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Reinforcement Learning in a nutshell
• Imagine playing a new game whose rules you 
don’t know; after a hundred or so moves, your 
opponent announces, “You lose.”

• This is basically reinforcement learning

• But, the rules does not change

• and you can see the state that you are in.. 
(environment is observable!)..

• Reinforcement learning might be considered to 
encompass all of AI: an agent is placed in an 
environment and must learn to behave (act) 
successfully in it 
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Markov Decision Process and 
Reinforcement Learning
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New example: Armed bandit (Caça-níqueis)
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O caça níquel de n-alavancas
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Opções….
• Agir aleatoriamente?

• Mudar de máquina a cada vez que perder.. ?

• Melhor que aleatório, mas não é ótimo

• Estimar o retorno de cada máquina através de 
contagem e depois permanece na melhor?

• Como estimar?
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Estimation: Frequentism
• Average Reward: if I choose an action a,  Ka  
times and receive the rewards r1, r2,...rk then 
I can estimate the reward

• It is possible to prove that as k grows it 
converges to the expected value of reward.

• How to define the actions?
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Example: Revisting the 4x3 World
• Let's think about parameter 

estimation in the 4x3 world without 
p and r =>

• But without rewards...

• What is the objective??

• To keep things simple, let's start 
with a fixed policy π. In state s, 
it always executes the action π(s)

• The goal is simply to learn how 
good the policy is— i.e -  the 
utility function Uπ(s)

• How ???
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Estimating p and r and then solving it

Algorithm for a passive(fixed policy) reinforcement learning agent 

The POLICY-EVALUATION function calculates U for a fixed policy 
for the estimated MDP using Policy iteration algorithm**
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Policy Iteration Algorithm
• As we have seen in chapter 5, policy iteration algorithm has 

two steps:

• Policy evaluation: given a policy πi , calculate the utility of 
each state - Ui(s) - if πi  were to be executed.

• Policy improvement: Calculate a new MEU policy πi+1, using one-
step look-ahead based on Ui(s) as in:

• In fact, the first step is basically the value iteration 
algorithm, but it is possible to simplify it

• because ,it is not necessary to do exact policy evaluation. 

• Instead, we can perform some number of simplified value 
iteration steps (simplified because the policy is fixed) to 
give a reasonably good approximation of the utilities, we 
will call this modifief policy iteration
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Modified policy iteration
• We are going to iterate the utiliy vector in 
versions using this simplified version of 
Bellman equations:

• The resulting algorithm (modified policy 
iteration) is often much more efficient than 
standard policy iteration or even value 
iteration function

• We can also stop early if there are no changes in 
the new policy
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Modified policy iteration algorithm



13/66

Let's try this algorithm to 4x3 world
• We need a policy...Let's use that one



14/66

Results - The passive ADP learning curves for the 4×3 world, 
given the optimal policy

• (a) The utility estimates for a selected subset of states, as a function of the number 
of trials. Notice the large changes occurring around the 78th trial—this is the first 
time that the agent falls into the −1 terminal state at (4,2)

• (b) The root-mean-square error in the estimate for U(1, 1), averaged over 20 runs of 
100 trials each

• Observe the convergence of the Utility Estimates for all values
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Results - 2
• The system converges and we find the correct 
Utiliy values!!
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Next step: Find the optimal policy for the 
same problem....
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Two options: Learn a model (p,r) or 
solve directly
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Estimate value function  directly
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Parameter Estimation
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Problems in Parameter estimation
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Problems in Parameter estimation - 2
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Passive and active learning
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Active learning
• The figure below shows the results of one sequence of trials for an greedy 

active agent that follows the recommendation of the optimal policy for the 
learned model at each step. 

• (a) Root mean square (RMS) error on the mean utilities of the non-terminal 
states

• (b) Suboptimal Policy that the agent converges for 

• The agent does not learn the true utilities or the true optimal 
policy! 

• In fact, repeated experiments show that the greedy agent very 
seldom converges to the optimal policy 
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Problem!!
• The agent does not learn the true utilities or the true optimal 

policy! 

• What happens instead is that, in the 39th trial, it finds a policy 
that reaches the +1 reward along the lower route via (2,1), (3,1), 
(3,2), and (3,3)

• After experimenting with minor variations, from the 276th trial 
onward it sticks to that policy, never learning the utilities of the 
other states and never finding the optimal route via (1,2), (1,3), 
and (2,3)

• How can it be that choosing the optimal action leads to suboptimal 
results?
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Problem - 2
• How can it be that choosing the optimal action leads to 

suboptimal results? 

• The answer is that the learned model is not the same as the 
true environment; what is optimal in the learned model can 
therefore be suboptimal in the true environment

• Unfortunately, the agent does not know what the true 
environment (Reinforcement learning problem!) is , so it 
cannot compute the optimal action for the true environment
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Problem - 3
• How can we solve the problem of learning a wrong 
model??

• The point is that actions do more than provide 
rewards according to the current learned model; 
they also contribute to learning the true model by 
affecting the percepts that are received.

• By improving the model, the agent will receive 
greater rewards in the future.

• In other words, it is good a idea to really know the world, 
even when we think we know something about it 
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Exploitation (Explotação) vs 
Exploration (Exploração)
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Exploitation  vs Exploration

• An agent therefore must make a tradeoff 
between exploitation -   maximize its reward, 
as reflected in its current utility estimates 
—  and exploration to know better the world 
and maximize its long-term well-being

• Pure exploitation risks getting stuck in a 
known path, but with suboptimal utility

• Pure exploration to improve knowledge is of no 
use if you never puts that knowledge into 
practice
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How to pick actions in active learning?
• Always Greedy (Exploitation) = Maximize 
expected utility

• The problem is that you may despise good actions, 
because they seem bad in short term, but that can 
be very good in the long run

• Random (exploration): select actions randomly

• Trade-off solution:  Greedy policy but with a 
probability ε of choosing a random action. It 
is usually called ε-greedy
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Strategies
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Alguns Resultados com E-greedy
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ε-greedy
• It is possible to realize (and prove) that a  ε-
greedy produces convergence to the optimal policy

• It happens because ε-greedy avoids to be stuck in a rut 
(routine) by picks another action time to time

• However, it can also bring other problem..What problem?

• If you keep choosing with ε-greedy, you will never act 
according to the optimal policy

• But, if you stop after finding the optimal policy, how can 
you be sure that you learned the true model and its optimal 
policy and not other model..
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Greedy in the limit of infinite exploration
• A learning policy must try each action in each state an unbounded 

number of times to avoid having a probability that an optimal action 
is missed because of an unusually bad series of outcomes.

• An passive agent using such a policy will eventually learn the true environment 
model 

• In other words, the policy should be greedy in the limit of infinite exploration 
(GLIE)

• So the agent’s actions become optimal with respect to the 
learned (and hence the true) model. 

• There are several GLIE schemes; one of the simplest is to have the 
agent choose a random action a fraction 1/t of the time and to 
follow the greedy policy otherwise

• This does eventually converge to an optimal policy,but  it can be 
extremely slow. How could we do better??
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Trying something better...
• A more sensible approach would give some weight to actions that the agent 

has not tried very often, while tending to avoid actions that are believed 
to be of low utility. We can describe that as a function f to choose between 
actions

• Let us use U+(s) to denote the optimistic estimate of the utility of the 
state s, and let N(s, a) be the number of times action a has been tried in 
state s, We may define a new maximization

• Function f(u,n) determines how greed (preference for high values of u) is 
traded off against curiosity (preference for actions that have not been 
tried often and have low n. It is called a exploration function
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Exploration functions
• Function f(u,n) determines how greed (preference for high 

values of u) is traded off against curiosity (preference for 
actions that have not been tried often and have low n. Many 
function could be defined, for instance:

• R+ is a very high value compared to the  actual possible 
returns and N is a fixed number. 

• This will have the effect of making the agent try each 
action–state pair at least N times 



36/66

Learn the world

• Using that we have a implementable ε-greedy 
that we can use with the algorithms that we 
have seen before(option A: Learn the world (p 
and r) and solve it!

• The problem is that it can be extremely 
slow!!!!

• We are going to learn world (slow!!)

• Learn the optimal policy (slow for high number of 
states)



37/66

Other option (B): Estimate value 
function  directly
• Let's try the alternative of estimating a value 
function directly without expliciting estimating p 
and r

• This approach is sound, and in a lot of cases, it's 
probably the right thing to do

• But it's possible to find the optimal value function 
without ever estimating the state transition probabilities 
directly ? 



38/66

Temporal difference
• Solving the underlying MDP as seen before is not the only way to use 

the Bellman equations to bear on the learning problem.

• Another way is to use the observed transitions to adjust the 
utilities of the observed states so that they agree with the 
constraint equations. 

• Suppose that, as a result of the first trial, the utility estimates 
are Uπ(1, 3)=0.84 and Uπ(2, 3)=0.92. Now, if this transition 
occurred all the time, we would expect the utilities to obey the 
equation:

• More generally, when a transition occurs from

• state s to state s', we may apply the

• following update to Uπ(s):

• where, α is a learning rate parameter
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Temporal difference - 2
• Because this update rule uses the difference in utilities between 

successive states (s and s') , it is often called the temporal-
difference (TD) equation.

• This update equation causes the agent to reach the same equilibrium 
given by :

• But...notice that the TD update involves only the observed successor 
s' while the actual equilibrium conditions involve all possible next 
states. 

• Could it cause an improperly large change in Uπ(s) when a very rare 
transition occurs??
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Temporal difference - 3

• You might think that:  Yes! this causes an improperly large change 
in Uπ(s) when a very rare transition occurs; 

• but, in fact, because rare transitions occur only rarely, the average 

value of Uπ(s) will converge to the correct value.

• Furthermore, if we change α from a fixed parameter to a 
function that decreases as the number of times a state has 
been visited increases, then Uπ(s) itself will converge to 
the correct value, given certain conditions:

• If α decays as O(1/t) where t is the iteration number, then the 
rule can be shown to converge to the correct value. In fact, it is 
required that:  O(1/t) satisfies these conditions.
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TD agent appllied to the 4x3 world

• (a) The utility estimates for a selected subset of states, as a 
function of the number of trials

• b) The root-mean-square error in the estimate for U(1, 1), averaged 
over 20 runs of 500 trials each. Only the first 100 trials are shown 
to be comparable to ADP agent
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Results - The passive ADP learning curves for the 4×3 world, 
given the optimal policy

• (a) The utility estimates for a selected subset of states, as a function of the number 
of trials. Notice the large changes occurring around the 78th trial—this is the first 
time that the agent falls into the −1 terminal state at (4,2)

• (b) The root-mean-square error in the estimate for U(1, 1), averaged over 20 runs of 
100 trials each
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TD vs passive ADP
• Notice that TD does not need a transition model  
to perform its updates

• The resulting utility estimates will 
approximate more and more closely those of ADP, 
but at the expense of increased computation 
time
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TD agents and Q-learning
• Time difference agents may have a optimized way to solve the 

underlying MDP and find U without p , but they still need the 
transition function p, in order to decide how to act, because:

• There is an alternative TD method, called Q-learning, which learns 
an action-utility representation instead of learning utilities. 

• We will use the notation Q(s, a) to denote the value of doing action 
a in state s. 

• Q-values are directly related to utility values as follows
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Q-function
• As with utilities, we can write a constraint equation that 

must at equilibrium when the Q-values are correct

• Q-functions may seem like just another way of storing utility 
information, but they have a very important property:

•  a TD agent that learns a Q-function does not need a model 
of the form P(s | s, a), either for learning or for action 
selection.

• For this reason, Q-learning is called a model-free method
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Defining the Q Function: value of the pair state-
action

Let’s take an action a and then continue optimally
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Q Function: value of the pair state-action

• We will see an algorithm to estimate Q*
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Um algoritmo para o aprendizado da 
Função Q (Q-Learning)
• O algoritmo Q-Learning (Watkins, 1989) baseia-se em 

simulações de Monte Carlo e no algoritmo Robbins-Monro

• Métodos Monte Carlo são um amplo grupo de algoritmos que baseiam-
se na amostragem de distribuições aleatórias para obter 
resultados numéricos

• Simulações Monte-Carlo em RL baseiam-se na amostragem de estados 
para estimar seus valores (abordagem força bruta)

• Algoritmo Robbins-Monro permite aprender uma função onde um de 
seus parâmetros é uma variável aleatória com distribuição de 
probabilidade conhecida, utilizando uma taxa de aprendizagem α  
que se altera ao longo do tempo segundo certas condições. 

• Maiores informações sobre a dedução do Q-Learning, Monte Carlo e 
Robbins-Monro podem ser obtidas em:

• Reinforcement Learning:  An Introduction, Sutton,R. and Barko,A. MIT 
Press. 1998
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Learning rate and convergence
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Guaranteed to converge to Q* if…
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Algorithm for Q-learning
• Q-learning can be seeing as a Time difference 
method, as mentioned before. We can iterate Q 
values using an adapted version of time 
difference update equation

• or
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Q-Learning basic idea

• We need to manipulate the learning rate as 
shown in TD discussion
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Q-Learning 
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Q-learning Algorithm

It is an active learner that learns the value Q(s, a) of each action in 
each situation. It uses the same exploration function f as the 
exploratory ADP agent, but avoids having to learn the transition 
model because the Q-value of a state can be related directly to 
those of its neighbors.
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Consider the current Q values given in 
arrows and robot in 
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Complete Example (deterministic 
transitions)

• Let's start with zero Q values and use the update equation
• Remember also the Value iteration for estimating V*(s)
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Example (deterministic transitions)
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Exemplos de aplicações
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Problemas com Q-Learning
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Problemas com Q-Learning - 2
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Outro algoritmo para RL: SARSA
• Q-learning has SARSA a close relative called SARSA (for 

State-Action-Reward-State-Action).

• The update rule for SARSA is very similar to Q-Learning 

• The difference is that there is a policy for SARSA and it 
waits to define the next action to do the update.

• Q-learning uses the best Q-value, it pays no attention to the 
actual policy being followed—it is an off-policy learning 
algorithm 

• In fact, if SARSA uses a greedy policy that always takes the 
action with best Q-value, the two algorithms are identical
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SARSA: State action Reward State action

• Despite the fact, that sarsa uses a policy the 
values Q(s,a) converge for that optimal values, 
given that α decreases slowly as discussed 
before

• The algorithm for SARSA is basically the same 
algoritm for Q-learning seen before by using 
some arbitrary initial policy π  and  changing 
the update function to 
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Q-Learning x SARSA (Outro 
algoritmo)
• Q-Learning 

• é o método mais usado

• É do tipo off-policy (não é necessário seguir uma 
política)

• Sarsa

• Por eliminar o uso de uma função de maximização, 
tende a ser mais rápido que Q-Learning, quando há 
grande número de ações possíveis

• Tem basicamente as mesmas condições de convergência

• Permite descontar diferenças temporais gerando um 
Sarsa(λ) similar a algoritmos TD(λ)
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Q-learning, SARSA and ADP agent
• Both Q-learning and SARSA learn the optimal 
policy for the 4×3 world, but do so at a much 
slower rate than the ADP agent. 

• This is because the local updates do not 
enforce consistency among all the Q-values via 
the model. 

• The comparison raises a general question:

• is it better to learn a model and a utility 
function or...

• to learn an action-utility function withno model?
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Model the world or Not?? 
• Some researchers, both inside and outside AI 
fields, argue model-free methods such as Q-
learning means that the knowledge-based 
approach is unnecessary.

• “There is, however, little to go on but 
intuition. Our intuition, for what it’s 
worth, is that as the environment becomes more 
complex, the advantages of a knowledge-based 
approach become more apparent..”

• Russel. S. and Norvig. P. 3th ed. AI: A modern approach

• What do you think about it?
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Conclusões sobre Aprendizado por 
Reforço
• Aprendizado por reforço permite que se aprenda a política 

ótima, mesmo sem saber previamente a função de probabilidade 
de transição (p) ou a função de recompensa imediata (r)

• Aprendizado por reforço tem dificuldades em lidar com grande 
número de estados ou grandezas contínuas, vários algoritmos 
alternativos (sarsa, por exemplo) tentam obter treinamento 
mais rápido

• Aproximações da função Q (redes neurais) ou mais recentemente 
deep neural networks (Deep Reinforcement Learning - DQN) tem 
sido pesquisados com resultados promissores...

• Mais referências:
• Rorcementeinf Learning:  An Introduction, Sutton,R. and Barko,A. MIT Press. 1998

• Bertsekas,D. and Tsitsiklis, J.N. Neurodynamic programming. Athena Scientifc. Belmont. 
Massachusetts. 1996



Partially observed Markov 
Decision Process
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PARTIALLY OBSERVABLE MDP (POMDP)
• So far, we have assumed that the environment was fully observable, 

i.e, the agent always knows which state it is in.

• When the environment is only partially observable, the situation is 
much less clear

• The agent does not necessarily know which state it is in, so it 
cannot execute the action π(s) recommended for that state. 

• Furthermore, the utility of a state s and the optimal action in s 
depend not just on s, but also on how much the agent knows when it 
is in s

• For these reasons, partially observable MDPs are usually viewed as 
much more difficult than ordinary MDPs

• However, we cannot avoid POMDPs because the real world is one
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POMDP - 4x3 world (but the agent 
does perceives its current state)
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POMDP  - 2
• A POMDP has the same elements as an MDP—the transition model P(s| 

s, a), actions A(s), and reward function R(s)—but, it also has a 
sensor model P(e|s)

• The sensor model specifies the probability of perceiving evidence e 
in state s  P(e|s)

• In POMDPs, the belief state b becomes a probability distribution 
over all possible states

• For the 4x3 world (version POMDP), the initial belief state could be 
the uniform distribution over the nine nonterminal states, i.e., < 
1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,0,0>, b(s) is the probability of 
being in state s given by the belief state b
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POMDP - 3
• The agent can calculate its current belief state as the 

conditional probability distribution over the actual states 
given the sequence of percepts and actions so far

• If b was the previous belief state, and the agent does action 
a and then perceives evidence e, then the new belief state is 
given by  ( α is the normalization factor)

• We can define a b' equation like that for each possible state 
s. Note that we don't need to know the current state, the 
next belief state b' can defined as:

• b'= Forward(b,a,e)
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POMDP - 4
• How can one find the optimal policy in POMDP?

• The fundamental insight required to understand 
POMDPs is this: the optimal action depends only 
on the agent’s current belief state

• That is, the optimal policy can be described by 
a mapping π*(b) from belief states to actions.
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• The decision cycle of a POMDP agent can be 
broken down into the following three steps:

1. Given the current belief state b, execute the 
action a=π*(b).

2. Receive percept e.

3. Set the current belief state to 

4. go back to step 1


