CES -161 - Modelos
Probabilisticos em Grafos

Reinforcement Learning based on
Mavrkov Decision Process

Prof. Paulo André Castro

Sala 110, I[EC-ITA

Reinforcement Learning in a nutshell

- Imagine playing a new game whose rules you
don” t know: after a hundred or so moves, your
opponent announces, “You lose.”

- This 1s basically reinforcement learning
But, the rules does not change

and you can see the state that you are in..
(environment is observable!)..

- Reinforcement learning might be considered to
encompass all of Al: an agent is placed in an
environment and must learn to behave (act)
successfully in it

Markov Decision Process and
Reinforcement Learning

® When we talked about MDP, (S, A, p,r), we
assumed that we knew the agent’s reinforcement
function, r. and a model of how the world
works, expressed as the transition probability
function, p.

In Reinforcement Learning (RL), we would
like an agent to learn to behave well in an MDP
world, but without knowing anything about r
or p when it starts out

New example: Armed bandit (Caga-niqueis)

e Every time you pull an arm on a
machine, it either pays off a
dollar or nothing.

Assume that each machine has a
hidden probability of paying
off, and that whenever you pull
an arm, the outcome 1s
independent of previous
outcomes and is determined by
the hidden payoff probability

= What should you do to make as

7 much money as possible during
a given fime?

O caga niquel de n-alavancas

O agente pode, a cada instante de tempo, escolher uma entre n acdes possiveis. Apds a
escolha, uma recompensa obtida a partir de uma dist. de probabilidade estacionaria, que
depende so da acdo escolhida, é produzida. O objetivo do agente é maximizar a recompensa
total obtida sobre um dado periodo de tempo.

Cada acdo tem uma recompensa esperada (média) associada. Esta é a utilidade da agdo.

Se conheco a utilidade de cada acdo, o problema é trivial. Se ndo conheco, posso pelo
menos manter uma estimativa, e escolher a agcdo com o maior utilidade estimada. Esta é a
acdo greedy (ou avara).

(> Explotacao: escolha da acao greedy. Explotar é produzir as acbes que sao julgadas as
melhores com o fim de resolver o problema.

¢y Exploracdo: escolha de acbes ndo-greedy. Explorar € produzir acoes alternativas, com o
intuito de mapear caracteristicas desconhecidas do problema.

Opc¢oes....

- Agir aleatoriamente?

- Mudar de mdquina a cada vez que perder.. ?

Melhor que aleatdério, mas nao é 6timo

- Estimar o retorno de cada mdquina através de
contagem e depois permanece na melhor?

Como estimar??

Estimation: Frequentism

- Average Reward: if I choose an action a, K,
times and receive the rewards r,, 1, ...1, then
I can estimate the reward

- It 1s possible to prove that as k grows it
converges to the expected value of reward.

- How to define the actions?

Example: Revisting the 4x3 World

Let’s think about parameter
estimation in the 4x3 world without
p and r =>

But without rewards...
What is the objective??

To keep things simple, let’ s start
with a fixed policy m. In state s,
it always executes the action = (s)

The goal is simply to learn how
good the policy is— i.e — the
utility function Um (s)

How 2%

Transition model:

Estimating p and v and then solving it

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal r’
persistent: 7, a fixed policy
mdp, an MDP with model P, rewards R, discount ~
U, atable of utilities, initially empty
N,,. a table of frequencies for state—action pairs, initially zero
st|m, a table of outcome frequencies given state—action pairs, initially zero
s, a, the previous state and action, initially null
if s’ is new then U]s'| —r'; B[s'] — 1’
if s is not null then
increment Nyq[s. a] and N/ g.[5", 5, al
for each ¢ such that Ny |4,[?, s, a] is nonzero do
P(t|s,a)« Ny 5alt,s,a] [/ Nsals, al
U +— POLICY-EVALUATION(m, U, mdp)

if s". TERMINAL? then s, a < null else s, a — s', 7[s|
return a

Algorithm for a passive(fixed policy) reinforcement learning agent

The POLICY-EVALUATION function calculates U for a fixed policy
for the estimated MDP using Policy iteration algorithm™*

Policy Iteration Algorithm

As we have seen in chapter 5, policy iteration algorithm has
two steps:

Policy evaluation: given a policy 7 ;, calculate the utility of
each state — U;(s) — if @, were to be executed.

Policy improvement: Calculate a new MEU policy = .,,, using one-
step look—ahead based on U;(s) as in:

w (5] = a,rgma}:Z P(s'|s,a)U(s")
acA(s) o
- In fact, the first step is basically the value iteration
algorithm, but it is possible to simplify it

because , it is not necessary to do exact policy evaluation.

Instead, we can perform some number of simplified value
iteration steps (simplified because the policy is fixed) to
give a reasonably good approximation of the utilities, we
will call this modifief policy iteration

Modlitied policy iteration

- We are going to iterate the utiliy vector in

versions using this simplified version of
Bellman equations:

Uisi(s) < R(s)+7) _ P(s'| s, mi(s)Ui(s")

- The resulting algorithm (modified policy
iteration) is often much more efficient than
standard policy iteration or even value
1teration function

We can also stop early if there are no changes in
the new policy

Modlitied policy iteration algorithm

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states 5, actions A(s), transition model P(s’| s, a)
local variables: U, a vector of utilities for states in .S, initially zero
m, a policy vector indexed by state, initially random

repeat
U — POLICY-EVALUATION(m, U, mdp)
unchanged? — true
for each state 5 in S do
if max P(s'|s,a) U[s] > Z P(s'| s,m[s]) U[s'] then do

a € A(s) —
s

(s8] E:rgg_’:a; g Pls'|a,a) Ulg]
unchanged? — false

until unchanged?

return m

Let's try this algorithm to 4x3 world

- We need a policy...Let s use that one

Results - The passive ADP learning curves for the 4x3 world,
given the optimal policy

= = o .
(] £ Ln (=,

3
(Y

Utility estimates

RMS error in utility

e
e

=

=

20 40 60 80 40 60
Number of trials Number of trials

(a) (b)

(a) The utility estimates for a selected subset of states, as a function of the number
of trials. Notice the large changes occurring around the 78th trial—this is the first

time that the agent falls into the —1 terminal state at (4, 2)

(b) The root—mean—-square error in the estimate for U(l, 1), averaged over 20 runs of
100 trials each

Observe the convergence of the Utility Estimates for all values

4/66

Results - 2

- The system converges and we find the correct
Utiliy values!!

Next step: Find the optimal policy for the
same problem....

Transition model:

Two options: Learn a model (p.r) or
solve directly

« What do you do when you don’ t know how the
world works???

e One Option (A): Learn the world

- Estimate r (reinforceme function) and p
(transition probability function) from observed
data

o Parameter Estimation

e Solve the problems usitng <S, A, p, r> using known

techinques
o Value iteration
e Policy iteration

Estimate value function directly

. Another Option (B):

Estimate a value function directly:

. This approach is sound and a in a lot of cases, it’s
probably the best thing to do

. But it’ s possible to find the optimal value function
without ever estiamting the state transition (function
p) ?29? We will try an algorithm for that later...

. Let’ s check the first approach first: parameter
estimation. ..

Parameter Estimation

|. Parameter estimation: by counting the number
of times various events occur and taking ratios.

¢ You can estimate the next-state distribution p(s’ls,a)
by counting the number of times the agent has taken
action a in state s and looking at the proportion ot
the time that s’ has been the next state.

Similarly, you can estimate r(s) just by averaging
all the reinforcements you’ve received when you
were 1n state .

2. Solve for optimal policy given estimated r and p

Problems in Parameter estimation

One Option: Re-estimate the model on every step

- Each time you have a new piece of evidence, you update
the model and run the policy iteration on the updated
model!!! Problem?

It may be TOO expensive computationally

Another option:Estimate the model after some perceptions
and Run value iteration on the updated model, but at a
pace that you can afford computationally

Yet Another option: Temporal difference (we will talk
about that later)

Problems in Parameter estimation - 2

« Run value iteration on the updated model, but
at a pace that you can afford computationally

We estimate the parameters (or model p and r), we
can use the algorithm passive—ADP for that

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal '
persistent: 7, a fixed policy
mdp, an MDP with model P, rewards R, discount
U, a table of utilities, initially empty
N,,. a table of frequencies for state—action pairs, initially zero
Nyi|sq- a table of outcome frequencies given state-action pairs, initially zero
s, a, the previous state and action, initially null

if s’ is new then U[s'] — r'; R[s"] — 1’
if s is not null then
increment No,[s. a] and Nyjs,1s". 5. al
for each ¢ such that Ny|,,[t, 5, a] is nonzero do
P(t|s,a) — Ny salt, s, a] / Noals, a]
U — PoLICY-EVALUATION(w, U, mdp)
if . TERMINAL? then s, a < null else s, a — s, 7[s']
return a

Execute Value iteration on the learned model

There is another problem, we always need some
specific policy in the learning process. Let’ s talk

about that (passive vs active learning)!
21/66

Passive and active learning

Passive learning agent: it follows a given
policy, while learning

Active agent: it decides what to do during the
learning process

For instance, If we follow the recommendation
of the optimal policy for the learned model
at each step, are we always going to find
the true optimal policy?

Active learning

The figure below shows the results of one sequence of trials for an greedy
active agent that follows the recommendation of the optimal policy for the

learned model at each step.

-

8
. RMS error
1.5 1 Policy loss

1 4

we
W
=
o~
2
=
B
oy
=
=
o
)
=
(a4

0.5 S
i

s S

e ey T T

0

0 50 100 150 200 250 300 350 400 450 500
Number of trials

(a)
(a) Root mean square (RMS) error on the mean utilities of the non—terminal
states

(b) Suboptimal Policy that the agent converges for

The agent does not learn the true utilities or the true optimal
policy!

In fact, repeated experiments show that the greedy agent very
seldom converges to the optimal policy

Problem!!

The agent does not learn the true utilities or the true optimal
policy!

What happens instead is that, in the 39th trial, it finds a policy
that reaches the +1 reward along the lower route via (2,1), (3,1),
(3,2), and (3,3)

(4,3)

[+]
=

— =t]

1 2 3 4

After experimenting with minor variations, from the 276th trial
onward it sticks to that policy, never learning the utilities of the

other states and never finding the optimal route via (1,2), (1,3),
and (2, 3)

How can it be that choosing the optimal action leads to suboptimal

resul ts? 24/66

Problem - 2

How can it be that choosing the optimal action leads to
suboptimal results?

The answer is that the learned model is not the same as the
true environment; what is optimal in the learned model can
therefore be suboptimal in the true environment

Unfortunately, the agent does not know what the true
environment (Reinforcement learning problem!) is , so it
cannot compute the optimal action for the true environment

Problem - 3

How can we solve the problem of learning a wrong
model?%

The point is that actions do more than provide
rewards according to the current learned model;
they also contribute to learning the true model by
affecting the percepts that are received.

By improving the model, the agent will receive
greater rewards in the future.

In other words, it is good a idea to really know the world,
even when we think we know something about it

Exploitation (Explotacdo) vs
Exploration (Exploragdo)

¢ There are two, possibly opposing reasons for
the agent to choose an action:

. because it thinks the action will have a good
result in the world (exploitation), or

. because it thinks the action will give it more
information about how the world works
(exploration).

Exploitation vs Exploration

- An agent therefore must make a tradeoff
between exploitation — maximize 1ts reward,
as reflected in its current utility estimates
— and exploration to know better the world
and maximize 1ts long—term well-being

- Pure exploitation risks getting stuck in a
known path, but with suboptimal utility

- Pure exploration to improve knowledge is of no
use if you never puts that knowledge into
practice

How to pick actions in active learning?

- Always Greedy (Exploitation) = Maximize
expected utility

The problem is that you may despise good actions,
because they seem bad in short term, but that can
be very good in the long run

- Random (exploration): select actions randomly

- Trade—off solution: Greedy policy but with a
probability ¢ of choosing a random action. It
is usually called & —greedy

Strategies

® Ultimately, the best strategies spend
¢ some time exploring: trying all the arms to see
what their probabilities are like, and
¢ some time exploiting: doing the apparently
best action to try to get reward.

In general, the longer you expect to live, the more
time you should devote to exploration.

e: Exploration

> e-greedy strategy 1 {_ .. Exploitation

Alguns Resultados com E-greedy

Average
reward

10074

o

oy, 25
Optimal
action ama-

P

Pa

¢ —greedy

[t is possible to realize (and prove) that a ¢ -
greedy produces convergence to the optimal policy

[t happens because ¢ —greedy avoids to be stuck in a rut
(routine) by picks another action time to time

However, it can also bring other problem..What problem?

If you keep choosing with € —greedy, you will never act
according to the optimal policy

But, if you stop after finding the optimal policy, how can
you be sure that you learned the true model and its optimal
policy and not other model. .

Greedy in the limit of infinite exploration

- A learning policy must try each action in each state an unbounded
number of times to avoid having a probability that an optimal action
is missed because of an unusually bad series of outcomes.

An passive agent using such a policy will eventually learn the true environment
model

In other words, the policy should be greedy in the limit of infinite exploration
(GLIE)

So the agent’ s actions become optimal with respect to the
learned (and hence the true) model.

There are several GLIE schemes:; one of the simplest is to have the
agent choose a random action a fraction 1/t of the time and to
follow the greedy policy otherwise

This does eventually converge to an optimal policy,but it can be
extremely slow. How could we do better??

Trying something better...

A more sensible approach would give some weight to actions that the agent
has not tried very often, while tending to avoid actions that are believed
to be of low utility. We can describe that as a function f to choose between
actions

Let us use U+(s) to denote the optimistic estimate of the utility of the
state s, and let N(s, a) be the number of times action a has been tried in
state s, We may define a new maximization

Ut (s) — R(s) +~ max f (Z P(s"|s,a)UT(s"), N(s, u))

Function f(u,n) determines how greed (preference for high values of u) is
traded off against curiosity (preference for actions that have not been
tried often and have low n. It is called a exploration function

Exploration functions

Function f(u,n) determines how greed (preference for high
values of u) is traded off against curiosity (preference for
actions that have not been tried often and have low n. Many
function could be defined, for instance:

b o
Flu) = { R if n < N

1 otherwise

R+ is a very high value compared to the actual possible
returns and N is a fixed number.

This will have the effect of making the agent try each
action - state pair at least N times

Learn the world

- Using that we have a implementable g-greedy
that we can use with the algorithms that we

have seen before(option A: Learn the world (p
and r) and solve it!

- The problem is that it can be extremely
slow!!!!
We are going to learn world (slow!!)

Learn the optimal policy (slow for high number of
states)

Other option (B): Estimate value
function directly

- Let’ s try the alternative of estimating a value
function directly without expliciting estimating p
and r

This approach is sound, and in a lot of cases, it’s
probably the right thing to do

- But it’s possible to find the optimal value function
without ever estimating the state transition probabilities

directly ?

Temporal difference

Solving the underlying MDP as seen before is not the only way to use
the Bellman equations to bear on the learning problem.

Another way is to use the observed transitions to adjust the
utilities of the observed states so that they agree with the
constraint equations.

Suppose that, as a result of the first trial, the utility estimates
are Um (1, 3)=0.84 and Um (2, 3)=0.92. Now, if this transition
occurred all the time, we would expect the utilities to obey the
equation:

UT(1.3) =-0.04+ U7(2,3)

More generally, when a transition occurs from

state s to state s, we may apply the
following update to Um (s):

U™ (s) = U™(s) + a(R(s) + Y U™(s') = U™ (s)) Sl et

where, a is a learning rate parameter

Temporal difference - 2

Because this update rule uses the difference in utilities between
successive states (s and s’) , it is often called the temporal-
difference (TD) equation.

This update equation causes the agent to reach the same equilibrium
given by :

UT(s) = R(s) +7) _ P(s'| s,7(s)U™(s')
,;::ll

But...notice that the TD update involves only the observed successor
s while the actual equilibrium conditions involve all possible next
states.

UT(s) «— U™ (s) + a(R(s) +yU™(s") — U™ (s))

Could it cause an improperly large change in Ux (s) when a very rare
transition occurs??

Temporal difference - 3

You might think that: Yes! this causes an improperly large change
in Un (s) when a very rare transition occurs;:

but, in fact, because rare transitions occur only rarely, the average
value of Um (s) will converge to the correct value.

Furthermore, if we change a from a fixed parameter to a
function that decreases as the number of times a state has
been visited increases, then Um (s) itself will converge to
the correct value, given certain conditions:

If a decays as 0(1/t) where t is the iteration number, then the

rule can be shown to converge to the correct value. In fact, it is
required that: 0(1/t) satisfies these conditions.

N Jel = el e 2

TD agent appllied to the 4x3 world

=
=8

=
n

=
L

7
]
=
=
g
oo
L]
=
o
=
=
.
e

=
B

RMS error in utility

—
e
—

—
o

100 200 300 400 500 &6l
Number of trials Number of tnals

(a) (b)

- (a) The utility estimates for a selected subset of states, as a
function of the number of trials

- b) The root—mean—square error in the estimate for U(l, 1), averaged
over 20 runs of 500 trials each. Only the first 100 trials are shown

to be comparable to ADP agent
41/66

Results - The passive ADP learning curves for the 4x3 world,
given the optimal policy

= = o .
(] £ Ln (=,

3
(Y

RMS error in utility

Utility estimates

&
2
=
=

o
=

=

20 40 60 80 40 60
Number of trials Number of trials

(a) (b)

o

(a) The utility estimates for a selected subset of states, as a function of the number
of trials. Notice the large changes occurring around the 78th trial—this is the first
time that the agent falls into the —1 terminal state at (4, 2)

(b) The root—mean—-square error in the estimate for U(l, 1), averaged over 20 runs of
100 trials each

TD vs passive ADP

- Notice that TD does not need a transition model
to perform its updates

- The resulting utility estimates will
approximate more and more closely those of ADP,

but at the expense of increased computation
time

TD agents and Q-learning

Time difference agents may have a optimized way to solve the
underlying MDP and find U without p , but they still need the
transition function p, in order to decide how to act, because:

?r*(s}—arﬂmdxzp |s,a)U(s")

ac Als)

There is an alternative TD method, called Q-learning, which learns
an action—utility representation instead of learning utilities.

We will use the notation Q(s, a) to denote the value of doing action
a 1n state s.

Q-values are directly related to utility values as follows

U(s) = m&axQ{sz a)

Q -function

As with utilities, we can write a constraint equation that
must at equilibrium when the Q-values are correct

Q(s,a) = R(s) +7 > P(s' | 5,0) maxQ(s',)

Q—functions may seem like just another way of storing utility
information, but they have a very important property:

a TD agent that learns a Q—function does not need a model
of the form P(s | s, a), either for learning or for action
selection.

Q(s;a) — Q(s,a) + a(R(s) + 7 maxQ(s', a') — Q(s,a))

T (§) = argmax Z Q(s,a)
acA(s) <!

o

For this reason, Q-learning is called a model-free method

45/66

Defining the Q Function: value of the pair state-
action

e Cumulative value V#(s,) achieved by following an
arbitrary policy 7 from an arbitrary initial state s,
V'T(St) 5 1'(51) £ yr(SHI) T }’21‘(5‘”2) L yjr(SHS) ...

_5 iy
= 250 .0 ¥ T(Spyi)

e Optimal policy: Notation: V¥(s) = V(s)

T* =arg max, V¥s),Vse S

Let’s take an action a and then continue optimally

¥ =arg max, [r(s,a)+yYV*()],Vs,s7€ S

\ v)
Q%*(s,a)

Q Function: value of the pair state-action

® Q*(s,a) 1s the expected discounted future reward
tor starting in state s, taking a as our first action,
and then continuing optimally.

Q*(s,a)=r(s,a)+y> p(s'ls,a)ymaxQ*(s',a")

7" = arg max, Q*(s,a)

- We will see an algorithm to estimate Q%

Um algoritmo para o aprendizado da
Fungcdo Q (Q-Learning)

- 0 algoritmo Q-Learning (Watkins, 1989) baseia—se em
simula¢oes de Monte Carlo e no algoritmo Robbins—Monro

Métodos Monte Carlo sao um amplo grupo de algoritmos que baseiam—
se na amostragem de distribui¢oes aleatdrias para obter
resultados numéricos

Simula¢oes Monte—Carlo em RL baseiam—se na amostragem de estados
para estimar seus valores (abordagem for¢a bruta)

Algoritmo Robbins—Monro permite aprender uma fun¢ao onde um de
seus parametros é uma varidvel aleatdoria com distribui¢ao de
probabilidade conhecida, utilizando uma taxa de aprendizagem a
que se altera ao longo do tempo segundo certas condi¢oes.

- Maiores informa¢oes sobre a dedu¢ao do Q-Learning, Monte Carlo e
Robbins—Monro podem ser obtidas em:

Reinforcement Learning: An Introduction, Sutton, R. and Barko, A. MIT
Press. 1998

Learning rate and convergence

e The basic form of the update looks like this:
X, ¢ (1-o) X, + o New,
o 18 a learning rate: usually 1t’s something like 0.1.

¢ So, we're updating our estimate of X to be mostly like our old
value of X, but adding in a new term New

» This kind of update is essentially a running average of the
new terms received on each step.
¢ The smaller alpha 1s. the longer term the average 1s. With a

small alpha, the system will be slow (o converge, but the
estimates will not fluctuate very much.

¢ It is quite typical (and, in fact, required for convergence), to
start with a large alpha, and then decrease it over time.

Guaranteed to converge to Q* if...

¢ The optimal Q function is achieved if the world is
really an MDP, if we manage the learning rate
correctly, and if we explore the world in such a way
that we never completely ignore some actions.

Algorithm for Q-learning

- Q—learning can be seeing as a Time difference
method, as mentioned before. We can iterate Q
values using an adapted version of time
difference update equation

Q(s,a) «— Qs,a) + a(l(s) +v max Qs a") —0Q(s.a))

Q(s.a) « (1—a) Q(s,a) + o [r(s,a) + Y max . Q(s".a")]

Q-Learning basic idea

e Estimates the Q* function directly, without estimating
the transition probabilities

[nitialize Q(s.a) arbitrarily
Observe the current state s
do forever
select an action @ and execute it
receive immediate reward r(s,a)
observe the new state s’
update Q(s,a) as follows:
Q(s.a) « (1-a) Q(s.a) + o [r(s.a) + Yy max . Q(s’.a’)]

o.: learning rate

We need to manipulate the learning rate as
shown in TD discussion

Q-Learning

® There are two iterative processes going on:

I. One is the usual kind of averaging we do,
when we collect a lot of samples and try to
estimate their mean (using the learning rate)

. The other 1s the dynamic programming
iteration done by value iteration, updating

the value of a state based on the estimated
values of 1ts successors.

Q-learning Algorithm

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal 7’
persistent: (), a table of action values indexed by state and action, initially zero
N, atable of frequencies for state—action pairs, initially zero
s, a, T, the previous state, action, and reward, initially null

if TERMINAL?(s) then ()[s, None] — 1’
if s 1s not null then
increment N,,[s. a]
Q[s,a] — Q[s,a] + a(Nsals,a])(r + v maxa Q[s',d] — Qs,a])
s,a, T s’ argmax,, f(Qls’, a'], N[’ a']),r’
return a

It is an active learner that learns the value Q(s, a) of each action in
each situation. It uses the same exploration function f as the
exploratory ADP agent, but avoids having to learn the transition
model because the Q-value of a state can be related directly to

those of its neighbors.

Consider the current Q values given in
arrows and robot in

Y= 0.9
Q(s4.,a) values
73, 149

&= a1
Calcular atualizacao de Q \

(o=1 e MDP deterministico)

® Consider a single action (right)
taken by the robot R in s;:

—

T %\ State S
/ 1Action: right

Q(S1, Aright) < I + Y Maxy Q(s,, a’) t(sy,right)=0

— 0 + 0.9 max {66: 81: 100} 90 1¢
« 90 " 6§ i

\Ehv/ P

State s,

3

Complete Example (deterministic
transitions)

rewards

actions j
G: absorbing state

_T 1 D = 1(s,a)

ris,a)=0 otherwise

-+

Q(s,a) « (1-o) Q(s,a) + o [r(s,a) +y max,. Q(s’.a’)]

Let's start with zero Q values and use the update equation
Remember also the Value iteration for estimating V*(s)

V..(s) < max r(s,a) + Z Y p(s'ls,a)V,(s')

Example (deterministic transitions)

rewards

actions —w ‘\\
i _r_cL
L ()i G: absorbing state

o
4 -
[100 = r(s,a) =89

> ri(s.a)=(0 otherwise

> max(72,90)~ » actions | and —, choose —
]
|

g
90 0 » G
| T

—_—l

81 |90 |100 g

V*(s) values One optimal policy

Q(s,a) values

Exemplos de aplicagbes

¢ TD Gammon: starts out not knowing anything about
backgammon. It plays more than 2 million ¢ames of
backgammon against itself. It can now draw the human world-
champion backgammon player.

¢ Elevator scheduling: in a building with many floors and
many elevators, there is a serious control problem in deciding
which elevators to send to which floors next. The input to the
system is the locations of the elevators and the set of all buttons
that have been pressed. The output is a direction for each
elevator so that the throughput of people could be maximized.
The learned policies are considerably more effective that the
ones that are standardly built in by the elevator companies.

Problemas com Q-Learning

® Large or continuous state spaces

¢ Just like value iteration, it requires that S and A be
drawn from a small enough set that we can store
the Q function 1n a table.

Possible solutions: use of function approximators
(e.g. neural network) to store the Q function. Such
approaches are no longer theoretically guaranteed
to work, and they can be a bit tricky, but
sometimes they work very well.

Problemas com Q-Learning - 2

® Slow convergence

¢ Because of this, most of the applications of Q
learning have been in very large domains for

which we actually know a model:
we use the known model to build a simulation.

then, using Q learning plus a function
approximator, we learn to behave in the
simulated environment, which yields a good
control policy for the original problem.

Outro algoritmo para RL: SARSA

Q-learning has SARSA a close relative called SARSA (for
State—Action—Reward-State—Action).

The update rule for SARSA is very similar to Q-Learning
Q(s.a) — Q(s,a) + a(R(s) +v Q(s'.a") — Q(s.a))

The difference is that there is a policy for SARSA and it
waits to define the next action to do the update.

Q—-learning uses the best Q-value, it pays no attention to the
actual policy being followed—it is an off—-policy learning
algorithm

Q(s,a) — Q(s,a)+ a(R(s) + v max Q(s'.a") — Q(s,a))

In fact, if SARSA uses a greedy policy that always takes the
action with best Q-value, the two algorithms are identical

61/66

SARSA: State action Reward State action

- Despite the fact, that sarsa uses a policy the
values Q(s,a) converge for that optimal values,
given that a decreases slowly as discussed
before

- The algorithm for SARSA is basically the same
algoritm for Q-learning seen before by using
some arbitrary initial policy m and changing
the update function to

Q(s,a) — Q(s,a) + a(R(s) +~v Q(s'.a") — Q(s.a))

Q-Learning x SARSA (Outro
algoritmo)

- Q-Learning
é o0 método mais usado

E do tipo off-policy (ndo é necessdrio seguir uma
politica)

- Sarsa

Por eliminar o uso de uma fun¢ao de maximizacao,
tende a ser mais rdpido que Q-Learning, quando ha
grande numero de ag¢oes possiveis

Tem basicamente as mesmas condi¢oes de convergéncia

Permite descontar diferen¢as temporais gerando um
Sarsa(A) similar a algoritmos TD(\)

Q-learning, SARSA and ADP agent

- Both Q-learning and SARSA learn the optimal
policy for the 4X3 world, but do so at a much
slower rate than the ADP agent.

- This is because the local updates do not

enforce consistency among all the Q-values via
the model.

- The comparison raises a general question:

is 1t better to learn a model and a utility
function or...

to learn an action—utility function withno model?

64/66

Model the world or Not??

- Some researchers, both inside and outside Al
fields, argue model—-free methods such as Q-
learning means that the knowledge—based

approach is unnecessary.

“There is, however, little to go on but
Intuition. Our intuition, for what it’ s
worth, 1s that as the environment becomes more
complex, the advantages of a knowledge—based

approach become more apparent..”
Russel. S. and Norvig. P. 3th ed. AIl: A modern approach

- What do you think about it?

Conclusdes sobre Aprendizado por
Reforgo

- Aprendizado por refor¢o permite que se aprenda a politica
Otima, mesmo sem saber previamente a fun¢ao de probabilidade
de transicao (p) ou a fun¢ao de recompensa imediata (r)

- Aprendizado por refor¢o tem dificuldades em lidar com grande
nuimero de estados ou grandezas continuas, varios algoritmos
alternativos (sarsa, por exemplo) tentam obter treinamento
mais rdpido

Aproxima¢oes da funcao Q (redes neurais) ou mais recentemente
deep neural networks (Deep Reinforcement Learning — DQN) tem
sido pesquisados com resultados promissores...

Mais referéncias:

Rorcementeinf Learning: An Introduction, Sutton,R. and Barko, A. MIT Press. 1998

Bertsekas,D. and Tsitsiklis, J.N. Neurodynamic programming. Athena Scientifc. Belmont.
Massachusetts. 1996

Partially observed Markov
Decision Process

PARTIALLY OBSERVABLE MDP (POMDP)

So far, we have assumed that the environment was fully observable,
i.e, the agent always knows which state it is in.

When the environment is only partially observable, the situation is
much less clear

The agent does not necessarily know which state it is in, so it
cannot execute the action = (s) recommended for that state.

Furthermore, the utility of a state s and the optimal action in s
depend not just on s, but also on how much the agent knows when it
1s 1n s

For these reasons, partially observable MDPs are usually viewed as
much more difficult than ordinary MDPs

However, we cannot avoid POMDPs because the real world is one

POMDP - 4x3 world (but the agent
does perceives its current state)

e Ultility function for the agent depends
on a sequence of states (environment
history)

In each state s, the agent receives a
reinforcement r(s), which may be 0,04 |-0,04
positive or negative, but must be start
bounded.

Utility = sum of the rewards received Transition model:

Here: 1(s) = —=0.04 Vs except 0,8
r(43)=+1 and r(4.,2)=-1

POMDP -2

A POMDP has the same elements as an MDP—the transition model P(s|
s, a), actions A(s), and reward function R(s)—but, it also has a
sensor model P(els)

The sensor model specifies the probability of perceiving evidence e
in state s P(els)

In POMDPs, the belief state b becomes a probability distribution
over all possible states

For the 4x3 world (version POMDP), the initial belief state could be
the uniform distribution over the nine nonterminal states, i.e., <

1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,0,0>, b(s) is the probability of
being in state s given by the belief state b

POMDP - 3

The agent can calculate its current belief state as the
conditional probability distribution over the actual states
given the sequence of percepts and actions so far

If b was the previous belief state, and the agent does action
a and then perceives evidence e, then the new belief state is
given by (ais the normalization factor)

b'(s') = aPle|s) Z P(s' | s,a)b(s)

We can define a b’ equation like that for each possible state
s. Note that we don’ t need to know the current state, the
next belief state b’ can defined as:

b’ = Forward (b, a, e)

POMDP - 4

- How can one find the optimal policy in POMDP?

- The fundamental insight required to understand
POMDPs is this: the optimal action depends only

on the agent’ s current belief state

- That is, the optimal policy can be described by
a mapping m*(b) from belief states to actions.

- The decision cycle of a POMDP agent can be
broken down into the following three steps:

Given the current belief state b, execute the
action a=m*(b).

Receive percept e.

Set the current belief state to

b'(s') = a Ple EP ' | 5, a)b(

go back to step 1

