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Abstract Despite the fact any investor prefers lower risk
and higher return, investors may have different preferences
about what would be an acceptable risk or a minimal return.
For instance, some investors prefer to have a lower bound
risk rather than gaining a higher return. In portfolio theory,
it is commonly assumed the existence of one risk free asset
that offers a positive return. This theoretical risk free asset
combined with a risky portfolio creates a new portfolio that
presents a linear relation between risk and return as the risk
free asset weight (wf ) changes. Hence, any level of risk or
of return is easy to achieve separately, just by changing wf .
However, in a world without any risk free assets, the combi-
nation between assets creates nonlinear portfolios. Achiev-
ing a specific level of risk or return is not a trivial task. In this
paper, we assume a risky world rather than the existence of a
risk free asset, in order to model an automated asset manage-
ment system. Furthermore, some automated asset managers
give very different results when evolving in different con-
texts: hence, a very profitable manager can have very bad
results in other market situations. This paper presents a mul-
tiagent architecture, aiming to tackle these problems. The
architecture, named COAST (COmpetitive Agent SocieTy),
is based on competitive agents that act autonomously on be-
half of an investor in financial asset management. It allows
the simultaneous and competitive use of several asset anal-
ysis techniques currently applied in the finance field. Some
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dedicated agents, called advisors, apply a particular tech-
nique to a single asset. The results provided by these advi-
sors are then submitted to and analyzed by a special agent
called coach, who evaluates its advisors’ performance and
defines an expectation about the future price of one specific
asset. Within COAST, several coaches negotiate to define
the best money allocation among different assets, by using a
negotiation protocol defined in this paper. We also propose
an investor description model that is able to represent differ-
ent investors’ preferences with defined acceptable limits of
risk and/or return. The COAST architecture was designed to
operate adequately with any possible investor’s preference.
It was implemented using a financial market simulator called
AgEx and tested using real data from the Nasdaq stock ex-
change. The test results show that the architecture performed
well when compared to an adjusted market index.

Keywords Multiagent systems · Multiagent architectures ·
Automated asset management · Automated trading

1 Introduction

Real world environments may present many different fea-
tures that may require distinct characteristics for agents
evolving in them. There are several different ways to clas-
sify environments, one of which proposes that the most
complex environments should be those with the following
properties [22]: (i) (partially observed) agents do not have
complete knowledge about the whole environment state, de-
spite the fact they can estimate it; (ii) (competitive multia-
gent) some agents compete among themselves and they may
change their behavior according to the observation of other
agents’ actions and the environment state; (iii) (no dominant
strategy [25] (p. 77)) there is no known a priori strategy that
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makes an agent overcome the others in all possible scenar-
ios and (iv) (open) at any time, an agent may enter or leave
the environment either based on its own decision or because
it does not satisfy some minimum requirements to stay in
the environment. We call this environment class complex
multiagent environments. One instance of such class is as-
set management. Stock market behavior is very hard to pre-
dict and agents compete among each other to achieve better
financial results. Other possible instances would be strate-
gic games, such as business games or war games, where the
choice of the best course of action is dependent on actions
and decisions taken by the other players.

The ultimate goal of an asset manager, automated or not,
is to find out and adopt the most desirable set of assets for
an investor, according to his preferences. The manager may
adopt one set of assets through the submission of buy and
sell orders to the stock market. The buy and sell transac-
tions and price formation are defined through the process-
ing of the orders of all investors in the market. In fact, the
stock market may be considered as a special kind of auction,
called continuous double auction. One the most common
kind of orders establishes a target asset, a number of shares,
a price for the asset and order type (buy or sell); however, it
is also possible to have orders without a pre-defined price,
thus relying on the market to define it [5].

This paper presents a multiagent architecture, named
COAST (COmpetitive Agent SocieTy), that is based on
competitive agents that act autonomously on behalf of an
investor in financial asset management. It allows the simul-
taneous and competitive use of several asset analysis tech-
niques currently applied in the finance field. Some dedi-
cated agents, called advisors, apply a particular technique
to a single asset; the results provided by these advisors are
then submitted to and analyzed by a special agent called
coach, who evaluates its advisors’ performance and defines
an expectation about the future price of one specific asset.
Within COAST, several coaches negotiate to define the best
money allocation among different assets, by using a nego-
tiation protocol defined in this paper. We also propose an
investor description model that is able to represent different
investors’ preferences with defined acceptable limits of risk
and/or return. The COAST architecture was designed to op-
erate adequately with any possible investor’s preference. It
was implemented using a financial market simulator called
AgEx [5] and tested using real data from the Nasdaq stock
exchange. The test results show that the architecture per-
formed well when compared to an adjusted market index.

The rest of the paper is organized as follows. In the next
section, we briefly present some main concepts related to
stock markets and automated asset management. The main
contribution of the work, the COAST architecture, is de-
scribed in Sect. 3. The experiments that we have performed
with the architecture are described and analyzed in Sect. 4.

Fig. 1 CML and efficient frontier in risk versus return graph

Finally, we present our conclusions and further work in
Sect. 5.

2 Stock markets and automated asset management

In this section, we briefly present some stock markets
and automated asset management concepts that were used
as a basis for this work, as risk and return measures
(Sect. 2.1), technical and fundamentalist analyses (Sect. 2.2)
and some common assumptions in automated asset manage-
ment (Sect. 2.3). We conclude this section by presenting
related work in the automated asset management domain
(Sect. 2.4).

2.1 Risk, return, and efficient frontier

Markowitz [18] proposed a widely known financial theory
that models return (Rp) as a random variable and defines
the risk as the standard deviation of the return (σp). There-
fore, any portfolio with higher variations in its return time
series has higher risk than those portfolios with lower vari-
ance. In Fig. 1, we show risk (x axis) versus expected return
(y axis), where assets are represented by points. The portfo-
lios will always dominate individual assets (i.e., they present
a lower risk for the same level of return), due to risk reduc-
tion caused by diversification ([12] p. 577). The curve pre-
sented in Fig. 1 is formed by the set of portfolios with the
lowest possible risk for a given level of return. It is called
the efficient frontier and it can be shown that it is a non-
linear function [12]. The set of all possible portfolios mix-
ing the available individual assets can be represented by the
region in the graph limited by the efficient frontier.

Markowitz [18] assumes the existence of a risk free asset
(rf ) that pays a fixed positive return with the standard devi-
ation of returns equal to zero. This asset rf is represented by
the point rf in x axis of Fig. 1. If we create a new portfolio p
combining the risk free asset rf and any other portfolio with
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risky assets x, the risk and expected return of portfolio p can
be expressed by Eqs. (1) and (2), respectively where ωrf is
the weight of rf in the portfolio p and σrf is its standard
deviation [7].

E(Rp) = ωrf E(rf ) + ωxE(Rx) (1)

σp =
√

ωrf
2σrf

2 + ωx
2σx

2 + 2ωrf σrf ωxσxρrf x (2)

However, rf has a fixed income, therefore the standard
deviation of return is zero, and so Eq. (2) can be simplified
to Eq. (3). Whether we combine the risk free asset with the
portfolio M, we have a set of portfolios represented by the
line, called Capital Market Line (CML) shown in Fig. 1.
The portfolios on CML dominate all others. The portfolios
along CML between rf and M are utilizing the opportunity
to invest in the risk free asset, while the portfolios above
M are all leveraged; that is, they are borrowing money at
the risk free rate. The only portfolio on CML that can be
achieved using only risky assets is the portfolio M; therefore
it is also on the efficient frontier.

σp = ωxσx (3)

The index proposed by Sharpe [23] is commonly used
to evaluate risk and return of portfolios. It is presented in
Eq. (4) and it is known as the Sharpe index. The rf expres-
sion in Eq. (4) refers to return on an asset assumed to be
free of risk. In fact, the portfolio M is the portfolio with the
highest possible Sharpe Index and CML could be defined
as the line that passes through the point rf with the highest
possible slope and at least one point in the efficient frontier.

Sharpe(p) = Rp − rf

σp

(4)

Despite some critics [27], the Sharpe index has been
widely adopted in finance industry to point out prefer-
able portfolios and even to compare fund managers perfor-
mances. Frequently, investors are implicitly modeled in the
finance field as rational agents that try to maximize their
Sharpe index.

In order to achieve its goal, a manager adopts a cer-
tain trading strategy, which may be defined as a function
μ : S → θ that associates the current market state s ∈ S to
the order θi ∈ θ that should be submitted to the stock mar-
ket. A market state contains all available information about
the market at a given moment.

2.2 Technical and fundamentalist analyses

There are many analytic strategies based on time series anal-
ysis, which are often grouped in an approach called tech-
nical analysis. These strategies use some market informa-
tion to identify patterns and to define orders. Examples of
such strategies are moving average and moving average
converge-divergence, both based on the average of the last

price of the target asset; stochastic and relative strength
index (RSI), based on price variation; price oscillator and
price volume trend, based on the identification of price trend
and negotiation volume [4].

Another approach to trading strategies is called funda-
mentalist analysis. It is based on information related to
economic fundamentals (including company, sector, and
macroeconomic fundamentals), such as net profit, market
share, revenues, sector growth rates, and global growth rate.
The fundamentalist analysis approach is less used in auto-
mated asset management, despite the fact it is widely used
by human asset managers. This choice is due to the greater
complexity to represent many fundamentalist concepts in an
algorithm, although it is much easier to design algorithms to
calculate time series used in technical analysis [2].

Even within technical analysis, the identification of
which information is really used and how the deliberation
process occurs may change dramatically among different
strategies. Furthermore, strategies may present very differ-
ent performance according to the market scenario [4]. This
observation determined the first guideline for our architec-
ture, i.e., to facilitate the composition of different strategies,
as shown in Sect. 3.2.

2.3 Common assumptions in automated asset management

In the literature related to automated asset management, au-
thors usually use data collected from real stock markets
to perform simulated experiments. This choice is based on
the implicit assumption that if an agent may achieve good
performance in such experiments, he will likely achieve
good performance in actual trading. This assumption makes
sense, but new designers should be careful with some pos-
sible problems that may lead to mistakes about real agent’s
performance. These common assumptions are the following:

• Influence of the new agent in the market: It is usually
assumed that as one agent has a very small amount of
shares compared to total volume traded in the market, the
effect of his orders on price formation will be very small.
Hence, authors very often despise such influence. How-
ever, there are professional investors that try to copy the
trading strategies of the most successful managers. There-
fore, whenever an agent achieves good results, the orders
based on his strategy will probably affect the market by
the shares managed both by him and by his followers.
When the number of followers increases, despising the
direct influence of the leader agent may become a flawed
assumption.

• Relevance of database: A database for experimental sim-
ulations is defined by the set of chosen assets and the pe-
riod of time considered for the data gathered from real
markets. It is important to observe that creating a trad-
ing strategy for a previously known database is trivial
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and consists of buying each asset at a low price and sell-
ing it at a high price. The great challenge in automated
asset management is to build an automated system able
to operate without previously knowing the database. De-
signing an automated system using a very small or fixed
database for assessment of the system’s performance may
lead to risk of over-fitting, i.e., the system has good per-
formance only in markets whose situation is similar to the
used database. In fact, if an automated trading system is
excessively adapted to specific situations, it may present
very low performance when presented to new situations,
as pointed out in [13]. It is not rare that a trading strategy
performs very well in a certain database and very badly
in another one [24]. On the other hand, it is quite hard to
define what a relevant database is. Since it is not trivial to
define a sufficient set of assets and a period of time long
enough to capture long term tendencies, designers should
be careful and use several different time periods for ad-
justing and testing their systems, including good and cri-
sis periods, as well as experimenting with different sets of
assets.

• Risk free asset assumption: The existence of a risk free
asset that pays a fixed positive return is a very common
assumption in the finance field [18]. Despite this fact, no
asset presents standard deviation of returns equal to zero
in reality. Usually, it is assumed that US Treasury bills
are risk free. In this paper, we assume a world of risks
and therefore we do not assume the existence of any risk
free asset. We assume that there are very low risk assets,
but they are not risk free. Therefore, the relation between
expected return and risk of any portfolio with two as-
sets is a non-linear function with no capital market line
(CML). That assumption would make a mathematical ap-
proach cumbersome, but in an agent-based approach such
a problem does not happen, because agent-based simula-
tions can handle a wide range of nonlinear behavior, as
stated by [10]. Even without the existence of a risk free
asset assumption, we have the efficient frontier as a set of
possible portfolios, but it is not possible to choose a port-
folio on efficient frontier just by combining the M portfo-
lio and lending or borrowing money at the risk free asset
rate, as on the CML.

2.4 Related work

Artificial Intelligence is progressively gaining relevance in
the financial world [19]. In fact, Automated asset manage-
ment, also known as automated stock trading, algorithm
trading, or high frequency trading, has been a focus for many
researchers. It is possible to classify these initiatives in many
different ways [5]. One particularly interesting classification
concerns the number of assets dealt with simultaneously:
many assets (multi-asset) or just a single asset (mono-asset).

It should be pointed out that the management of several as-
sets is more complex than just the creation of several in-
stances of one asset manager. It is necessary to explore the
complementarities among the group of assets, especially to
minimize the portfolio risk. As pointed out in [5], there is
more in the literature in the second group (mono-asset) than
in the first group. Another classification concerns the trad-
ing strategy criteria. One can easily verify that there is more
work concerned exclusively with return criterion [3, 6, 11,
14, 15, 24, 28, 31] than with risk criterion. In fact, risk cri-
terion is typically approached as a trade-off solution, com-
bined with return in the Shape index [4, 16], and not as
an independent dimension, as addressed in this work. An-
other relevant distinction deals with the typical time interval
between orders. Some researchers and practitioners try to
achieve better performance exploring the fact that an auto-
mated system can analyze a significantly higher amount of
information when compared to a human being, and hence
the time interval can be reduced from days or hours to a
few seconds or even some fractions of a second. This kind
of work is often called high frequency trading, and tries to
achieve better returns with very fast changes in the current
position [1, 8, 17].

Except for [4], we may notice that none of those papers
explores competition among trading strategies, as we pro-
pose in this work. Another characteristic of most current au-
tomated asset management systems is the fact that they do
not adapt their behavior to possible different investors’ pref-
erence patterns. For instance, for some investors the prop-
erty of having a lower bound risk may be even more im-
portant than gaining a higher return. Additionally, one can
notice that some automated asset managers show very dif-
ferent results when evolving in different contexts. A very
profitable manager can show very bad results in other mar-
ket situation. The COAST architecture, presented next, aims
to tackle these problems.

3 Coast architecture

In this section, we present the main features of the COAST
architecture: the investor description model (Sect. 3.1), the
agents (Sect. 3.2) and the negotiation mechanism specially
developed for the architecture (Sect. 3.3). At the end of
the section, we also present a theoretical evaluation of this
mechanism (Sect. 3.4).

3.1 Investor description model

In a world of risk as we assume here, it is not enough to
determine one point in the efficient frontier and make linear
combinations with rf to satisfy investors with different lev-
els of acceptable risk and return, because the absence of risk
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Fig. 2 Possible market and investor preferences situations represented in a risk versus return graph. Investor preferred region is represented by
the gray area

free assets eliminates the CML. A manager would need to
determine the non-linear function that describes the efficient
frontier in order to achieve specific levels of risk and return,
as discussed in Sect. 2.1. In fact, investors may have differ-
ent levels of acceptance for return and risk criteria and auto-
mated manager needs to be aware of investors’ preferences.
In order to model these preferences, we create an investor
description with two explicit parameters: maximum accept-
able risk and minimum acceptable return. As all investors
are averse to risk, there is no sense in creating a minimum
limit of risk. Furthermore, as all investors desire higher re-
turn, there is no sense in creating a maximum limit of re-
turn.

It is possible to represent such preferences through ac-
ceptable regions in a risk versus return graph as shown in
Fig. 2. Figure 2 also shows the efficient frontier [18]. The
efficient frontier is the set of portfolios with the highest re-
turn to a given level of risk [12]; the portfolio represented by
the indicated point in Fig. 2 is the one that presents the high-
est Sharpe Index of all portfolios in efficient frontier and that
is also in the indicated region. As COAST deals only with
risky assets, the investor’s goal in the situation in Fig. 2(a) is
to reach the indicated point.

Regardless of the investor parameters, a trading agent
will pursue only one of three different social goals at a given
moment: to minimize risk (G1), to maximize return (G2) or
to maximize the chosen trade-off solution (G3), in our case
using the Sharpe index. The decision is taken according to
the current levels of return and risk and to the investor pa-
rameters in a quite straightforward way: if the risk is above
the acceptable level (Fig. 2(b)), the manager should then act
in order to minimize risk. Similarly, the trading agent can
choose to maximize return if it is below the acceptable level
(Fig. 2(c)). However, when both risk and return are currently
unacceptable (Fig. 2(d)), the trading agent should decide to
maximize the trade-off solution in order to try to change
both return and risk simultaneously. In Table 1, we show the
possible social goals adopted by the agent society, according
to the current market situation.

The main concern is not really to adopt and keep one
particular portfolio, but to keep changing the portfolio in
order to adjust it to continuously changing market condi-
tions. Moreover, these choices must be made according to
the investor’s preferences, represented by his profile, in or-
der to stay in the indicated regions and move towards the
goal points. As discussed in Sect. 1, most of the work in au-
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tomated asset management deals with implicit investor pref-
erence, which is always to maximize the expected return.
Such situations may be described in our model as an investor
with a very high (or infinite) value for minimum acceptable
return. A few other studies try to maximize a tradeoff so-
lution between risk and return [4, 16]. Such systems may
be described in our model as an investor with low value for
minimum acceptable return and a very high value for maxi-
mum acceptable risk.

3.2 COAST agents

The COAST architecture is designed to facilitate the si-
multaneous use of many trading strategies and to explore
the competition among these strategies. In order to achieve
better results for the society’s owner, the investor is de-
scribed through our investor description model. These trad-
ing strategies are materialized through agents called advi-
sors. In COAST, strategy outputs are not interpreted as or-
ders, but as advice about one specific asset. The other ar-
chitectural guidelines are the following: (i) to work with
many different assets, (ii) to adapt strategy’s relevance to
each asset and (iii) to avoid central agents or a central-

Table 1 Social goals according to current market situation

Market situation Social goal

Acceptable risk and return Maximize Sharpe index

Unacceptable risk and acceptable
return

Minimize risk

Acceptable risk and unacceptable
return

Maximize return

Unacceptable risk and return Maximize Sharpe index

ized decision making procedure about resource allocation
through assets. In fact, there are multiple coordinator agents,
called coaches. Each coach is specialized in one specific
asset and they are cooperative; they negotiate about which
would be a preferred portfolio for the user. Therefore, a so-
ciety with four assets and three different strategies would
be composed of four coaches and twelve advisors (three ad-
visors for each coach), as shown in Fig. 3. The advisors are
competitive agents and they communicate only with their re-
spective coach. Therefore, there is one group of cooperative
agents and another group of competitive agents (Fig. 3). The
advisors located in the same column operate with the same
asset and the coach at the top of the column evaluates and co-
ordinates the work of the advisors in that column. According
to these evaluations, one advisor with good performance has
more relevance in the coach’s decisions than the other advi-
sors. Coaches auto-evaluate and negotiate to allocate more
money to the coaches with better performance in the soci-
ety, as described in Sect. 3.3. It is important to notice that
we model the architecture considering autonomous agents
acting as experts for a specific asset, namely the coaches.
Therefore, there is no central agent that controls the other
agents. Indeed, coaches need to negotiate to solve conflicts
and to work together.

Coaches know each other and are also aware of the risk
and return preferences of the investor. On the other hand, the
advisors are concerned just with the asset return and try to
inform the investors of the right moment to buy or sell the
asset. These two kinds of agents are described in detail next.

3.2.1 Advisors

Advisor agent suggests buying or selling a number of shares
of a specific asset following their own strategy. Advisors can

Fig. 3 Example of a
COmpetitive Agent SocieTy
that manages four assets using
three strategies simultaneously
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Fig. 4 Advisor and coach life
cycles in COAST architecture

be easily created using any well known trading strategy. This
advice is sent to the coach, who is the agent in charge of
order definition. An agent life cycle may be described as the
set of activities that the agent performs while still active.
The advisor’s life cycle is presented on the left of Fig. 4. In
this figure, dashed lines show messages exchanged between
agents and solid lines show state changes for each agent.
Each state is represented by an ellipse, and has the following
meaning:

1. Asks for updated information: The advisor, accord-
ing to its strategy, asks for updated information from
the stock market simulator [5], which can be seen in the
center of Fig. 4;

2. Receives information: The stock market simulator re-
turns the information which is locally stored. This step
is also used to synchronize all agents in simulated
time [5];

3. Analyses and sends advice: According to the collected
information and his strategy, the advisor defines and
sends buy/sell/hold advice to his coach.

The coach evaluates its advisors’ performance according
to their advice and the market evolution. For instance, when-
ever an advisor suggests buying an asset whose price rises
after the advice, this advisor is positively evaluated. A sim-
ilar reasoning can be made regarding selling advice. The
advisor’s goal is to achieve the highest possible evaluation
from his coach, because this situation gives him more rele-
vance to the whole society. The coach keeps a memory of
the recent advice and its status, in order to compute his ad-
visors’ evaluations.

3.2.2 Coaches

Coaches receive advice, evaluate their advisors, negotiate
with other coaches and define orders that are submitted to
the market. These activities are performed along the entire
agent’s lifecycle. However, the negotiation process does not
happen in all cycles, only at periodic intervals which include
several cycles. Negotiation in all cycles would be senseless,
since the previous negotiated allocation would not have had
enough time to be tested. This negotiation period is one of
the COAST society parameters.

The coach activities are presented on the right of Fig. 4,
and have the following meaning:

1. Asks for updated information: The coach asks for new
information about its target asset. Even though coach or-
ders are completely based on the messages sent by his ad-
visors, he would need asset information to evaluate them;

2. Receives information: The stock market simulator [5]
returns the stored information to be used in the advisors’
evaluation;

3. Receives advice: The coach receives advice from each
advisor that deals with the asset that he manages. This
activity continues until he receives advice from all his
advisors. During this activity, he also performs the advi-
sors’ evaluation, as described in Sect. 3.2.1. If the current
cycle must include negotiation, the next step is activity 4;
otherwise, the next step is activity 5;

4. Negotiation Process: The coach negotiates with other
coaches in order to define a new resource (money) alloca-
tion. This activity is much more complex than the others
and therefore is described in more detail in Sect. 3.3;
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Fig. 5 Membership functions of fuzzy variables advice, advisor eval-
uation and coach expectation

5. Reasons, defines orders, and sends them: Based on ad-
visors’ suggestions and following a set of fuzzy rules
which are presented in the sequence, the coach defines
his order and sends it for execution to the stock market
simulator [5];

6. Receives order result and registers it: The coach re-
ceives the order result, whose value may be total, partial
or not executed at all, and registers it in his portfolio,
including the real price that was used to buy or sell the
asset.

Coaches calculate their expectation about their own per-
formance in the near future. This performance expectation
is modeled as a linguistic variable [20] with five terms:
strong bearish, bearish, unbiased, bullish and strong bullish,
as shown in Fig. 5(c). The advice is a linguistic variable,
with three linguistic terms: sell, hold, and buy, whose mem-
bership functions are presented in Fig. 5(a). Meanwhile, ad-
visor evaluation is also a linguistic variable and have three
linguistic terms: low, medium and high, where the universe
of discourse is the success rate of the advisor [0 %–100 %],
as shown in Fig. 5(b). The coach determines his expectation
based on the information (advice) that comes from his advi-
sors and their respective evaluation according to set a fuzzy
rules, as seen in Fig. 6.

R1. If Advice is Buy and Evaluation is High
Then Expectation is Strong bullish
R2. If Advice is Sell and Evaluation is High
Then Expectation is Strong bearish
R3. If Advice is Buy and Evaluation is Medium
Then Expectation is Bullish
R4. If Advice is Sell and Evaluation is Medium
Then Expectation is Bearish
R5. If Advice is Hold
Then Expectation is Unbiased
R6. If Evaluation is Low
Then Expectation is Unbiased

Fig. 6 Coach expectation fuzzy rules

The coach expectation (Expectationi ) is both used in
the negotiation mechanism with other coaches, described in
Sect. 3.3, and also in the definition of his order. The coach
defines his order decoding his fuzzy expectation to a crispy
value; in our implementation, the fuzzy decoding method
used was the center of gravity method [20]. For instance, if
the coach expects a strong bullish market, it leads to a buy
order with high volume, meanwhile a strong bearish expec-
tation leads to a sell order with high volume and a unbiased
expectation makes the coach keep his current position.

3.3 Negotiation mechanism

Coaches have individual and social preferences and nego-
tiate according to those preferences. A negotiation mecha-
nism is defined by a negotiation protocol, composed of the
communication rules among participants, and by the play-
ers’ strategies [21]. There are some well known negotiation
protocol, probably the most known is the contract net pro-
tocol [26]. Another possible example is the monotonic con-
cession protocol [21]. However, contract net is defined for
task-oriented domains and the one-step protocol is defined
for worth-oriented domains [21, 30]. The domain addressed
by COAST, asset management, does not deal with task al-
location, but financial asset allocation according to agent’s
expectations and preferences. It cannot be classified as a
task-oriented domain. Despite the fact, one can argue it can
be classified as worth-oriented domain. However, there is an
important issue that makes the definition of a worth function
very hard: the state’s worth depends on what is going to hap-
pen in the future with stock prices, for example. Therefore,
we designed a new negotiation protocol and strategy for our
agents.

In this section, we describe the individual and social pref-
erences of COAST agents, then the proposed negotiation
protocol and finally the roles that a coach can assume in each
negotiation round and the strategy adopted for them.
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3.3.1 Individual and social preferences

As previously presented in Table 1, each coach has a global
social goal to achieve. However, competitive agents try to
overcome the others and get more resources for themselves.
We believe that this competitive goal is not only acceptable,
but also useful for the society, because it induces agents to
improve themselves and, hence, to improve the performance
of the whole society.

In order to define a utility function to represent these in-
dividual and social preferences, some previous definitions
are needed. The return of a coach i in a time t is defined as:

R(ωi, t) = V (ωi, t) − V (ωi, t − 1)

V (ωi, t − 1)
(5)

In Eq. (5), ωi refers to resources (money and assets) allo-
cated to agent i. The allocation ωi may be defined as a tuple
〈mi,ω

1
i ,ω

2
i , . . . ,ω

n
i 〉, where mi ∈ � defines the amount of

money allocated to agent i and expression ω
j
i represents the

integer number of shares of asset j held by agent i. Further-
more, V (ωi, t) is the monetary value of ωi at time t .

The risk K(ωi, t) is defined as the standard deviation of
the return R(ωi, t), which can be estimated using the N last
observed returns through Eq. (6):

K(ωi, t) =
√∑N

j=1 (R(ωi, tj ) − R̄(ωi))2

n − 1
(6)

The return R(ω, t) and risk K(ω, t) associated to the
whole society may be defined similarly. They are defined
in Eq. (7) and Eq. (8), respectively. The monetary value of
the whole society V (ω, t) is given by the sum of V (ωi, t) of
all the coaches i ∈ C in that society:

V (ω, t) =
∑
i∈C

V (ωi, t) (7)

R(ω, t) = V (ω, t) − V (ω, t − 1)

V (ω, t − 1)
(8)

K(ω, t) =
√∑N

j=1 (R(ω, t) − R̄(ω))2

n − 1
(9)

Each coach i has an expectation (Expectationi , as de-
scribed in Sect. 3.2.2) about its performance in the near
future and this expectation is restricted to the interval
[Ob,Oa]. We normalize this expectation interval to [−1,1],
i.e. −1 ≤ Expi ≤ 1, through Eq. (10). The normalized ex-
pectation (Expi ) is used to calculate the expected monetary
value for each coach. This expected value is a very impor-
tant input to the utility function, because if one agent be-
lieves that he will have bad performance he will more easily
accept to give his resources to other coaches.

Expi = 2 ∗ Expectationi − Oa − Ob

Oa − Ob

(10)

We define the expected monetary value Ve(ωi, t) for
an agent i as the current monetary value plus the ex-
pected change, as stated in Eq. (11). The expected monetary
value of the whole society Ve(ω, t) is given by the sum of
Ve(ωi, t) of all the coaches i ∈ C in that society, as shown
in Eq. (12):

Ve(ωi, t) = V (ωi, t) + Expi ∗ V (ωi, t) (11)

Ve(ω, t) =
∑
i∈C

Ve(ωi, t) (12)

As coaches have individual and social preferences, they
need to compose both portions to form their utility func-
tions. The relative weight between these portions is mod-
eled as a parameter α, called individuality factor, where
α ∈ [0,1) (zero is included, 1 is excluded). The value (1−α)
is called the social factor. Whenever α = 1, the agent cares
only about its own goals, and would be completely individ-
ualistic. A bigger α means that an agent is less concerned
about social preferences. In COAST, all coaches are con-
cerned with both criteria, therefore 0 < α < 1.

We define the utility function Utili (ω̇, t) of a coach i as
the sum of individual and social preferences weighted by
its individual factor as stated in Eq. (13). As the negotia-
tion process deals with resource allocation among coaches,
utility functions have as parameters the proposed allocation
(ω̇), the current allocation (implicit parameter) and a defined
instant of time t :

Utili (ω̇, t) = α ∗ UI(ω̇i , t) + (1 − α) ∗ US(ω̇, t) (13)

The term UI(ω̇i , t) refers to the individual portion of
coach preferences. It may be defined as the difference be-
tween the expected value of the new allocation and the value
of the current allocation, as presented in Eq. (14):

UI(ω̇i , t) = Ve( ˙ωi, t) − V (ωi, t) (14)

We define three different functions to represent the so-
cial portion of the coach’s preferences for risk minimization
(G1), return maximization (G2) or Sharpe index maximiza-
tion (G3), one for each possible social goal. As the nego-
tiation deals with resource allocation among coaches, the
preference function informs whether a new allocation ω̇ is
preferable over the current allocation ω, according to the
current social goal. These functions are called USG1(ω̇, t),
USG2(ω̇, t) and USG3(ω̇, t) for social goals G1, G2 and G3,
respectively. Each one gives higher numbers for allocations
that contribute more to the social goal in a defined instant
of time t as formally defined in Eqs. (15), (16) and (17),
respectively:

USG1(ω̇, t) = K(ω, t) − Max_Risk (15)

USG2(ω̇, t) = Ve(ω̇, t) − V (ω, t) (16)

USG3(ω̇, t) = Sharpee(ω̇, t) − Sharpe(ω, t) (17)
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Fig. 7 Negotiation process
among coaches in COAST
architecture

In Eq. (15), the expression Max_Risk refers to max-
imum acceptable limit of risk, according to the investor
description model (Sect. 3.1). The social preference func-
tion USG3(ω̇, t) is based on the Sharpe index, expressed in
Eq. (18). The expected Sharpe index for the proposed allo-
cation is presented in Eq. (19):

Sharpe(ω, t) = R(ω) − rf

K(ω, t)
(18)

Sharpee(ω̇, t) = Re(ω̇) − rf

K(ω, t)
(19)

Re(ω) =
∑N

i=1 R(ωi) ∗ (1 + Expi )

N
(20)

The expressions R(ω) and Re(ω), Eq. (20), are simple
averages of R(ω) and Re(ω), respectively. The symbol rf
refers to the return of the risk-free asset [23].

In summary, whenever a coach i receives a negotiation
proposal for a new allocation, he will accept the proposal
if his expected utility, Eq. (13) is greater or equal to zero,
i.e., if Utili (ω̇, t) ≥ 0. The negotiation protocol is described
next.

3.3.2 Negotiation protocol

The negotiation process presented in the coach life cycle
(activity 4 of the right of Fig. 4) is composed of seven
sub-activities, which are shown in detail in Fig. 7. Several
coaches interact with each other throughout the negotiation
process, but one of them, named best coach, is considered
the coach with the best performance. From sub-activity 4.c
on, the behavior of the best coach and the others differ.

The negotiation process sub-activities are the following:

4.a. Sends information to others coaches: Each coach
sends to other coaches information about his own per-
formance (risk, return and patrimony) and expectation
about the near future;

4.b. Receives information from other coaches: Each
coach receives information from all the others. Hence,
each one may calculate the society’s patrimony, risk,
and return;

4.c. Defines coach roles according to performance: In
this activity, each coach calculates the possible roles
that each coach, including himself, can play. There are
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three possible roles: best coach,1 neutral coach or bad
coach, as detailed in Sect. 3.3.3. The coach roles defi-
nition is performed by each coach separately, because
they are completely autonomous and do not have prece-
dence over the others. However, since we consider that
coaches do not lie to each other, they all achieve the
same result, since they use the same information. The
best coach executes activities 4.f and 4.g; the other
coaches execute activities 4.d and 4.e;

4.d. Other coaches—Receives and analyzes proposals:
This analysis is performed according to individual and
social preferences and the current observed situation.
The coach decides if he should accept the proposal
or not, based on his utility function as explained in
Sect. 3.3.1;

4.e. Other coaches—Sends proposal answers: The pro-
posal answer is sent back to the proponent. If the an-
swer is affirmative, the new allocation is adopted;

4.f. Best coach—Prepares and sends proposals: The best
coach prepares a proposal that asks for all the available
money from the underperforming coaches, according to
the society goals. For instance, if the goal is to reduce
risk, all coaches with current risk higher than the limit
defined by the investor receive a proposal. The proposal
creation process is described in Sect. 3.3.3;

4.g. Best coach—Process proposal answers: The best
coach waits for all the proposal answers. Each affirma-
tive answer creates a deal and the transfer is performed
immediately. In case of a negative answer, nothing is
changed and the best coach does not receive any money
from the agent that refused the proposal.

The definition of the roles that each coach plays, accord-
ing to the social goal, is detailed next.

3.3.3 Coach roles

As described in Sect. 3.1, the social goal can be one the fol-
lowing possibilities: risk minimization (G1), return maxi-
mization (G2) or Sharpe maximization (G3). Given the so-
cial goal, coach roles are formally defined as follows:

• Social goal: Risk minimization (G1):
– Best coach: The coach with lowest risk, in the case of

a tie one of them is randomly chosen as the best one;
– Bad coach: Any coach i that K(ωi, t) > Max_Risk;

• Social goal: Return maximization (G2):
– Best coach: The coach with highest expectation, in the

case of a tie one of them is randomly chosen as the best
one;

– Bad coach: Any coach i that Expi < 0;

1There is only one single best coach per negotiation cycle; in the case
of tie, one of them is randomly selected.

• Social goal: Sharpe maximization (G3):
– Best coach: The coach with highest trade-off (see

Eq. (18)); in the case of a tie one of them is randomly
chosen as the best one;

– Bad coach: Any coach i that Expi < 0.

No matter the social goal, neutral coaches are all coaches
that are neither chosen as the best coach nor have the requi-
sites to be considered a bad coach. The set D is defined as
the set of all bad coaches.

The best coach v creates several proposals and sends one
proposal to each one of the bad coaches, i.e. ∀i ∈ D. The
proposal brings a new allocation (ω̇) derived from the orig-
inal allocation (ω), where the best coach asks for all the
money from all bad coaches, therefore ṁi = 0, ∀i ∈ D and
ω̇v = ωv + ∑

j∈D mj .
There are no changes for neutral coaches. The bad

coaches may, however, deny the transfer if they prefer to.
This happens when the new allocation utility calculated by
Eq. (13) is less than zero; however, bad coaches accept pro-
posals many times because the social part of their utility
functions overcomes the individual part.

3.4 Negotiation mechanism theoretical evaluation

The COAST negotiation mechanism was designed to repre-
sent correctly both the agent’s individual and social prefer-
ences, and also to present some desirable features for negoti-
ation mechanisms, as the ones pointed out by Sandholm [29]
(Chap. 5) and by Wooldridge [30]. Despite other features
that could be considered [30], we selected the following fea-
tures to characterize our approach:

• Guaranteed success: The COAST mechanism never
reaches a deadlock, because in the case of no acceptance
of a proposal, the current allocation is kept;

• Maximizing expected social welfare: The mechanism
determines that any accepted allocation ω̇ has a bigger
sum of agent’s utilities than a previous allocation ω, as
shown in Theorem 1;

• Simplicity: The coach strategy is very simple. He asks the
best possible allocation if he has the right to propose and
accepts a proposal only if it is indifferent (zero utility) or
good (positive utility), as described in Sect. 3.3;

• Computational efficiency: As stated by Sandholm [29]
(p. 204), mechanisms with lower computational cost are
preferable to those with higher demand for processing
power, except when it can be shown that the additional
computational complexity may be justified by a signifi-
cant higher quality in the solution. The COAST mecha-
nism requires fewer calculations to be performed by each
coach;

• Distribution: There is no single point of failure or any
special agent that coordinates the others. The conflicts of
interest are solved by negotiation among coaches.
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These features were chosen because they seem to be more
adequate to our context, due to their emphasis on social pref-
erences. They also allow some deals where some agents may
lose all their resources in particular situations. That kind of
deal may be better to the society, even if it is very bad for
those agents that loose all their resources. Such deals would
not be possible if the system tried to maximize the utility
achieved by the worst coach, instead of maximizing the so-
cial welfare. Therefore, we believe that maximizing the so-
cial welfare is a better solution in our context.

At each negotiation round, the COAST negotiation mech-
anism produces one allocation deal that either has a higher
social welfare (if a coach accepts a proposal) or social wel-
fare remains the same (if no proposal is accepted), as shown
by Theorem 1.

Theorem 1 Any new accepted allocation ω̇ presents higher
expected social welfare than current allocation ω.

Demonstration Let ω̇ be a new allocation accepted by a
COAST society and ω the current allocation. Then for any
agent i ∈ D, Utili (ω̇, t) ≥ 0, where D is the set of bad
coaches, because no agent accepts a proposal with util-
ity lower than zero. Given the utility function definition
in Eq. (13), it is easy to see that the utility of the cur-
rent allocation ω is zero. Therefore ∀ ∈ C,Utili (ω̇, t) ≥
Utili (ω, t) = 0, where C is the set of all coaches. The
best coach (v) always receives more money and then its
utility is higher than the previous utility Utilv(ω̇, t) >

Utilv(ω, t) such that we can deduce that
∑

i∈C Utili (ω̇, t) >∑
i∈C Utili (ω, t).
It is important to notice that Theorem 1 does not guar-

antee that the allocation proposed in the deal has the high-
est utility among all possible allocations. In order to guar-
antee that, it would be necessary to search for all possible
allocations, which would have a very high computational
cost, since the possible allocations number grows exponen-
tially with the amount of the society’s money. Moreover, this
search would be senseless, because the social welfare may
change over time and spending a lot of time to determine
the best result could be quickly outdated. Furthermore, it is
also important to note that Theorem 1 does not guarantee
that society do not face the risk of losing monetary value,
but that the society will only accept deals that present higher
expected social welfare.

4 Experiments

We have implemented a version of the COAST architecture
that uses six advisor strategies based on technical analysis.
The technical indexes used are the following: moving aver-
age, moving average converge-divergence, stochastic, rela-
tive strength index, price oscillator and price volume trend,

Table 2 List of assets identificators from Nasdaq exchange used in the
simulated experiments

Asset ID

1 AAPL

2 ADBE

3 ALTR

4 AMAT

5 AMGN

6 APOL

7 CDNS

8 CELG

9 CMCSA

10 COST

11 CSCO

12 CTAS

13 DELL

14 ERIC

15 ERTS

16 EXPD

17 FAST

Asset ID

18 FISV

19 INTC

20 KLAC

21 LLTC

22 LRCX

23 MSFT

24 MXIM

25 ORCL

26 PAYX

27 PCAR

28 ROST

29 SPLS

30 SYMC

31 TEVA

32 TLAB

33 XLNX

34 XRAY

which were briefly described in Sect. 1. COAST has been
implemented over JADE platform [9] and Java language.

Since we developed a system that reallocates resources
among agents that manage a portfolio of financial assets,
some questions may naturally arise. For example, is it a
good idea to reallocate resources among coaches during
the trading period? In the case of a positive answer, should
the system reallocate resources among coaches often or in-
frequently? Does the system really present a good perfor-
mance?

In order to analyze these questions, we designed a set
of simulated experiments using real data from the financial
market. We have selected the thirty four assets from the Nas-
daq 100 Index that present at least fifteen years of price his-
tory from January, 1995 to December, 2009. These assets
are listed on Table 2.

Using this set of assets, we have performed many simula-
tion experiments using a market simulator called AgEx [5].
We have tested COAST societies trading in the exchange,
using daily quotes, where each coach could make one order
a day. As discussed in Sect. 2.3, we despised the effect of the
orders given by the coaches in the market price, because the
agents deal with a very small amount of money when com-
pared to the traded volume for each asset. Despite the fact
that the market simulator allows the use of transaction fees,
for simplicity we set these fees to zero. In fact, transaction
fees have small influence on performance, since there is no
big difference in the number of orders given by the analyzed
societies [5].
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4.1 Experimental setup

In order to analyze the raised questions above, we have ex-
ecuted many simulation experiments using four different
COAST societies, and changing the time interval between
two negotiation processes. In Table 3, these societies and the
time interval between negotiation processes are presented.

The fifteen-year evaluation period was divided in five pe-
riods of three years, as shown in Table 4. We have also
computed the performance average of the five trienniums. In
most periods, as well as the average, the Very frequent ne-
gotiations and Frequent negotiations societies are the best
in return, as it may be seen in Fig. 8. On the other hand, as
shown in Fig. 9, there is no significant differences between
the four societies regarding the risk. However, if we analyze
jointly both the risk and return values through the Sharpe
index, the two above mentioned societies also presented the

Table 3 COAST societies and their time interval between negotia-
tion processes. The time interval is expressed in coach’s cycles (see
Sect. 3.2.2)

Society name Time interval

No negotiations ∞
Rare negotiations 50

Frequent negotiations 25

Very frequent negotiations 3

best performance, as presented in Fig. 10. Hence, these two
societies were selected to be compared with a theoretical
portfolio specially created by us for analytical purposes.

Our first idea of direct comparison was to use the Nasdaq
100 (N100) index. However, a comparison among COAST
performance and Nasdaq 100 (N100) index is biased be-
cause they do not deal with the same assets. In fact, N100 in-
dex composition changes all the time and many assets have
been included or excluded along the fifteen years of the eval-
uation period, i.e. from 1996 to 2010. Due to these facts,
we have created a theoretical portfolio called N34, which
is composed of the thirty-four assets used by COAST so-
cieties. Since 2005, Nasdaq has not published the relative
weights of N100 for each asset. Therefore, we defined N34
relative weights according to previous relative weight dis-
crimination. Moreover, we normalized these weights to use
only the chosen assets using Eq. (21), where pi is the asset

Table 4 The five trienniums of evaluation period

Trienniums Start date End date

1o. triennium Jan 01 2008 Dec 31 2010

2o. triennium Jan 01 2005 Dec 31 2007

3o. triennium Jan 01 2002 Dec 31 2004

4o. triennium Jan 01 1999 Dec 31 2001

5o. triennium Jan 01 1996 Dec 31 1999

Fig. 8 Daily return obtained by
four COAST societies

Fig. 9 Risk presented by four
COAST societies
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Fig. 10 Sharpe index presented
by four COAST societies

Fig. 11 Daily return obtained
by two COAST societies and
N34 agent

Fig. 12 Risk presented by two
COAST societies and N34 agent

weight in N34 theoretical index and wi is the original weight
in N100.

pi = wi∑
j∈N34 wj

∗ 100 % (21)

We have used these weights to define a trader agent, us-
ing AgEx, which buys and holds a set of shares according to
the specified weights. This agent, also called N34, acted in
the same simulated evaluation period of five trienniums. We
compared N34 agent performance to Very frequent negoti-
ations and Rare negotiations COAST societies. N34 pre-
sented a better performance in return, as may be seen in
Fig. 11, but it was the worst according to the risk criterion,
as presented in Fig. 12. Finally, Fig. 13 presents the perfor-

mance of N34 agent and both COAST societies using the
Sharpe Index.

4.2 Analysis of results

The comparison among the four COAST societies in re-
turn (Fig. 8) and the Sharpe index (Fig. 10) shows that fre-
quent negotiations, i.e. frequent reallocation of resources,
may bring higher performance, according to these two cri-
teria. The Very frequent negotiations society achieves the
best return and best Sharpe index in the average of the
five trienniums. Regarding the risk criteria, the Very fre-
quent negotiations society presents the highest risk in the
fifth triennium, but it also presents the lowest risk in the
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Fig. 13 Sharpe index presented
by two COAST societies and
N34 agent

other four trienniums. These facts make us believe that
it may be possible to pursue better results with more ef-
fective negotiations. By more effective, we mean negotia-
tions with more impact in resource reallocations. Currently,
only those coaches with bad performance may transfer re-
sources, and at each negotiation process they may transfer
just the money that is not already invested in assets. Addi-
tionally, coaches with neutral performance do not lose re-
sources. When negotiation processes are made more fre-
quently, there is a faster transfer to the best coach. The
Very frequent negotiations society performs negotiations
at three cycles interval, as stated in Table 3. In order to
make more effective reallocations, we need to change the
amount of resources that can be transferred at the end
of a negotiation process. We intend to do that in the fu-
ture.

On the other hand, analyzing the results in Figs. 11
and 12, it is possible to verify that Very frequent negotia-
tions and Rare negotiations COAST societies overcome the
N34 agent in the risk criterion, but the returns achieved by
COAST societies are systematically lower than N34. This
relatively bad performance in the return criterion is due to
the fact that COAST achieves a best result in risk crite-
rion at the cost of a poor performance in return. Moreover,
if we analyze the performance measured through Sharpe
Index as shown in Fig. 13, it is possible to realize that
COAST societies perform better in two trienniums, while
N34 performs better in three trienniums; consequently, the
later also has a better performance in the average of the
five trienniums. However, these results are quite interest-
ing if we consider investors whose main goal is to fix a
maximum risk limit. As mentioned before, to our knowl-
edge the COAST architecture is the only automated asset
management system capable of dealing with these kinds
of investor profiles, when considering the non-existence of
any risk free asset. Furthermore, we believe it is possi-
ble to improve COAST performance with the addition of
new advisor agents, rather than using only the current five
advisors that are based on common technical analysis in-
dexes.

5 Conclusions and further work

In this paper, we presented the multiagent COAST architec-
ture, its agents, and a new negotiation mechanism especially
designed for this architecture. This architecture was imple-
mented and tested in several simulation experiments. These
experiments were presented and analyzed. COAST societies
performed well in risk criterion and those with more fre-
quent negotiations performed better than societies with less
frequent negotiations according to return criterion. This re-
sult indicates that it may be possible to achieve a better
performance in the return criterion with more effective re-
source reallocation among coaches, i.e., more resources be-
ing transferred at the end of each negotiation process.

The main contributions of this study are the follow-
ing: its capacity to represent different investor’s preferences
with pre-defined acceptable limits of risk and/or return that
guides the decisions of the whole automated system; the ex-
ploitation of competitive strategies within the COAST archi-
tecture that facilitates the use of well-known trading strate-
gies as advisors agent strategies; and finally, the fact that it
does not need to assume the existence of any risk free asset
is also an significant advantage.

In future work, we intend to test COAST architecture
with more trading strategies, using a wider evaluation period
and number of assets. We believe that a significant evolution
would be a formal modeling of expectations, which are very
important in economic reasoning. Finally, despite the fact
that the architecture was designed for automated asset man-
agement, we believe that it can be adapted to other complex
multiagent environments.
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