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Learning Probabilistic Models
• Bayesian network structure may be constructed 
by:

• hand, presumably during a process of eliciting 
causal and probabilistic dependencies from an 
expert or 

• learning via causal discovery or

• a combination of both approaches 

• However the structures are arrived at, they 
will be useless until parameterized, i.e., the 
conditional probability tables are specified, 
characterizing the direct dependency between a 
child and its parents.
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Learning Probabilistic Models
• Learning probabilities

• Learning Models

• Bayesian Classifiers

• Evaluating Classifiers
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Learning probabilities
• Parameterizing a categorial (or multinomial) model 
(variables with two or more possible values) can be 
done using a conjugate family of distributions, 
namely the Dirichlet family of distributions

• The Dirichlet distribution with τ possible values 
is written D[α1 ,.., αi,.., ατ  ] with αi being the 
hyperparameter for value i and the probabilities of 
each value are given by:
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Learning probabilities
• When we observe a data instance (or data point) 
where x=i then we can update the distribution 
from D[α1 ,.., αi,.., ατ  ]   to D[α1 ,.., αi+1,.., ατ  ] and  
the probabilities can still calculated in the 
same way, but now it reflects the observed 
instances

• In fact  when αi = 1 for all i,  it is 
equivalent to the Laplace estimator (or 
smoothing). 

• Note that small values  of αi  make the data points more 
relevant and vice-versa
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Multiple node
• The technique provides parameter estimation for BNs 
with a single node. What about multiple nodes?

• In order to parameterize an entire network,  we can 
simply iterate over its nodes using a algorithm 
called Multinomial parameterization

• This algorithm is a very simple counting solution 
to the problem of parameterizing multinomial 
networks. This solution is certainly the most 
widely used and is available in the standard 
Bayesian network tools
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Multinomial Parameterization
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Learning Models (discrete causal 
structures)
• We saw how to parameterize a categorical(multinomial) causal 

structure with conditional probability tables, regardless of how the 
structure might have been found, i.e. We saw how to learn the CPT 
given a specific structure

• Now we will extend the picture of the machine learning of Bayesian 
networks by considering how to automate the learning of discrete 
causal structures

• However, we will look at learning of causal structure using Bayesian 
metrics, rather than orthodox statistical tests

• In other words, the algorithms here will search the causal model 
space {hi }, with some metric aiming to select an hi that maximizes 
the function
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Problems
• So, there are two computationally difficult tasks 
these learners need to perform

• First, they need to compute their metric, scoring 
individual hypotheses. This scoring procedure may 
itself be computationally expensive

• Second, they need to search the space of causal 
structures, which, is known to be exponential

• Most of the search methods applied have been 
variants of greedy search
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K2
• The first significant attempt at a Bayesian approach to 

learning discrete Bayesian networks without topological 
restrictions was made in 1991 (Cooper and Herskovits, 1991)

•  Their approach is to compute the metric for individual 
hypotheses, P(hi|e) by brute force

• Since our goal is to find that hi which maximizes P(hije), we 
can satisfy this by maximizing P(hi|e), as we can see from 
Bayes’ theorem
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K2  - Simplifying assumptions
1. The data are joint samples and all variables are discrete

2. Samples are independently and identically distributed 
(i.i.d.).

3. The data contain no missing values. If, in fact, they do 
contain missing values, then they need to be filled in 
with some estimate method

4. For each variable Xk in hi and for each instantiation of 
its parents Parents(Xk), P(Xk = xjhi;q;p(Xk)) is uniformly 
distributed over possible values Xk = x. (where q is the 
parameter vector (e.g., conditional probabilities))

5. Assume the uniform prior over the causal model space; i.e. 
P(hi)=1/|{hi }|
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Discussion of K2’s assumptions
• In fact, the first three assumptions are used 
widely in machine learning community…

• Fourth assumption: if relevant prior knowledge is 
available, the uniformity assumption  can be 
readily dismissed by employing non-uniform Dirchlet 
priors over the parameter space, as we also 
discussed there.

• Fifth assumption: The prior over causal models is 
uniform that crude though it may be,  it is not 
likely to throw the search so far off that the best 
causal models are missed.



13 / 7813 / 78

Given these simplyfing assumptions…
• Given these simplifying assumptions, Cooper and 
Herkovits (1991) showed that the joint probability 
can be given by:

• Note:  π(Xk)  refers to the node parents of Xk
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K2
• The computation of Cooper and Herkovits’s formula 
do P(hi,e) is polynomial, i.e., computing P given a 
particular hi is tractable under the assumptions

• Ok, but the number of possible hi is very big…Yes, 
it is!

• So, they made another simplifying assumption:

• Assume we know the temporal ordering of the variables

• That way, the search space is greatly reduced. In 
fact, for any pair of variables either they are 
connected by an arc or they are not.
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K2
• Limitation of the maximum number of parents are 
also commonly required, as a way to reduce the 
search space

• Many variations can be used with K2, for instance 
change the metric from Bayesian to others metrics 
as: Minimum Description Length (MDL),  Akaike 
Information Criterion (AIC), Entropy and others

• Machine learning frameworks provide several 
alternative methods for building Bayes networks, K2 
is one the most relevant methods
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Diabetes example
• The diagnostic, (binary-valued variable) 
investigated is whether the   patient shows 
signs of diabetes according to World Health 
Organization criteria

• Dataset:  768 instances, all patients are 
females at 21 years old or more of Pima Indian 
heritage. (Smith,J.W., Everhart, J.E., Dickson, 
W.C., Knowler,W.C.,  Johannes,R.S. ,1988)
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Diabetes example

• Variables:
1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose 
tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)^2)

7. Diabetes pedigree function

8. Age (years)

9. Class variable (class value 1 is interpreted as "tested 
positive for diabetes)
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One simple tool (Weka)
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BN built by the dataset using K2,  number 
of parents equal to 2 and estimator 
parameter equals to 0.5 
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Another tool: GeNie Academic
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Other tools  (Korb, Nicholson, 2011)
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Other tools - 2
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Table explanation 
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Table explanation 
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Bayesian Classifiers
• We have seen the use of Bayesian Network as 
classifiers. This kind of use has a substantial 
and growing body of work.

• We mean without any expectation or interest in them 
as causal, explanatory models

• The basic approach is Naïve Bayes, but it can 
be extended in some simple ways as TAN
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Naïve Bayes
• We have already seen Naïve Bayes classifiers, 
which are in some sense the opposite of causal 
models but many times can be really good 
classifiers
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Tree Augmented Naive Bayes (TAN)
• Tree Augmented Naive Bayes (TAN) models are perhaps the first 

natural step in desimplifying naive Bayes models

• For example, the mushroom problem from the UCI machine learning 
archive the target class variable is binary, indicating whether or 
not a mushroom is edible; there are 22 other variables describing 
attributes, such as color and shape, which may or may not be 
predictive of edibility
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Tree Augmented Naive Bayes (TAN)
• TANs relax the Independence assumptions of NB by allowing 

some arcs directly between attributes, in particular allowing 
a tree amongst the attributes to be constructed, separately 
from their direct relations with the class variable

• For example, below it is a (very simple) TAN for the mushroom 
case, restricted for simplicity to two attributes
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Some Results
• Friedman et al. (1997) performed empirical 
studies comparing NB, TAN and C4.5 (decision 
tree algorithm), along with other methods, 
using many of the UC Irvine machine learning 
data sets (Murphy and Aha, 1995)

• Naïve Bayes and C4.5 performed about the same, 
while TAN almost dominated both, meaning TAN 
performed either the about same or, in some 
cases, better, as measured by predictive 
accuracy
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NB, TAN vs Causal Models
• Friedman et al. (1997) also compared the predictive accuracy 

of NB and TAN with full causal discovery algorithms

• They found NB and TAN outperformed causal discovery when 
there were a large number of attributes in the data. 

• Causal discovery can potentially return any Bayesian network 
containing the attribute and class variables. 

• If it happens to find the true model, the model which 
actually generated the data available, then that model 
(disregarding any noise in the data) will necessarily be the 
best predictor for the target variable.
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Problem with full causal
• The problem with full causal discovery for 
prediction, however, is the same as the problem 
with any kind of feature selection or model 
selection: 

• frequently the true model is not what is learned, but some 
similar, yet different, model is learned instead. 

• The result may be that variables that should be in 
the target variable’s Markov blanket are not and 
so are ignored during prediction, with potentially 
disastrous consequences for predictive accuracy.
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Markov Blanket (Cobertor de Markov)
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Problems with NB and TAN
• NB and TAN, on the contrary, include all the 
attributes in their predictions, so this source of 
error is not even possible.

• To be sure, by being all-inclusive NB and TAN 
introduce a different potential source of error, 
namely overfitting. 

• It may be that some variables are directly 
associated with the target variable only 
accidentally, due to noise in the available data
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Problems with NB and TAN
• To compensate for this one may introduce variable 
selection, eliminating those attributes from the 
model which are contributing little to the 
prediction. 

• In the latter case, again, incorrect variable 
selection returns us to the problem faced by causal 
discovery for prediction: variables missing from 
the target’s Markov blanket
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Ensemble Bayes models
• Another response to the problem of incorrectly identifying the Markov 

blanket, aside from utilizing all attributes as predictors, is to move to 
ensembles of predictive models. 

• This means mixing the predictions of some number of distinct models 
together, using some weighting over the models

• For example, (below) there are two alternative (partial) Bayesian networks 
for the mushroom problem (note that they are not NB models)
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Evaluating Classifiers
• There is no agreed standard for how to assess 
the performance of classifiers. 

• There are some common practices, but many of 
them are unjustified, or even unjustifiable in 
some domain

• Here we introduce the most commonly used 
approaches, together with their strengths and 
weaknesses, and some possible improvements upon 
them
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Confusion Matrix
• Binomial target (class)

• Multinomial target (class)
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Evaluation of Classifiers
• “Não é difícil criar classificadores, mas pode ser muito 

difícil criar bons classificadores…”

• Predictive accuracy or success rate (Taxa de acerto)

• Predictive accuracy is far and away the most popular 
technique for evaluating predictive models

• Tx. Ac=(TP+TN)/(TP+TN+FP+FN) ou

• Tx. Ac= ∑ (Elem da diagonal principal) / ∑ (Elem da matriz de confusão) 

• É sempre uma boa medida?
• Considere um sistema de detecção de fraude em transações de cartão de crédito 

que sempre diz que não há fraude….A taxa de acerto seria alta ou baixa? É um 
bom classificador?
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Evaluation of classifiers
• Many domains deals with the problem of evaluating 
classifiers 

• Predicted Accuracy (Success rate) is widely used, 
but there are other measures (sometimes) used with 
different names in different domains

• In information retrieval, a Web search engine 
produces a list of hits that represent documents 
supposedly relevant to the query. 
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Information retrieval – other 
measures
• Compare one system that locates 100 documents, 40 of which are 

relevant, with another that locates 400 documents, 80 of which are 
relevant. Which is better?

• The answer should now be obvious: it depends on the relative cost of 
false positives, documents that are returned that aren’t relevant, 
and false negatives, documents that are relevant that aren’t 
returned

• Information retrieval researchers define parameters called recall 
and precision:
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• precision=TP/(TP+FP)

• recall =TP/(TP+FN) (also called tp rate)

• In different context, one measure can have other names. 
In medicine, the term sensitivity is used rather than recall. 

•  Sensitivity: proportion of people with disease who 
have a positive test result: (TP / (TP + FN))
•   FP rate: proportion of people without disease who 
have a positive test result:  (FP/ (FP+TN)). For the 
FP rate, small numbers are better

Other measures...
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Other measures 2...
•  Specificity: proportion of people without disease 
who have a negative test result: (TN/ (FP + TN)). It is 
equal to (1-FP rate)

•  Sometimes the product sensitivity × specificity  is 
used as an overall measure

•  Also used  F-measure

•And the old success rate : (TP+TN)/(TP+FP+TN+FN)
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Análise de Classificadores -2
• O problema com a taxa de acerto ( e outras..) é que não levam em 

consideração os acertos por puro acaso…

• Uma alternativa: estatística kappa (Cohen’s kappa)

• κ = (po –pe )/(1-pe ) 
• po é a concordância observada
• pe é a concordância esperada

• Kappa mensura o ganho em relação a distribuição esperada aleatória, 
0 significa que não faz melhor do que ela e 1 significa perfeita 
acurácia.

• Um problema da estatística kappa (e também da taxa de acerto) é que 
não leva em consideração o custo dos erros…que podem ser diferentes 
e bem mais significativos que outros

• Cada parâmetro de comparação é parcial e deve-se fazer uma análise 
vários parâmetros (há vários outros...precision, f-measure,etc) 
considerando as particularidades do domínio do problema
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Exemplo
• O classificador A prevê uma distribuição de classes com 

<0.6;0.3;0.1>, se o classificador fosse independente da 
classe real haveria uma distribuição na mesma proporção 

(Expected distribution) 

• po  = 88+ 40+12 = 140/200    (concordância observada)
• pe   = 60+18+4= 82/200         (concordância esperada)
• κ = (po –pe )/(1-pe )  = ( 140-82)/ ( 200-82) = 52 / 118  = 49,2%
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Kappa statistic Interpretation
• Cohen’s Kappa:   Measures relative improvement on 
random predictor: 1 means perfect accuracy, 0 means 
we are doing no better than random

• (McHugh, 2012) Interrater reliability: the kappa statistic. Marry L. 
McHugh. 
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Cost of errors
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When error is not uniform?
• Problem: Predicting return of financial 
investment (very low, low, neutral, high, very 
high ). Is it uniform?
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Cost-sensitive classification
• Can take costs into account when making predictions

• Basic idea: only predict high-cost class when very 
confident about prediction

• Given: predicted class probabilities

• Normally, we just predict the most likely class

• Here, we should make the prediction that minimizes the 
expected cost

• Expected cost: dot product of vector of class 
probabilities and appropriate column in cost matrix

• Choose column (class) that minimizes expected cost

• This is the minimum-expected cost approach to cost-
sensitive classification
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Cost-sensitive learning

• Most learning schemes do not perform cost-sensitive 
learning
• They generate the same classifier no matter what costs are 

assigned to the different classes
• Example: standard decision tree learner

• Simple methods for cost-sensitive learning:
• Resampling of instances according to costs
• Weighting of instances according to costs

• Decision Networks can take cost into account using 
utility function…
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Summary
• We have seen algorithm to learn probabilities (CPT, 

conditional probabilities tables) and also to learn Bayes 
network strucutures from datasets

• We have seen some Bayesian Classifiers and criteria to 
evaluate classifiers (Bayesian or non-Bayesian classifiers)

• The process of building classifiers quite often uses the implicit 
i.i.d hyphotesis. In the next classes, we are going to discuss 
some challenging aspects of Machine learning when applied to 
Financial environments

• Now, let’s discuss deeply the process of creating Bayesian 
Network for real-world scenarios



Knowledge Engineering with Bayesian Networks

Prof. Paulo André Castro                                
pauloac@ita.br                          
www.comp.ita.br/~pauloac                      Sala 110,   
IEC-ITA

CES -161 -  Modelos 
Probabilísticos em Grafos



53 / 7853 / 78

Knowledge Engineering with Bayesian 
Networks
• When constructing a Bayesian network, the major 
modeling issues that arise are:

• What are the variables? What are their 
values/states?

• What is the graph structure?

• What are the parameters (probabilities)?

• When building decision nets, the additional 
questions are:

• What are the available actions/decisions, and 
what impact do they have?
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KEBN life cycle model
• A simple view of the software engineering 
process construes it as having a lifecycle: the 
software is born (design), matures (coding), 
has a lengthy middle age (maintenance) and dies 
of old age (obsolescence). 

• One effort at construing KEBN in such a 
lifecycle model (also called a “waterfall” 
model) is shown next.
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KEBN “waterfall” life cycle model
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Phases
• In the building phase, the major network 
components of structure, parameters and, if a 
decision network, utilities (preferences) must 
be determined through elicitation from experts, 
or learned with data mining methods, or some 
combination of the two
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Phases - Validation 
• Validation aims to establish that the network is 
right for the job, answering such questions as: 

• Is the predictive accuracy for a query node satisfactory? 

• Does it respect any known temporal order of the variables?

• Does it incorporate known causal structure? 

• Sensitivity analysis looks at how sensitive the 
network is to changes in input and parameter 
values, which can be useful both for validating 
that the network is correct and for understanding 
how best to use the network in the field
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Phases – Field Testing
• Field testing first puts the BN into actual 
use, allowing its usability and performance to 
be gauged. 

• Alpha testing refers to an intermediate test of the 
system by inhouse people who were not directly 
involved in developing it; for example, by other 
inhouse BN experts. 

• Beta testing is testing in an actual application by 
a “friendly” end-user, who is prepared to accept 
hitting bugs in early release software. 

• Acceptance testing is surely required: it means 
getting the end users to accept that the BN 
software meets their criteria for use.
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Phases – Industrial Use and 
Refinement
• Industrial use sees the BN in regular use in the 
field and requires that procedures be put in place 
for this continued use. 

• It is a good idea to collect statistics on the performance 
of the BN and statistics monitoring the application domain, 
in order to further validate and refine the network.

• Refinement requires some kind of change management 
regime to deal with requests for updating or fixing 
bugs. Regression testing verifies that any changes 
do not cause a degradation in prior performance
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Iterative approach for KEBN
• An iterative and incremental approach for KEBN 
seems to be a better approach for us

• The software should grow by stages (prototypes) 
from childhood to adulthood, but at any given stage 
it is a self-sufficient, if limited, organism. 

• Prototypes are functional implementations of 
software: they accept real input, such as the final 
system can be expected to deal with, and produce 
output of the type end-users will expect to find in 
the final system
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A spiral model for KEBN (Korb, Nicholson, 
2011)
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Iterative lifecyle model for KEBN (Boneh, 2010)
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Common mistakes
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Stage 1: Bayesian Network Structure 
• Common Modeling Mistake: Not understanding the problem 

context

• It is crucial for the knowledge engineer to gain a clear 
understanding of the problem context. Ideally, this should be 
available in some form of project description. The knowledge 
engineer should ask questions like:
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Stage 1: Bayesian Network Structure 

• Complexity without value
• A very common impulse, when something is known 
about the problem, is to want to put it in the 
model. 

• But It may add complexity to the model without 
adding any value (and in fact often reduces value)

• Instead, the knowledge engineer must focus on 
the question:
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Another commons mistakes in 
structures
• Getting the node values wrong

• Node values aren’t exhaustive

• Node values aren’t mutually exclusive

• Incorrect modeling of mutually exclusive outcomes

• Creation of separate nodes for different states of the same 
variable. For example, create both a FineWeather variable 
and a WetWeather variable (both Boolean). They are mutually 
exclusive!

• Trying to model fuzzy categories

• Confusing state and probability

• Confusion about what the node represents
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Stage 1: Bayesian Network Structure 
• Other common mistake: Getting the arc 
directions wrong 

• (a) Modeling reasoning rather than causation

• (b) Inverting cause and effect

• (c) Missing variables

• Too many parentes

• It is usually worse to have many parents than more 
parents. Modeling new nodes may help…
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Reducing parents by intermediate 
nodes
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Discretization
• While it is possible to build BNs with 
continuous variables without discretization, 
the simplest approach is to discretize them

• Indeed, many of the current BN software tools 
available require this. They provides a choice 
between its doing the discretization for you 
crudely, ( into even-sized chunks)  or allowing 
the knowledge engineer more control over the 
process
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Stage 2: Probability Parameters
• Experts’ estimates of probabilities are 
biased, including

• Overconfidence: the tendency to attribute higher 
than justifiable probabilities to events that have 
a probability sufficiently greater than 0.5. 

• Anchoring: the tendency for subsequent estimates to 
be biased by an initial estimate  (Kahneman and 
Tversky, 1973)

• Availability: Assessing an event as more probable 
than is justifiable, because it is easily 
remembered or more salient (Kahneman and Tversky, 
1973)
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Stage 2: Probability Parameters
• Inconsistent “filling in” of large CPTs

• For example, the expert uses 0.99 for “almost 
certain” in one part of the CPT, and 0.999 in 
another. Or it may be inconsistency across the 
CPT; for example, using different distributions 
for combinations of parents that in fact are 
very similar

• Incoherent probabilities (not summing to 1) 

• Being dead certain
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Stage 3: Decision Structure
• First, we must model what decisions can be made, through the 

addition of one or more decision nodes. 

• If the decision task is to choose only a single decision at 
any one time from a set of possible actions, only one 
decision node is required

• Combinations of actions can be modeled within the one node, for 
example, by explicitly adding a sequence of actions (ex. “surgery-
medication”)

• This modeling solution avoids the complexity of multiple decision nodes, 
but has the disadvantage that the overlap between different actions

• Alternatively, you can use precedence links or Dynamic BN as you 
have seen, but you will have to deal with additional complexity!
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Stage 4: Utilities (Preferences)
• The next KE task for decision making is to 
model the utility of outcomes. 

• The first stage is to decide what the unit of 
measure (“utile”) will mean. Remember that 
money is not equal to utility ( but it is 
related!)

• Remember the process to evaluate utilities of 
situation through lotteries as we have seen!
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Utility Assessment
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Definindo Funções de Utilidades 
através de loterias
• Dado o intervalo [0,1] entre a “pior catastrofe 
possível” e “o melhor prêmio possível”, ao 
encontrar uma loteria [p,1;1-p,0] que seja 
indiferente a uma situação S o número p é a 
utilidade de S

• Em ambientes, com prêmios determinísticos pode-se 
apenas estabelecer a ordem de preferências, nesse 
caso usa-se o termo utilidades ordinais

• Funções de utilidades ordinais podem ser chamadas de funções 
de valor e são invariantes para qualquer transformação 
monotônica
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Utility of the Money
• You choose between take part in the lottery [p,M;1-p,0] or 

receive the value X for not participating in the lottery
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Dinheiro vs Utilidade
• Dinheiro não tem uma relação linear (ou simples) com utilidade!

• Ao estimar a utilidade em vários experimentos, observa-se que dada 
uma loteria L com valor esperado EMV(L) tem-se U(L) < U (EMV(L)), 
isto é as pessoas são aversas a risco

• Um gráfico típico de dinheiro ($) vs Utilidade (U):
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Iterative lifecyle model for KEBN (Boneh, 2010)


