Autonomous Driving on a Direct Perception System with Deep
Recurrent Layers

Bruno Correia Almeida
Autonomous Computational Systems Lab, Aeronautics
Institute of Technology (ITA)

Séo José dos Campos, Brazil
bruno.correia.almeida@gmail.com

ABSTRACT

Controlling a car in traffic is a complex task that is hard to treat
with classical algorithms. With the fast development of computer
vision techniques, deep artificial neural networks have been use on
this task with the use of a frontal camera on a car. Few research
projects with these techniques, however, go beyond the perception
task and are tested on a driving environment.

The use of recurrent neural networks combined with convolu-
tional neural networks has achieved good results in analysis of
videos and image streams because it can capture temporal features.
We achieve a better performance with the use of recurrent layers
combined with a convolutional network in a autonomous driving
system based on direct perception, which is composed by two steps:
the perception of indicators on the image from the car frontal cam-
era and the control of the car that directly uses these indicators to
drive the car on a simulator.

Compared to the original work we achieved a percentual de-
crease of the mean absolute error on the indicators perception task
of 36%, with the use of a deeper convolutional architecture with
residual connections, and 48% when adding recurrent layers to
this network. In the autonomous driving test on the simulator we
found that the best system was composed by an hybrid of these two
networks, using recurrent layers only for part of the indicators.

The system developed on this project, PyDeepDriving, is an ex-
tension of the original system from the Princeton Vision & Robotics
Group, DeepDriving. We open sourced it to facilitate the research
of autonomous driving systems based on direct perception.

CCS CONCEPTS

« Computing methodologies — Neural networks; Control meth-

ods; Scene understanding; Computer vision problems; Transfer learn-
ing;

KEYWORDS

Machine Learning, Autonomous Driving, Video Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

APPIS 2019, January 7-9, 2019, Las Palmas de Gran Canaria, Spain

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6085-2/19/01...$15.00
https://doi.org/10.1145/3309772.3309790

Paulo André Lima de Castro
Autonomous Computational Systems Lab, Aeronautics
Institute of Technology (ITA)

Séo José dos Campos, Brazil
pauloac@ita.br

ACM Reference Format:

Bruno Correia Almeida and Paulo André Lima de Castro. 2019. Autonomous
Driving on a Direct Perception System with Deep Recurrent Layers. In 2nd
International Conference on Applications of Intelligent Systems (APPIS 2019),
January 7-9, 2019, Las Palmas de Gran Canaria, Spain. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3309772.3309790

1 INTRODUCTION

Autonomous driving has great potential to change the way we
live. They are implemented by interpreting the space around the
car with different sensors like RADAR [15], LIDAR [11], GPS and
cameras. Advanced control systems are employed to make use of
all this information to identify obstacles, lanes and plan the car’s
route.

The usage of deep neural networks has shown great results in
many applications, as shown in [10]. It excels in many computer
vision tasks and has recently been used on the autonomous driving
problem, as seen on [7] and [1]. A deep neural network is usually
used to extract information from the camera and then, together
with other sensors, a scene understanding for the car is achieved.

The use of recurrent networks (RNNs) combined with deep con-
volutional neural networks (CNNs) has achieved good results in
analysis of videos and image streams [3] because it can capture
temporal features. But while the fast progress of computer vision
techniques has encouraged the use of these techniques on research
of autonomous driving systems on a car with a frontal camera,
few projects go beyond the perception task and few are tested on
a driving environment. In this project we were able to attest the
performance using deep convolutional and recurrent networks by
not only measuring the perception error of these networks but also
by driving on the simulator.

In this project we explore the direct perception approach for
self driving cars, created on the DeepDriving project [2], to run
an autonomous car using just visual information, without any
extra sensors, and with a simple approach. The goal is use dif-
ferent neural network architectures for this problem and analyze
the usage of the motion information for this approach via recur-
rent neural networks, as well as the viability of using transfer
learning [17]. To achieve this we developed a new version for
[2], which we named PyDeepDriving, to enable the use of mod-
ern deep learning frameworks, that is open source and distributed
on https://github.com/bcalmeida/PyDeepDriving.
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2 FOUNDATIONS

To give context on the vision based autonomous driving solutions,
we can classify them in three categories from the most complex to
the most simple:

e Mediated Perception, in which a scene is analyzed to ex-
tract as much information as possible using detection, lane
finding, segmentation and other algorithms and used to-
gether with other sensors like LIDAR, RADAR, GPS, etc. A
scene understanding for the surrounds of the car is created
and from that a controller takes the decision for the driving
commands, like on [14] and [4].

e Direct Perception, the method introduced in DeepDriving
[2], learns a mapping from an image to several meaningful
indicators of the road situation, including the angle of the car
relative to the road, the distance to the lane markings, and the
distance to cars in the current and adjacent lanes. With this
compact but meaningful representation as perception output,
it uses a very simple controller to make driving decisions
and drive the car smoothly.

o Behavior Reflex are approaches where a direct mapping is
constructed from the input to a driving action. It is seem on
the classic ALVINN [12] and more recently on NVIDIA’s end-
to-end learning [1]. This method fails to capture a bigger
picture of the situation. This level of abstraction fails to
capture what is really happening and shows a erratic driving
behavior.

In this project we use convolutional neural networks with resid-
ual connections [6]. Deep Residual Networks (ResNets) use a build-
ing block composed of a skipping connection, that can be defined
by y = F(x, Wi) + x where x is the input vector, y the output and
Wi are the parameters, that allows deeper networks while avoiding
the problem of vanishing gradients.

We use a long short-term memory (LSTM) recurrent neural
network architecture [5]. The architecture used in our experiments
is given by the following equations, where for each element in the
input sequence, each layer computes the following:

ir = o(Wiixe + bii + Whih(_1) + bp;)

ﬁ = O’(VVifxt + bif + thh(tfl) + bhf)
gr = tanh(Wgx; + big + Whgh(t—l) + bhg)
or = 0(Wioxs + bio + Whoh(t—1) + bpo)

ct = fre—1) + itgr

h; = o tanh(c)

where h; is the hidden state at time ¢, ¢; is the cell state at time ¢,
x; is the input at time ¢, h(;_y) is the hidden state of the previous
layer at time ¢ — 1 or the initial hidden state at time 0, and iz, f7, g,
o; are the input, forget, cell, and output gates, respectively. o is the
sigmoid function.

In this project we also investigate the use of transfer learning,
as described in [17], a technique with widespread use nowadays
in computer vision. With it we use pretrained features from on
another dataset, enabling the use of less data. Despite dealing with
computer graphics from a simulator in this project, the earlier
layers of a network acts as pretty general shape detectors which
can generalize well to various datasets.
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3 SYSTEM ARCHITECTURE

3.1 TORCS

TORCS, The Open Racing Car Simulator [16], is an open source
driving and racing simulator that is used mostly for research. It
supports the creation of bots and can be extended by researchers
to implement features needed for their work. The great advantage
of using a simulator is the ease of testing your model, avoiding
the need to deploy on a real car, reducing the time and cost of the
experiments.

In DeepDriving [2] they modified TORCS to show lane markings
as well as added bots that simulate traffic cars instead of racing
cars. This modified version of TORCS is used in this project.

3.2 PyDeepDriving
To do all the experiments in this project we developed a new ver-
sion of DeepDriving, from [2], which we named PyDeepDriving. It
enables the use of modern Python based deep learning frameworks,
provides ways of creating different direct perception systems with
different indicators and provides better modularity and extensibility.
While the original version, DeepDriving, used a modified outdated
version of the Caffe framework [8], that had implemented not only
the neural network model but also the driving controller and all the
communication with TORCS in a monolithic and hard to modify
way. Figure 1 shows a high level architecture of the projects.
With that we provide an easier and more pleasant way of work-
ing with a direct perception autonomous driving and hope that it
contributes to further research and interest in this approach. We
noticed there is an interest in the community on the original Deep-
Driving because of the opportunity to work on the whole stack
of a driving system, but the tools provided were out of date and
harder to use. PyDeepDriving is published on https://github.com/
bcalmeida/PyDeepDriving.

3.3 Indicators

When the car is in lane, centered between the lane markings, the
model looks for the distances/indicators described on the list below.
They are shown on Figure 2a and 2b.

(1) toMarking_LL: distance to the left lane marking of the left
lane

(2) toMarking_ML: distance to the left lane marking of the cur-
rent lane

(3) toMarking_MR: distance to the right lane marking of the
current lane

(4) toMarking_RR: distance to the right lane marking of the
right lane

(5) dist_LL: distance to the preceding car in the left lane

(6) dist_MM: distance to the preceding car in the current lane

(7) dist_RR: distance to the preceding car in the right lane

When the car is on a lane changing situation, getting close or
on the lane markings, the model looks for the distances/indicators
described below. On Figure 2¢ and 2d we can see these indicators.

(1) toMarking_L: distance to the left lane marking

(2) toMarking_M: distance to the central lane marking
(3) toMarking_R: distance to the right lane marking
(4) dist_L: distance to the preceding car in the left lane
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Figure 1: Architecture of the original DeepDriving and the
new developed PyDeepDriving
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Figure 2: Representation of the indicators for the perception
system in the different states, from [2]

(5) dist_R: distance to the preceding car in the right lane

There are also 2 other indicators that are used in both in lane
and on mark situations:

(1) angle: angle in radians between the car and the tangent of
the road segment
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Table 1: Summary of the indicators used in each state

In Lane State On Mark State ~ Any State
dist LL dist L angle
dist MM dist R fast

dist RR toMarking_L

toMarking_LL

toMarking_ML
toMarking MR
toMarking_RR

toMarking_M
toMarking_R

Indicators

!

Approaching car._Yes  -Left lane exists~, _Yes,
in same lane and is avallable

S

Hight lane exists. _Yes |
and is avallable

Slow down
Calculate S[eermg &

Acceleration/Brake

commands based on
desredspeed €

Left lane change ——

Marmal Driving Right lane change

Figure 3: Diagram of the controller behavior

(2) fast: boolean stating if the road is straight or if there is a
curve ahead

There are further implementation details, e.g. when the car is
changing lanes there is an overlap area in which the car is in both
in lane and on mark state, but these are not included here for not
providing greater insight on how the indicators work. For further
details refer to the original work on [2]. All the indicators are
summarized on Table 1.

3.4 Controller

The controller used follows a simple high level logic, which is
shown on the diagram on Figure 3, in which the car changes lanes
according to the need of maintaining a baseline speed. Not shown
on the diagram is that the car tries to stay on the center line. The
direct perception system shows that it is possible to create a simple
way of controlling, with vision only, a car given a proper choice of
indicators for the image.

4 EXPERIMENTS AND RESULTS

To evaluate the performance of neural networks with recurrent
layers on the perception system as well as the performance of
deeper convolutional neural networks than used in [2] we need
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Figure 4: Architecture of the Resnet-LSTM model

to analyze the system not only on the perception task, but on the
actual driving simulation as well. The following sections describes
the experiments regarding this two aspects: perception and driving.

4.1 Perception

To assess the performance of recurrent neural networks and the
performance of deeper convolutional neural networks, we trained
a model with a deep CNN with residual connections, which we call
the Resnet model, and a model using a similar CNN combined with
LSTM layers, named Resnet-LSTM.

For all the experiments in this section we used we used 223298
images from the dataset provided by [2], which contains frontal
camera images labeled with all the 14 real value indicators as de-
scribed in section 3.3. It is captured with a human driver at a 10
frames per second rate in one, two or three lane roads.

The Resnet model is composed of the convolutional layers of
a Resnet-34 based architecture [6] with 34 layers, pre-trained on
ImageNet [13], and a fully connected custom head with 2 layers. The
custom head was determined empirically by training performance.
Dropout and batch normalization techniques helped minimizing
overfitting.

We found that transfer learning with pre-trained weights helped
the training process by avoiding overfitting without needing to add
more training images. Despite the computer graphics of the images
being really different from those on the ImageNet competition,
general shape detectors are learned on the earlier layers of the
network. The original work, DeepDriving [2], did not use transfer
learning.

The Resnet-LSTM model uses a deep convolutional network as
an encoder of images with the same architecture as the Resnet
model, but with a different ouput dimension. The Resnet-LSTM
model architecture can be seen on Figure 4. This combination of
CNN and RNN is seem on video analysis [3], as the network can
learn temporal features from the video. We also tried feeding the
previous network output concatenated with the image encoding to
the LSTM, but we didn’t see any improvement despite the higher
complexity. Each image in a sequence is encoded to a vector of
length 128 and then used as input to a 2-layer LSTM network.
Higher encoding sizes didn’t show better results, as the values are
too low level for the LSTM to process.

We also need to compare the perception performance with the
original work from [2]. They shared few metrics about the network
performance on the perception task stating that the network per-
formance test was made by watching it driving on the simulator.
It does, however, provide the Mean Absolute Error (MAE) of it’s
fully trained Alexnet [9] based network when tested on a simpler
situation, with 2 lanes only, when comparing with other methods
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on the paper. We use these numbers and scale it with the indicators
ranges to be able to compare errors of indicators with different
magnitudes, as shown on Table 2. For example, while the indica-
tor angle is in the range —0.5 to 0.5, all the dist indicators, like
dist_M, are on the range 0 to 75.

Since the error metric for the fast indicator is not provided, we
calculate the average MAE for all indicators and the average MAE
for all except the fast indicator. We can see these values on Table 3.
From these numbers we see that the fast indicator has a higher
error when compared to any other indicator. This is because the
fast indicator should have been treated as a categorical variable
and not a continuous variable between 0 and 1, and also because
the definition of this indicator, which is whether the road is curved,
is too broad and has cases of slightly curved roads that are hard to
define. The fast indicator should have been trained, then, with a
separate head on the network that had a classification loss function,
instead of been treated as a regression like the other indicators.

From Table 3 we can see that there is a percentual decrease of
the average mean absolute error of the indicators of 36% with the
Resnet model and a decrease of 48% with the Resnet-LSTM model.

4.2 Driving

To test the driving performance we collect metrics during the au-
tonomous driving on TORCS on PyDeepDriving. We collect more
than 17000 frames to be analyzed from allowing the system to
drive in a three lane track situation with others Al-controlled cars.
We analyze the average speed of the car and average perception
error, as a way of making the driving analysis more quantitative.
We do not count metrics like number of collision because they
rarely occur given the simplicity of the direct perception system
and environment.

The average speed differences on Table 4 are small because
during long simulations most of the time the car is on the middle
lane at full speed. The Average MAE are less than expected because
on the simulation great part of the time the car is driving without
cars around, which is easier on for the perception network, while
the dataset for the network is collected by a human driver that
deliberately puts the car around more traffic.

When driving with the Resnet-LSTM as the perception network,
we notice that the car slightly oscillates on its lane and sometimes
overshoots when changing lanes. We can compare it with the Resnet
model by looking at Figure 5a and Figure 5b, in which we have
the distance of the car to the center of the road for a number of
frames from the simulation. In the analyzed section we see the car
driving on the middle lane and, for a brief moment, on the right
lane. We can see the overall higher oscillation of the Resnet-LSTM
car, and a overshoot and following oscillation when moving back
to the center lane. This behavior makes it a worse driving system
on simulations compared to the Resnet model, despite having a
better perception error metric as shown on Table 4. This explains
the lower average speed shown on Table 4 that Resnet-LSTM has,
since it wastes time on unnecessary oscillations.

The oscillating behavior is caused by the inertia that the stateful
LSTM causes on the network inferences. While this results in a
better error metric because of the motion information that it cap-
tures, it presents a problem when it mispredicts the motion of the
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indicators for each model

Model toL toM toR dL dR toLL to ML to MR to RR dLL d MM d_RR angle fast
Alexnet 0.075 0.056 0.070 0.117 0.143 0.038 0.031 0.032 0.037 0.068 0.063 0.106 0.033 wunavailable
Resnet 0.046 0.048 0.050 0.034 0.036 0.04 0.038 0.037 0.046 0.044 0.042 0.047 0.043 0.291
Resnet-LSTM  0.037 0.036 0.040 0.028 0.031 0.027  0.032 0.031 0.034 0.031 0.037 0.034 0.047 0.227
6 & &
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Figure 5: Distance to center of road in meters during part of the of the driving simulations
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Figure 6: Error of the dist_MM indicator during part of the driving simulations

Table 3: Average of Scaled MAEs for each model

Model Average MAE  Average MAE without fast
Alexnet missing info 0.066
Resnet 0.060 0.042
Resnet-LSTM 0.048 0.034

Table 4: Mean speed and error metric on driving simulations

Model Mean Speed  Average MAE
Resnet 19.052 0.049
Resnet-LSTM 18.972 0.041
Resnet + Resnet-LSTM 19.166 0.045

car because of a sudden change. The error propagates in the direct

perception driving system that lacks a sensor control system and
just uses the actual value from the perception network.

The distance indicators, which represent distances to car in front,
are less susceptible to this problem because there are fewer abrupt
changes in the distance to the other cars in the environment and
the values of these indicators only produce car movement decisions
in specific situations. For example, when the car is the center lane
the value of dist_LL does not affect the car behavior, as well as a
large value of dist_MM.

With that we can build a model that builds on the strength of
both models by using both models and using the Resnet-LSTM
distance indicators and the other indicators from the Resnet model.
We call this model Resnet + Resnet-LSTM. From Table 4 the average
MAE is between both, as expected, and the average speed for this
model is the highest. In Figure 5c we see a similar behavior to the
Resnet model regarding the car movement, while on Figures 6a,
6b and 6¢ we see the error on the dist_MM metric, which shows a
smoother behavior for Resnet-LSTM and Resnet + Resnet-LSTM.
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5 CONCLUSIONS

The use of recurrent neural networks combined with deep convolu-
tional neural networks has achieved good results in the analysis of
videos and image streams [3] because it can capture temporal fea-
tures. But while the fast progress of computer vision techniques has
encouraged the use of these techniques on research of autonomous
driving systems with a car with a frontal camera, few projects
go beyond the perception task and are tested on driving environ-
ment. In this project we were able to attest the performance using
deep convolutional and recurrent networks by not only measuring
the perception error of these networks but also by driving on the
simulator.

We proposed two networks, Resnet and Resnet-LSTM, for the
perception of a direct perception system, which resulted in a per-
centual decrease of the average mean absolute error of the indicators
inference of 36% and 48% respectively. With that we can attest to
the performance of deeper networks in the perception problem
and the increase in performance by using a recurrent layer that
captures motion information from frame to frame.

This project, however, shows that it is not possible to naively
just use the network with best performance and it is necessary to
deeply understand how each indicator behaves and the drawbacks
of each network. We showed that just using the superior Resnet-
LSTM model did not work well, but a combination of the Resnet
and Resnet-LSTM, allowing the latter to infer the dist_x* indicators,
performed the best.

As seem on Table 3. The fast indicator has a higher error than
any indicator by a large margin. This is because the fast indicator
should have been treated as a categorical variable and not a con-
tinuous variable between 0 and 1, and also because the definition
of curve of a road in too broad and there are roads that are only
slightly curved. The fast indicator would then be trained with a
separate head on the network that had a classification loss func-
tion, instead of been treated as a regression problem like the other
indicators.

This project also contributes to the research of direct perception
autonomous driving systems by providing the community with
an easier environment with PyDeepDriving. We noticed there is
an interest in the community on the original work, DeepDriving,
because of the opportunity to work on the whole stack of a driving
system, but the tools provided were out of date and harder to use.

Future work could include boolean indicators that could indicate
the state of the car (In Lane or On Mark) and also that could replace
the fast indicator, and trained jointly with the other networks by
using a loss function that combines the regression and classification
problem. With the work developed in PyDeepDriving it is also easier
to create a simpler set of indicators, write a Python controller and
test if it achieves similar results.
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