable aspects
of the autonomous analysis environment. Such aspects make
the problem specially complex for autonomous agents and
can be described are: stochastic environment, partially coop-
erative multiagent, partially observable and the fact that the
environment is non-stationary. Our approach is based on the
discretization of time and return. This way AIA can be treated
as a classification problem. This simplifies the problem in a
controlled way (we can reduce the discrete steps, if needed).
It also makes easier to treat the fact the cost of errors may be
significantly different between distinct errors. Furthermore, the
non-stationary nature of the problem may cause some agents
to have a good performance in a certain period of time and
than be outperformed by other agents. This fact is similar
to the one faced in the context of on-line learning, but the
know algorithms to deal with on-line learning do not deal with
situations in which the cost is non-uniform [4]. We developed

an adapted version of the algorithm proposed by Blum to deal
with non-uniform costs and prove that there is an upper bound
for the cost of error of the new algorithm (section III). This
constitutes one of the main contributions of the present work.

Another contribution is the discretization approach, along
with its implementation and the tests employing the Weka [5]
framework. The results obtained single out a substantial vari-
ation of performance between the analysts, with MACD and
EARWMA showing good results, but we admit that there is
still much room for improvement, since the better rates lay
around 60%. The performance spread across assets is relatively
small. We believe that a way to improve the system’s per-
formance is to introduce new analysis techniques, especially
Fundamental Analysis based algorithms. This would probably
enhance the performance of the Error Adjusted Randomized
Weighted Majority Algorithm (EARWMA) proposed in this
work, since this algorithm tends to follow the performance of
the best analysts, as pointed out in section IV and confirmed
by the obtained results. It is clear, however, that there is a long
way to achieve an efficient autonomous investment analyst.
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