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Abstract. Feature selection is an important step to reduce data dimensionality
and hopefully improve classification accuracy. In this paper we implemented a
”visual” wrapper+Sequential Forward Search (SFS) procedure usign R/Netlogo
on two datasets, Breast Cancer Diagnosis from UCI repository (WBCD) and
IBOVESPA daily data from 2001 to 2015, retrieved from YAHOO Finance with
twenty eight technical indicators added to the data. In the IBOVESPA dataset
we also used a wrapper+Sequential Backward Search (SBS) procedure and a
hybrid method, combining a filter with SBS for five different filters. All of them
used a Support Vector Machine (SVM) with a (Gaussian) Radial Basis Function
kernel (RBF) and grid-search optimization.

1. Introduction
Feature selection is an important step in machine learning and data mining, especially
when dealing with high dimensional space of features and noisy data. Given a large set
of features, it is applied to select a subset of features aiming to clean the data from noisy,
irrelevant or misleading features. Guyon and Elisseeff [Guyon and Elisseeff 2003] also
pointed out others benefits such as: facilitating data visualization and data understanding,
reducing the measurement and storage requirements, reducing training and utilization
times and defying the curse of dimensionality to improve prediction performance.

Algorithms for feature subset selection can be divided into three general ap-
proaches: filters, wrappers and embedded. Filters do not consider the predictor, it is
a preprocessing step that filters out irrelevant attributes using general characteristics of
the training set to select or exclude features. In the wrapper approach, the induction
algorithm used to evaluate the subset of features is considered as a black box, the al-
gorithm conducts a search for a good subset using the induction algorithm itself and
scores the subset according to its predictive power, based on some metric. In embed-
ded methods, the induction algorithm is not used as a black box, it differs from wrappers
in the way feature selection and learning interact. Learning is not separated from the fea-
ture selection process, it is part of it [Guyon and Elisseeff 2003] [Kohavi and John 1997]
[Blum and Langley 1997].
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Blum and Langley [Blum and Langley 1997] characterize any feature-selection
method in four basic components that determine the nature of the heuristic search process:

• Starting point in the feature space:The subset can start empty (i), with all features
(ii), or with a random subset of features (iii). In the first case, the features are
added successively to the subset, in the second, they are removed, and on the
third, they can be added/removed or reproduced by a certain procedure;
• Search Procedure: An exhaustive search is the ideal search procedure, because it

evaluates all the possible subset of features. However, it may become prohibitive,
because there are 2N possible combinations for N features. To avoid this con-
straint, other search procedures have been developed, but they can fall into subop-
timal subset of features;
• Evaluation Function: is the function used to evaluate the available subsets of

attributes. The function can be based on information theory, for a filter example,
or by an evaluation metric obtained from the induction algorithm on the training
set / evaluation set, in the case of wrapper and embedded methods;
• Stop criterion: It is a condition that stops the search, when it is fulfilled. It can

stop adding or removing features when the metric chosen does not improve, keep
revising the subset while the accuracy does not degrade, stop when the number of
pre-defined features are achieved and so on.

In this paper, we are concerned with the search procedure, in particular to discover
how to improve classification accuracy using feature selection. We adopt a wrapper with
SVM as induction algorithm. As stop criterion, we utilized the stagnation of accuracy.

The remaining of the text is organized as follows. Section 2 describes feature
selection methods, while in section 3 we describe the experimental setting. We present
and analyze then the obtained results in section 4, and finally show our conclusions and
further work in section 5.

2. Feature Selection Methods
Figure 1 illustrates the wrapper approach that we used for feature subset selection. Ini-
tially, the training set is given as an input to a ”black box”, which is composed by a SVM
evaluator and a feature selection search strategy. First, we used the sequential forward
search (SFS) as our search strategy, and secondly a hybrid method and the SBS.

Figure 1. Wrapper model, adapted from [Kohavi and John 1997].

The sequential forward search is an heuristic method that can be generalized by
the Algorithm 1 [Shroff and Maheta 2015].



Algorithm 1 Sequential Forward Search.
1: procedure SFS
2: Optimal subset← empty
3: for i = 1 to number of features do
4: Evaluate feature i with some method
5: Optimal subset← best feature evaluated at the for loop
6: repeat
7: Add a feature, one by one, to a sub-optimal subset . Composed by a

non-optimal feature and the best feature evaluated at step 4
8: Evaluate Performance of each sub-optimal subset
9: Select the best sub-optimal subset and set as Optimal Subset

10: until stop criteria reached
11: return Optimal subset

We implemented this procedure using R [R Core Team 2015] and Netlogo
[Wilensky 1999], enabling to visualize the search procedure. Using this implementation,
both agents (gray robots) and features (white labels) are located in a simulated environ-
ment. Agents have the shape of robots, and randomly walk through the environment
looking for a feature, as shown in Figure 2(a); these are orderly sampled in the environ-
ment, forming a circle1. If there is already another agent in the discovered feature, the
agent looks then for another unoccupied feature.

The system monitors the position of agents and features, and when all agents
are located on features, these latter are sent to be sequentially evaluated by the wrapper
method. The method returns the classification accuracy of each one of the features, and
these values are sent to an agent’s internal variable. The system sends then a message to
agents come back to the base, carrying the name of their discovered feature, leaving a trail
(gray dots) that represents the quality of its feature; the quality is based on the accuracy’s
value, that is scaled between 0 and 1. The darker is the gray, better is the feature, as shown
in Figure 2(b).

When all agents have returned to the base, the system sets the best feature to
another agent’s variable. The agents then come back to their previous feature location,
collecting their own trail and carrying the name of the best feature settled at the base.
When they reach their previous feature, the best feature is added to the current feature
subset, combining its previous feature with the best evaluated one. The result is shown in
Figure 2(c). This implementation simulates the sequential forward search and enables the
visualization of the SFS procedure, as a didactic approach.

These steps are repeated until the stop criterion is fitted, i.e., until the current
accuracy of subset t becomes equal or lower than the accuracy of subset t− 1.

Based on the results that we obtained from the stock market prediction experi-
ments, we proposed a second feature selection method, which is a hybrid procedure. In
Figure 3, it is possible to see how the method work. First we apply a filter, and we per-
form a feature pre-selection. Secondly, we apply again the wrapper approach, adopting
a sequential backward search (SBS) as search strategy and a SVM with grid search opti-

1This is a aesthetic choice, the features could also be randomly sampled.



mization as the induction algorithm. The SBS algorithm is similar to the SFS, but instead
of starting with an empty subset, it starts with all features and at each step it eliminates
one of the features until the stop criterion is reached. We also used the SBS algorithm
with no pre-selection step to compare the results.

In the wrapper, features are evaluated by a 10-fold cross validation. The hybrid
procedure was used in [Lee 2009] with the F-Score filter. In this study we will use Infor-
mation Gain (IG), Symmetrical Uncertainty (SU), ReliefF, Cfs (correlation based feature
selection) and OneR, in the hybrid procedure. As far as we know, we are the first ones to
test these different methods for stock trend prediction.

(a) Agents looking randomly for a feature. (b) Agents coming back to the base carrying the
name of its feature and leaving a trail with its
classification accuracy.

(c) Feature subset updated by the best previous
feature.

Figure 2. SFS implementation using R and Netlogo.



3. Experimental Description

3.1. Datasets

For the experiments, we used two datasets. The first one is the Breast Cancer Wisconsin
(Original) Data Set, available at the UCI machine learning repository. The dataset con-
tains 699 samples, but removing the missing values it remains with 683 samples. There
are also nine features, represented as an integer between 1 and 10. This dataset has been
chosen to evaluate the proposed method, the implementation with R/Netlogo, and to com-
pare the results with those obtained by Akay [Akay 2009]. The features of the dataset are:
clump thickness (F1), uniformity of cell size (F2), uniformity of cell shape (F3), marginal
adhesion (F4), single epithelial cell size (F5) bare nuclei (F6), bland chromatin (F7), nor-
mal nucleoli (F8) and mitoses (F9). Four hundred and forty four samples of the dataset
belong to benign class, and the rest are of malignant class.

The second dataset is composed by daily data from IBOVESPA (Brazilian stock
index). The data was retrieved from YAHOO Finance, utilizing the ’quantmod’ pack-
age for R [Ryan 2015]. The period ranges from ’2001-01-01’ to ’2015-12-31’. The
data came with 6 features, that are: BVSP.Open, BVSP.High, BVSP.Low, BVSP.Close,
BVSP.Volume and BVSP.Adjusted. The BVSP.Adjusted was removed because it is iden-
tical to the BVSP.Close2, the BVSP.Volume was also removed because there was a lot
of missing values, remaining 4 features that were lagged by one day (to not use today’s
closing price to predict the actual day). Another 28 features were added to the data, that
are technical indicators, and they were chosen based on some of the technical indicators
used in [Ni et al. 2011].

When using technical indicators to stock market prediction we have a lot of op-
tions to create our subsets. The problem is to define which indicators work better together
and with which parameters (e.g. We can use different periods of time for RSI calcula-
tion), so feature selection plays an important role in this problem, supporting the analyst
to choose the best subset of indicators that will enhance classification accuracy and con-
sequently, its stock market prediction.

The features and their parameters are described at Table 1. The features were also
scaled between [0, 1] by Eq. (1), where X ′ is the rescaled value, X is the original value,
Xmin is the lowest value in the sample and Xmax is the biggest value in the sample:

X ′ =
X −Xmin

Xmax −Xmin

(1)

To create the labels for classification we used the ZigZag indicator, that work as
a filter for noise and pattern identification [Raftopoulos 2003]. It ignores movements that
are less than a specific threshold3.

As we used moving averages of periods equal to 200, the dataset was reduced.
The final dataset is then composed of 3524 observations that ranges from ’2001-10-23’ to
’2015-12-22’, and comprises 32 features (28 technical indicators and Open, High, Low,

2As IBOV is an index, there are not splits nor dividends.
3In this work, we used 6%.



Close prices). The labels are {1} for bullish observations (prices are rising) and {0} for
bearish observations (prices are decreasing).

Table 1. Technical indicators and parameters from TTR package (documentation
available at [Ulrich 2015]).

Feature Description Technical Trading Rules

MACD9 Moving average Convergence/Divergence MACD (maType = ’EMA’)

BOLL20 Bollinger Bands BBands (n = 20)

K9 Stochastic stock (default)

WR10 William’s Overbought/Oversold Index WPR (n = 10)

RSI6 Relative Strength Index RSI (n = 6)

RSI14 Relative Strength Index RSI (default)

TRIX9 Triple Smoothed Exponential Oscillator TRIX (n = 9)

TRIX20 Triple Smoothed Exponential Oscillator TRIX (default)

CCI14 Commodity Channel Index CCI (n = 14)

CCI20 Commodity Channel Index CCI (default)

SMA5 Simple Moving Average SMA (n = 5)

SMA30 Simple Moving Average SMA (n = 30)

SMA200 Simple Moving Average SMA (n = 200)

EMA5 Exponencial Moving Average EMA (n = 5)

EMA30 Exponencial Moving Average EMA (n = 30)

EMA200 Exponencial Moving Average EMA (n = 200)

ADX14 Welles Wilder’s Directional Movement Index ADX (maType = ’EMA’)

AROON20 Aroon aroon (default)

ATR14 Average True Range ATR (default)

chaikinvolatility10 Chaikin Volatility chaikinVolatility (chaikinVolatility (default))

CMO14 Chande Momentum Oscillator CMO (default)

ROC Rate of Change/Momentum ROC (default)

SAR Parabolic Stop-and-Reverse SAR (default)

ultimateOscillator The Ultimate Oscillator ultimateOscillator (default)

VHF28 Vertical Horizontal Filter VHD (default)

Volatility10 Volatility volatility (default)

WilliamsAD Williams Accumulation/Distribution williamsAD (default)

WPR14 William’s %R WPR (default)

3.2. SVM parameters and Dataset Evaluation
It is essential that kernel parameters are properly set in order to improve SVM classi-
fication accuracy. We choose a SVM with a (Gaussian) Radial Basis Function Kernel
(RBF), like Akay [Akay 2009], Lee [Lee 2009] and Ni et al. [Ni et al. 2011] did. The
parameters to be optimized are the cost (C) and gamma (γ). The cost (C) is analogous
to a regularization coefficient that controls the trade-off between minimizing training er-
rors and controlling model complexity. Gamma (γ) is the parameter that represents the



Figure 3. A Hybrid feature selection method, adapted from [Lee 2009].

precision of the Gaussian distribution (it is the inverse of variance) [Bishop 2006]. The
search approach for optimization was also the grid search, where pairs of (C,γ) are tried
out and the one with the best cross-validation accuracy is chosen. The grid space of C was
log2C{−5,−3, ..., 15} and for γ was log2γ{−15,−13, ..., 3}. We utilized the caret pack-
age [Kuhn 2016] for optimization with parallel processing of four clusters (created by the
doParallel package [Analytics and Weston 2015], using the makeCluster func-
tion). The computer used is an Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz 3.10GHz,
with 8,00 GB of RAM and the OS is a Windows 7 64-bits.

For the ”breast cancer” dataset, on each pair (C,γ) a 10-fold cross-validation
was performed and the best parameter pair was chosen and tested on the validation set.
We used the same splits percentages used by Akay [Akay 2009], that were 50%/50%,
70%/30% and 80%/20%. Figure 5(a) illustrates the process.

For IBOVESPA dataset, the data was divided at 70% for cross-validation and
tuning parameters, and 30% for test. To select the best pair (C,γ), it was used
a 10-fold time series cross-validation. For reproducibility, we used the parameters
clusterSetRNGStream(cl = cl,iseed = 2) when using parallel processing.
The folds were created using the function createTimeSlices with the following pa-
rameters:

• initialWindow = 488: the amount of data used for training was approxi-
mately two years;
• horizon = 244: the amount of data used for validation was approximately

one year;
• fixedWindow = TRUE: each training sample starts at a different time, that is

given by the skip value (at fold k + 1 is added the value of skip);
• skip = 191: the amount of data skipped at each fold.

These parameters were used to create the folds for cross-validation. Figure 4
illustrates how these folds were created. This procedure is needed to avoid bias, since
when using time-series cross-validation we use earlier subsets to predict later ones. After
selecting the best pair, the SVM was trained with 70% of the dataset using optimized



Figure 4. 70% of IBOVESPA dataset sliced at 10-fold for cross-validation.

parameters, and finally tested with the other 30% of the data. Figure 5(b) illustrates the
whole process.

(a) SVM-based model using grid
search with 10-fold CV to opti-
mize model parameters (Used in the
WBCD dataset).

(b) SVM-based model using grid
search with 10-fold time-series CV to
optimize model parameters (Used in
the IBOVESPA dataset).

Figure 5. Processes used to evaluate the datasets.

The filters described at Section 2 were calculated using, set.seed(1) for re-
producibility, and the parameters of ReliefF filter were neighbours.count = 5 and
sample.size = 10.

4. Obtained Results

4.1. Breast Cancer Dataset

Table 2 presents our result for the Breast cancer dataset. Table 3 compares classification
accuracy among our method and others classifiers from literature.

For the 50-50% split, the obtained values of (C, γ) were (2−15, 213), for the 70-
30% split we obtained (2−1, 2−1) and for the 80-20% split the results were (2, 2−3). Our
results are quite the same as the ones obtained by Akay [Akay 2009]; however, he has
achieved this accuracy using a 80-20% split and 5 features (F6 + F3 + F2 + F1 + F7),
while we just used 2 features (F1 + F7) with a split of 70-30%. Therefore, we have got a
higher dimensionality reduction for the same accuracy.



Table 2. Classification accuracies for each model and different test subsets for
the Breast Cancer Dataset.

Model Classification Accuracy

50-50% training-test parti-
tion

70-30% training-test parti-
tion

80-20% training-test parti-
tion

1 99.12% - -

2 - 99.51% 99.27%

1 = F1 + F7 + F9

2 = F1 + F7

Table 3. Classification accuracies from literature, adapted from [Akay 2009] for
the Breast cancer dataset.

Author (year) Method Classification accuracy (%)

Quinlan (1996) C4.5 94.74

Hamiton et al. (1996) RIAC 95.00

Ster and Dobnikar (1996) LDA 96.80

Nauck and Kruse (1999) NEFCLASS 95.06

Pena-Reyes and Sipper (1999) Fuzzy-GA1 97.36

Setiono (2000) Neuro-rule 2a 98.10

Goodman et al. (2002) Optimized-LVQ 96.70

Goodman et al. (2002) Big LVQ 96.80

Goodman et al. (2002) AIRS 97.20

Albrecht et al. (2002) LSA with perceptron algorithm 98.80

Abonyi and Szeifert (2003) Supervised fuzzy clustering 95.57

Polat and Gunes (2007) LS-SVM 98.53

Akay (2009) F − score + SVM 99.51

This study (2016) SVM + wrapper SFS 99.51

4.2. IBOVESPA dataset

For the second dataset (IBOVESPA), the results are presented in Table 4. It is possible to
see that the hybrid methods OneR SBS and Cfs SBS were the methods that most reduced
data dimensionality (just 5 features in each one of them), and OneR SBS had the best
accuracy in the test set (70,04%). The use of sequential backward search with OneR
improved accuracy, at the test set, from 59,26% to 70,04%, an improvement of 18,19%,
and reduced features from 12 to 5, a reduction of 58,33%. Looking at the filters, Cfs
got the highest accuracy in the test set (69,94%) using 9 features. The wrappers did not
performed as well as the hybrid methods. The hybrid approach reduced features from
all filters (IG - 13/10, SU - 15/11, ReliefF - 22/7, Cfs 9/5, OneR - 12/5), improving the
accuracy’s value (test set) in 2 out of 5 cases.

The values for the grid-search optimization of parameters (C, γ) on Cfs SBS and
OneR SBS are presented at Figure 6(a) and Figure 6(b) respectively, as an example. The
black square in the figures represents the best combination of (C, γ) for accuracy’s value.
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Figure 6. Values of Grid-Search optimization for RBF kernel (C, γ) and IBOVESPA
dataset.

5. Conclusions and Further Work
We presented in this work three different methods for feature selection: wrappers, filters
and a hybrid method. The wrappers were wrapper + Sequential Forward Search (SFS)
and wrapper + Sequential Backward Search (SBS). The filters were Information Gain
(IG), Symmetrical Uncertainty (SU), ReliefF (RF), Correlation Based feature selection
(Cfs), and OneR. The hybrid methods were a combination of each filter with a SBS.
The wrapper SFS was applied at WBCD and IBOVESPA dataset, and implemented using
R/Netlogo to create a visualization of the searching process. The other methods were
applied just at IBOVESPA dataset.

Comparing to Akay’s study [Akay 2009], we achieved the same accuracy, but
with a smaller number of features (2 vs 5) in the Breast Cancer dataset (WBCD). In the
IBOVESPA dataset, all methods were compared. The Cfs SBS and OneR SBS were the
methods that most reduced features (just 5 were used) and still had a good performance
on the test set (68, 72% and 70, 04%), for applications that demands fast processing for
decision-making, like High Frequency Trading, it can be a good option. The one that
achieved the best accuracy’s value in the test set was the OneR SBS (70,04%), using
the hybrid method it reduced features significantly (58,33%) and also improved accu-
racy (18,19%). A faster and also good method were the filters: Symmetrical Uncertainty
(69,57% with 15 features) and Cfs (69,94% with 9 features). The hybrid method reduced
features when used with all filters, increased accuracy in two cases, and had a small de-
creasing in three of them. It is a good trade-off between wrapper and filters, as expected,
because it reduces processing time and final number of features, increasing accuracy in
some cases and having just a small decrease in others, but reducing features in all of them.

In future work, we intend to test different parameters for the technical indicators,
try other features, like fundamental indicators, indexes, exchange rates, commodities, and
also different induction algorithms, like neural network, random forest, an ensemble of
them, and so on.
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