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PARTIALLY OBSERVABLE MDP (POMDP)
• So far, we have assumed that the environment was fully observable, 

i.e, the agent always knows which state it is in.

• When the environment is only partially observable, the situation is 
much less clear

• The agent does not necessarily know which state it is in, so it 
cannot execute the action π(s) recommended for that state. 

• Furthermore, the utility of a state s and the optimal action in s 
depend not just on s, but also on how much the agent knows when it 
is in s

• For these reasons, partially observable MDPs are usually viewed as 
much more difficult than ordinary MDPs

• However, we cannot avoid POMDPs because the real world is one
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POMDP - 4x3 world (but the agent 
does perceives its current state)
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POMDP  - 2
• A POMDP has the same elements as an MDP—the transition model P(s| 

s, a), actions A(s), and reward function R(s)—but, it also has a 
sensor model P(e|s)

• The sensor model specifies the probability of perceiving evidence e 
in state s  P(e|s)

• In POMDPs, the belief state b is a probability distribution over 
all possible states

• For the 4x3 world (version POMDP), the initial belief state could be 
the uniform distribution over the nine nonterminal states, i.e., < 
1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,0,0>, b(s) is the probability of 
being in state s given by the belief state b
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POMDP - 3
• The agent can calculate its current belief state as the 

conditional probability distribution over the actual states 
given the sequence of percepts and actions so far

• If b was the previous belief state, and the agent does action 
a and then perceives evidence e, then the new belief state is 
given by  ( α is the normalization factor)

• We can define a b' equation like that for each possible state 
s. Note that we don't need to know the current state, the 
next belief state b' can defined as below, given b, a and e

• b'= Forward(b,a,e)
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POMDP - 4
• How can one find the optimal policy in POMDP?

• The fundamental insight required to understand 
POMDPs is this: the optimal action depends only 
on the agent’s current belief state

• That is, the optimal policy can be described by 
a mapping π*(b) from belief states to actions.
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POMDP agent life cycle
• The decision cycle of a POMDP agent can be broken down into 

the following three steps:

1. Given the current belief state b, execute the action a=π*(b).

2. Receive percept e.

3. Set the current belief state to 

4. go back to step 1

• Observe that the optimal policy is defined for belief 
states rather than states!!!

• ...and the agent's action does not define the next belief 
state!!!
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How to find an optimal policy for belief 
states?
• If we knew the action and the subsequent percept e, we could 

provide a deterministic update to the belief state, by b'= 
Forward(b,a,e)

• Of course, the subsequent percept is not known before 
executing the action, so the agent might arrive in one of 
several possible belief states b'depending on the percept e  
that is received. 

• We can estimate the probability distribution over b' by..

• Remember the sum-out
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How to estimate P(e|a,b)=?

• Let's try to estimate that probability of evidence e given a and b

• We use the sum-out and the fact the observations are isolated by the 
state...
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Estimating transitions between 
states...
• From the previous expressions for P(e|a,b) and P(b'|a,b)

• Where where P(b|e,a,b) is 1 if b =Forward(b, a, e) and 0 
otherwise

• This equation can be viewed as defining a transition model 
among belief-states (similar to p for states)
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Reward for belief states
• We can also define a reward function for belief 
states (i.e., the expected reward for the actual 
states the agent might be in):

• Together, P(b|b, a) and ρ(b) define an observable 
MDP on the space of belief states. 

• Furthermore, it can be shown that an optimal policy 
for this MDP, π*(b), is also an optimal policy for 
the original POMDP

• In other words, solving a POMDP on a physical state 
space can be reduced to solving an MDP on the 
corresponding belief-state space
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POMDP becomes MDP but...
• Notice that, although we have reduced POMDPs to 
MDPs, the MDP we obtain has a continuous (and 
usually high-dimensional) state space. 

• None of the MDP algorithms described before 
applies directly to such MDPs

• We will describe a value iteration algorithm 
designed specifically for POMDPs and an online 
decision-making algorithm 
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Value iteration for POMDPs
• Consider an optimal policy π*  and its 
application in a specific belief state b: the 
policy generates an action, then,for each 
subsequent percept, the belief state is updated 
and a new action is generated, and so on

• For one specific b, therefore, the policy is 
exactly equivalent to a conditional plan,

• Conditional plan is a list of objects, where an 
object can be an action or a conditional action 
like If obs=x then Action1 else Action2
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Simple Example of POMDP: Vacuum world - the state is not 
Completly observable

States 7 and 8 are goal states!!
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Simple example of POMDP

• Example of Conditional plan (starting on 1,3,5 or 
7):
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Searching for conditional plans
• As a policy for a given b is a conditional plan, instead of thinking 

about policies, let us think about conditional plans and how the 
expected utility of executing a fixed conditional plan varies with 
the initial belief state

• Let the utility of executing a fixed conditional plan p starting in 
physical state s be αp (s), Then the expected utility of executing p 
in belief state b is just

•  So, the expected utility of a fixed conditional plan varies 
linearly with b (so it defines a hyperplan in belief space)
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Searching for conditional plans  -2 

• At any given belief state b, the optimal 
policy will choose to execute the conditional 
plan with highest expected utility; 

• and the expected utility of b under the optimal 
policy is just the utility of that conditional 
plan:
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Searching for conditional plans  -3
• If the optimal policy π∗  chooses to execute p starting at 

b, then it is reasonable to expect that it might choose to 
execute p in belief states that are very close to b;  

• if we bound the depth of the conditional plans, then there 
are only finitely many such plans and the continuous space of 
belief states will generally be divided into regions, each 
corresponding to a particular conditional plan that is 
optimal in that region

• From these two observations, we see that the utility function 
U(b) on belief states, being the maximum of a collection of 
hyperplanes, will be piecewise linear and convex

• It allows us to use a recursive approach to search for plans with 
d-depth, starting with depth one!
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Example: Two-state world
• Let's usre a simple two-state world. The states are labeled 0 and 1, 

with R(0)=0 and R(1)=1. 

• There are two actions: Stay stays put with probability 0.9 and Go 
switches to the other state with probability 0.9. Let's assume the 
discount factor γ =1

• The sensor reports the correct state with probability 0.6. 

• Obviously, the agent should Stay when it thinks it’s in state 1 
and Go when it thinks it’s in state 0.
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Example: Two-state world  - 2
• Now let us consider the one-step plans [Stay] and 
[Go], each of which receives the reward for the 
current state followed by the (discounted) reward 
for the state reached after the action

• Now, let's check
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Example: Two-state world  - 3
• The hyperplanes (lines, in this case) for b·α[Stay] and 

b·α[Go] are shown below, their maximum is shown in bold

• In this case, the optimal one-step policy is to Stay when 
b(1) > 0.5 and Go otherwise
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• Once we have utilities αp(s) for all the 
conditional plans p of depth 1 in each 
physical state s, 

• We can compute the utilities for conditional 
plans of depth 2 

• by considering each possible first action, each 
possible subsequent percept, and then each way of 
choosing a depth-1 plan to execute for each percept
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• There are eight distinct (Two actions and one 
percept) depth-2 plans in all, and their 
utilities are shown below
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• So, we can compute depth-1 plans utilities using depth-2 
plans utilities and so on...

• So, We can repeat the process for depth 3, and so on

• In general, let p be a depth-d conditional plan whose initial 
action is a 

• and the subsequent depth-(d − 1) subplan for percept e is p.e 
with utility αp.e, 

• It gives us a equation to utility of executing a fixed 
conditional plan p

• That equation (1) gives us a value iteration algorithm
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POMDP Value iteration algorithm

The REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are 
typically implemented as linear programs
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Summary
• In practice, the value iteration algorithm in  is hopelessly 

inefficient for larger problems

• For general POMDPs, however, finding optimal policies is very 
difficult (P-SPACE hard, in fact—i.e., very hard indeed)

• Problems with a few dozen states are often infeasible

• We have already studied another approach to deal with these 
class of problems:

• Dynamic Bayesian Networks and Dynamic Decision Networks!!
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DDN for POMDPs

• The generic structure of a dynamic decision network. Variables with 
known values are shaded. 

• The current time is t and the agentmust decide what to do—that is, 
choose a value for At. 

• The network has been unrolled into the future for three steps and 
represents future rewards, as well as the utility of the state at 
the look-ahead horizon
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Decision Tree for DDN

• Part of the look-ahead solution of the DDN shown before.

• Each decision will be taken in the belief state P(X.|E.) indicated

• The round (chance) nodes correspond to choices by the environment, 
namely, what evidence Et+i arrives
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• A decision can be extracted from the search 
tree by backing up the utility values from the 
leaves, taking an average at the chance nodes 
and taking the maximum at the decision nodes

• This is similar to the EXPECTIMINIMAX algorithm 
for game trees with chance nodes, except that
1. there can also be rewards at non-leaf states and 

2. the decision nodes correspond to belief states rather 
than actual states

• Obs.: EXPECTMINIMAX is used for games, here you 
are playing against one special player chance 
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Summary - 2
• Decision-theoretic agents based on dynamic decision 
networks have a number of advantages compared with 
other, simpler POMDP value iteration agent

• In particular,DDN handle partially observable, 
uncertain environments and can easily revise their 
“plans” to handle unexpected evidence


