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Learning Probabilistic Models

- Bayesian network structure may be constructed
by:

hand, presumably during a process of eliciting

causal and probabilistic dependencies from an
expert or

learning via causal discovery or

a combination of both approaches

- However the structures are arrived at, they
will be useless until parameterized, i.e., the
conditional probability tables are specified,

characterizing the direct dependency between a
child and its parents.




Learning Probabilistic Models

- Learning probabilities

- Learning Models

- Bayesian Classifiers

- Evaluating Classifiers




Learning probabilities

- Parameterizing a categorial (or multinomial) model
(variables with two or more possible values) can be
done using a conjugate family of distributions,
namely the Dirichlet family of distributions

The Dirichlet distribution with t possible values
is written Dlay,.., 0,..,a, ] with o; being the
hyperparameter for value 1 and the probabilities of
each value are given by:




Learning probabilities

- When we observe a data instance (or data point)
where x=1 then we can update the distribution
from Dla,,..,a,..,a. ]  to Dlay,.., 0+1,..,a, ] and
the probabilities can still calculated in the

same way, but now it reflects the observed
instances a

i) = =
i 0

- In fact when o, = 1 for all 1, it is
equivalent to the Laplace estimator (or
smoothing).

- Note that small values of o, make the data points more
relevant and vice-versa
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Multiple node

- The technique provides parameter estimation for BNs
with a single node. What about multiple nodes?

In order to parameterize an entire network, we can
simply iterate over its nodes using a algorithm
called Multinomial parameterization

This algorithm is a very simple counting solution
to the problem of parameterizing multinomial
networks. This solution is certainly the most
widely used and is available in the standard
Bayesian network tools




Multinomial Parameterization

Algorithm Multinomial Parameterization (Spiegelhalter and Lauritzen method)
1. For each node X

For each instantiation of Parents(X), assign some Dirichlet distri-
bution for the T states of X; Doy ,. .., 0, ..., 0]

2. For each node X j

For each joint observation of all variables X,

(a) Identify which state i X; takes

(b) Update D] Qi ....0c|to D0y, ... .0+ 1,...,0¢] for the
distribution corresponding to the parent instantiation in the
observation




Learning Models (discrete causal
structures)

We saw how to parameterize a categorical (multinomial) causal
structure with conditional probability tables, regardless of how the
structure might have been found, i.e. We saw how to learn the CPT
given a specific structure

Now we will extend the picture of the machine learning of Bayesian
networks by considering how to automate the learning of discrete
causal structures

However, we will look at learning of causal structure using Bayesian
metrics, rather than orthodox statistical tests

In other words, the algorithms here will search the causal model

space {h; }, with some metric aiming to select an h; that maximizes
the function




Problems

So, there are two computationally difficult tasks
these learners need to perform

First, they need to compute their metric, scoring
individual hypotheses. This scoring procedure may
itself be computationally expensive

Second, they need to search the space of causal
structures, which, is known to be exponential

Most of the search methods applied have been
variants of greedy search




K2

The first significant attempt at a Bayesian approach to
learning discrete Bayesian networks without topological
restrictions was made in 1991 (Cooper and Herskovits, 1991)

Their approach is to compute the metric for individual
hypotheses, P(h;|e) by brute force

Since our goal is to find that h, which maximizes P(hije), we
can satisfy this by maximizing P(h,|e), as we can see from
Bayes’ theorem

P(e|h;)P(h;)
P(e)
PU?;‘._{.’)
Pl(e)
BP(hi,e)




K2 - Simplifying assumptions

The data are joint samples and all variables are discrete

Samples are independently and identically distributed
(i.i.d.).

The data contain no missing values. If, in fact, they do
contain missing values, then they need to be filled in
with some estimate method

For each variable Xk in hi and for each instantiation of
its parents Parents(Xk), P(Xk = xjhi:;q;p(Xk)) is uniformly
distributed over possible values Xk = x. (where q is the
parameter vector (e.g., conditional probabilities))

Assume the uniform prior over the causal model space; 1i.e.

P(h)=1/]{h; }|




Discussion of K2's assumptions

- In fact, the first three assumptions are used
widely in machine learning community-:-:

Fourth assumption: if relevant prior knowledge is
available, the uniformity assumption can be
readily dismissed by employing non—uniform Dirchlet
priors over the parameter space, as we also
discussed there.

Fifth assumption: The prior over causal models is
uniform that crude though it may be, 1t 1s not
likely to throw the search so far off that the best
causal models are missed.
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Given these simplyfing assumptions...

- Given these simplifying assumptions, Cooper and
Herkovits (1991) showed that the joint probability
can be given by:

By | S‘ . 1)! Sk

N
P(hi,e) = h;)l—[ P Hak;f

kl;l

Where
N 1s the number of variables.
@y | is the number of assignments possible to (X ).
st 1s the number of assignments possible to Xj.

O ji is the number of cases in sample where Xj takes its 1-th value and
7 (Xi) takes its j-th val’ue

Sk; 1s the number of cases in the sample where 7 (X} ) takes its j-th value (i.e.,
S .
Zfi] Oy j1 ).




K2

The computation of Cooper and Herkovits’ s formula
do P(h;,e) is polynomial, i.e., computing P given a
particular h. is tractable under the assumptions

Ok, but the number of possible h; is very big--Yes,
1t 1s!

So, they made another simplifying assumption:
Assume we know the temporal ordering of the variables
That way, the search space is greatly reduced. In

fact, for any pair of variables either they are
connected by an arc or they are not.




K2

- Limitation of the maximum number of parents are

also commonly required, as a way to reduce the
search space

- Many variations can be used with K2, for instance

change the metric from Bayesian to others metrics
as: Minimum Description Length (MDL), Akaike
Information Criterion (AIC), Entropy and others

- Machine learning frameworks provide several

alternative methods for building Bayes networks, K2
1s one the most relevant methods




Diabetes example

- The diagnostic, (binary-valued variable)
investigated is whether the patient shows
signs of diabetes according to World Health
Organization criteria

- Dataset: 768 instances, all patients are
females at 21 years old or more of Pima Indian
heritage. (Smith, J.W., Everhart, J.E., Dickson,
W.C., Knowler,W.C., Johannes,R.S. ,1988)




Diabetes example

- Variables:

Number of times pregnant

Plasma glucose concentration a 2 hours in an oral glucose
tolerance test

Diastolic blood pressure (mm Hg)

Triceps skin fold thickness (mm)

2-Hour serum insulin (mu U/ml)

Body mass index (weight in kg/(height in m) 2)
Diabetes pedigree function

Age (years)

Class variable (class value 1 is interpreted as “tested
positive for diabetes)




ne simple tool (Weka)

& Weka Explorer

J Preprocess T Classify T Cluster T Associate TSeIed attributes T Visualize ]

l Open file... J [ Open URL... J [ Open DB... ] l Generate... J l ] l

fMer

l Choose JiNone “ Apply J

Current relation Selected attribute

Relation: pima_diabetes Aftributes: 9 Mame: preg Type: Numeric
Instances: 768 Sum of weights: 768 Missing: 0 (0%) Distinct: 17 Unique: 2 (0%}

Attributes Statistic | Value
| Minimum 0
Maximum 17

J Pattern Mean 3845
StdDev 337

x

lCIass: class (Mom) ,'J| Visualize All J

000 = N Ld R
o

=1

@

0] O o o |




& weka.gui.GenericObjectEditor
weka.classifiers.bayes.Bayeshet

About

-

Bayes Metwork learning using various search algorithms and More G Wekﬂ.gui.GEneriCObjeftEditDr

quality measures. :
| Capabiliies |

weka. classifiers bayes net search. local K2
About

”

BIFFile

This Bayes Metwork learning algorithm uses a hill climbing
batchSize | 100 algorithm restricted by an order on the variables.

debug | False

doMotCheckCapabilities [ False st K are 5 [True

markovBlanketClassifier [False

estimator [ Choose ”SimpleEstimatur -A0E

numDecimalPlaces 2 maxMrofParents 2

searchAlgarithm [ Choose J!Kz-P 2 -5 BAYES randomOrder lFaIse

useADTree |False scoreType [BM’ES

Open... | 1 ' J l Save... J l Cancel
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BN built by the dataset using K2, number
of parents equal to 2 and estimator

parameter equals to 0.5

& Weka Classifier Graph Visualizer: 19:51:37 - bayesBayesNet

[ @& [100% & |

&3 Probability Distribution Table For plas >

L class V(-inf-99.5]" | ¥(99.5-127 5] | V(127 5-154 57 | V{154 5-inf)\"
tested_negative 0.362 0.419 07 0.049
tested_positive 0.061 0.291 0.233 0.365




Another tool: GeNie Academic

™ GeNle Academic - [Comaxdsl: main model]
ﬁ] File Edit View Tools Network Node Learning Layout Window Help
DEE S L hlPLooome f A|F@ |2 |(F|™a R @0

[t v B r|EEE S LAV SRR A (TP (%

iipiiee. li/ The Coma or Cancer network, as it is
popularly known in he Heraure

(- %3 Credit worthiness assessme g appeared first in Greg Cooper's
(- ®8 B network by Alex Kozlov (E doctoral dissertation:

5 A network by Alex Kozlov (s Increased Serum o Cooper, Gregory F. (1984). NESTOR: A
i «& Coma network by Greg Cot Calcium rain Tumor comPuter-based medical dlagnost]c_: a_|d
- - ¥ e ki that integrates causal and probabilistic
~4 Braim T o knowledge. PhD thesis, Medical
© Coma Information Sciences, Stanford

D Increased Serum Calciu University, Stanford, CA, 1984
O Metastatic Cancer

- Severe Headaches

2] No evidence No targets
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Other tools (Korb, Nicholson, 2011)

Name

Authors

D/U

Free

Ace

Darwiche (UCLA)

L
=
—d

AgenaRisk

Agena

-~ Z DBN

AlSpace (CISpace)

Poole et al. (UBC)

Analytica

Lumina

B-course

L. Helsinki

Z| 2| —| 2| 2| Src

Banjo

Hartemink

o | Z|

Bassist

L. Helsinki

)
+

BayesBuilder

Nijman (U. Nijmegen)

i R i ke =

Bayesial.ab

Bayesia Ltd

2|2+ | =

2| 2| = 2| 2| Z] | = Z| OOBN

)
&

Bayesware Discoverer

Bayesware

=

w lw

bndr

Bel, Dahl

e
=

BNT

Murphy (U.C.Berkeley)

=
A

=
)

BucketElim

Rish (U.C.Irvine)

BUGS

MRC/Imperial College

CaMML

Wallace.Korb (Monash)

Causeway/Siam

SAIC

DBL Interacive

Smith (U.Qld)

2~ 2Z (22 (=
Z<ZZ2Z2Z2Z

2| B | O O O O O B | O O O | w3 | w5

DBENbox

Roberts et al

++

Dezide Advisor

Dezide

-~ 000000

dlib

King, Davis

IT.G

Elvira

Collaboration

Z Zl»n

JT.VE.IS

GDAGsim

Wilkinson (U. Newcastle)

E

GeNle/SMILE

U. Pittsburgh

é-—d-—d-—fi-—fil Z| 2| Z| Z| | €| =€ Z| | —| €| = Z| =€ Z| =< =<| API

| 2| | | | 2| | | | | Z| Z| Z| < 4| | Z| Z| | < | ¢ 2| GUI

v/l (91w b v Bl e v ol

=2l 2|2l << 2| 2|2~ 22|22 2| Z|Z << 2 2 DN

2| 2| | 2| | e 2| | | | 2 | 2| | | 2 = 2| = 2 2| = 2| Paramy
Z| 2| | 2| 2 2| | | = 2| 2| = 2| = = 2| 2| = = 2| Z| = 2| Struct

o oo

IT
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Other tools - 2

Name

Authors

Src

Z| OOBN

Free

GMRFlib

Rue, H

%

GMTk

Bilmes (UW), Zweig (IBM)

= = API

Grappa

Green (Bristol)

~ oo @l bic

Hugin Expert

Hugin

| o=

o
(=1

Hydra

Warnes (U.Wash.)

®

Java Bayes

Cozman (CMU)

LibB

Friedman (Hebrew U)

=
ool o| 5 q ©|9 o DU
Q

MASTINO

Mascherini

MIM

HyperGraph Software

MSBNx

Microsoft

Netica

Norsys

Optimal

Reinsertion

Moore, Wong (CMU)

Z|Z| 2|9 R 22— — & RZ

Z| =) =] | | = =

o O e O O O O e8| | D

PMT

Pavlovic (BU,Rutgers)

=0 =

PNL

Eruhimov (Intel)

ProBT

Probayes

% %
Ale vl dlelala v l-js
(=T (=T

w

Pulcinella

IRIDIA

Quiddity

IET

RISO

Dodier (U.Colorado)

Sam lam

Darwiche (UCLA)

':jl"::l..‘;D

=

goloooSgo oo

Tetrad IV

CMU

o

UnBBayes

Ladeira, Carvalho

Vibes /Infer. NET

Winn & Bishop (Cambridge)

Z| = 2| 2| Z| =

WinMine

Microsoft
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Table explanation

Src s the source code included? N=no. If yes, what language? J = Java, M = Matlab,
L = Lisp. C, C++, C&, R. A = APL, P = Pascal, Ru= Ruby, F = Fortran.

API Is an application program interface included?

N means the program cannot be integrated into your code, ie.. it must be run
as a standalone executable. Y means it can be integrated.

Exec The executable runs on: W = Windows (95982000¢NT), U= Unix, M = Mac-
Intosh, - = Any machine with a compiler, or Java Virtual machine.

GUI Is a Graphical User Interface included? Y=Yes,N=No.

D/C Are continuous-valued nodes supported (as well as discrete)? G = (condition-
ally) Gaussians nodes supported analytically, Cs= continuous nodes supported
by sampling, Cd = continuous nodes supported by discretization, Cx = contin-
uous nodes supported by some unspecified method, D = only discrete nodes
supported.

DN Are decision networks/influence diagrams supported? Y=Yes N=No.

DBN Are dynamic Bayesian network«influence diagrams supported? Y=Yes.N=No,
T means some modeling over time but not with DBNs.

OOBN Are Object-oriented Bayesian networks/influence diagrams supported?
Y=Yes,N=No, S=Not full OO, but support for subnetworks.

Params Does the software functionality include parameter keaming? Y=Yes.N=No.
Struct Does the software functionality include structure learning? Y=Yes.Nj=No.
IC means Y, using conditional independency tests
K2 means Y, using Cooper & Herskovits’ K2 algorithm




Table explanation

D/U What kind of graphs are supported? U = only undirected graphs, D = only di-
recied graphs, UD = both undirected and directed, CG = chain graphs (mixed
directed’undirected).

Inf Which inference algorithm is used?

JT = Junction Tree. VE = variable (bucket} elimination, CO = condi-
tioning, I'T = Pearl’s polytree. E = Exact inference (unspecified), MH =
Metropolis Hastings, MC = Markov chain Monte Carlo (MCMC), G5 =
Gibbs sampling, IS = Importance sampling, S = Sampling. O = Other (usu-
ally special purpose), ++ = Many methods provided, ? = Not specified, N =
None, the program is only designed for structure leaming from completely
observed data.

NB: Some packages support a form of sampling {e.g., likelihood weighting.
MDMC), in addition to their exact algorithm; this is indicated by (+8).

Free Is afree version available? O=Free (though possibly only for academic use), $=
Commercial (although mosl have free versions which are mestricted in various
ways, e.g., the mode] size is limited, or models cannot be saved, or there is no
APL)
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Bayesian Classifiers

- We have seen the use of Bayesian Network as
classifiers. This kind of use has a substantial
and growing body of work.

We mean without any expectation or interest in them
as causal, explanatory models

- The basic approach is Naive Bayes, but it can
be extended in some simple ways as TAN




Naive Bayes

- We have already seen Naive Bayes classifiers,
which are in some sense the opposite of causal
models but many times can be really good
classifiers




Tree Augmented Naive Bayes (TAN)

Tree Augmented Naive Bayes (TAN) models are perhaps the first
natural step in desimplifying naive Bayes models

For example, the mushroom problem from the UCI machine learning
archive the target class variable is binary, indicating whether or
not a mushroom is edible; there are 22 other variables describing
attributes, such as color and shape, which may or may not be
predictive of edibility

/ E:iibility\]
A

e N [ stk <Hb_t't\l
M Shape / \Shape 4 ees abita Y,

e S o

—

A naive Bayes mushroom model.



Tree Augmented Naive Bayes (TAN)

TANs relax the Independence assumptions of NB by allowing
some arcs directly between attributes, in particular allowing
a tree amongst the attributes to be constructed, separately
from their direct relations with the class variable

For example, below it is a (very simple) TAN for the mushroom
case, restricted for simplicity to two attributes
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Some Results

- Friedman et al. (1997) performed empirical
studies comparing NB, TAN and C4.5 (decision
tree algorithm), along with other methods,

using many of the UC Irvine machine learning
data sets (Murphy and Aha, 1995)

- Naive Bayes and C4.5 performed about the same,
while TAN almost dominated both, meaning TAN
performed either the about same or, in some
cases, better, as measured by predictive
accuracy




NBB, TAN vs Causal Models

Friedman et al. (1997) also compared the predictive accuracy
of NB and TAN with full causal discovery algorithms

They found NB and TAN outperformed causal discovery when
there were a large number of attributes in the data.

Causal discovery can potentially return any Bayesian network
containing the attribute and class variables.

If it happens to find the true model, the model which
actually generated the data available, then that model
(disregarding any noise in the data) will necessarily be the
best predictor for the target variable.




Problem with full causal

- The problem with full causal discovery for
prediction, however, i1s the same as the problem
with any kind of feature selection or model
selection:

frequently the true model is not what is learned, but some
similar, yet different, model is learned instead.

The result may be that variables that should be in
the target variable’ s Markov blanket are not and
so are ignored during prediction, with potentially
disastrous consequences for predictive accuracy.




Markov Blanket (Cobertor de Markov)

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents




Problems with NB and TAN

- NB and TAN, on the contrary, include all the
attributes in their predictions, so this source of
error 1s not even possible.

- To be sure, by being all-inclusive NB and TAN

introduce a different potential source of error,
namely overfitting.

- It may be that some variables are directly
associated with the target variable only
accidentally, due to noise in the available data




Problems with NB and TAN

- To compensate for this one may introduce variable
selection, eliminating those attributes from the
model which are contributing little to the
prediction.

In the latter case, again, incorrect variable
selection returns us to the problem faced by causal
discovery for prediction: variables missing from
the target’ s Markov blanket




Ensemble Bayes models

Another response to the problem of incorrectly identifying the Markov
blanket, aside from utilizing all attributes as predictors, is to move to
ensembles of predictive models.

This means mixing the predictions of some number of distinct models
together, using some weighting over the models

For example, (below) there are two alternative (partial) Bayesian networks
for the mushroom problem (note that they are not NB models)
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(b)
Two BN models explaining (and predicting) edibility.




Evaluating Classifiers

- There is no agreed standard for how to assess
the performance of classifiers.

- There are some common practices, but many of
them are unjustified, or even unjustifiable in
some domain

- Here we introduce the most commonly used
approaches, together with their strengths and
weaknesses, and some possible improvements upon
them
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Confusion Matrix

- Binomial target (class)

Predicted class

yes no

true false
Actual positive negative
class

false true
positive negative

- Multinomial target (class)

Predicted class

a b

Actual a 88 10
class b 14 40
C 18 10

Total 120 60




Evaluation of Classifiers

“Nao é dificil criar classificadores, mas pode ser muito
dificil criar bons classificadores:”

Predictive accuracy or success rate (Taxa de acerto)

Predictive accuracy is far and away the most popular
technique for evaluating predictive models

Tx. Ac=(TP+IN)/ (TP+TN+FP+EN) ou
Tx. Ac= ) (Elem da diagonal principal) / > (Elem da matriz de confusao)

E sempre uma boa medida?

Considere um sistema de deteccao de fraude em transacoes de cartdo de crédito
que sempre diz que ndo ha fraude....A taxa de acerto seria alta ou baixa? E um
bom classificador?




Evaluation of classifiers

- Many domains deals with the problem of evaluating
classifiers

Predicted Accuracy (Success rate) is widely used,
but there are other measures (sometimes) used with
different names in different domains

In information retrieval, a Web search engine
produces a list of hits that represent documents
supposedly relevant to the query.




Information retrieval — other
measures

Compare one system that locates 100 documents, 40 of which are
relevant, with another that locates 400 documents, 80 of which are
relevant. Which is better?

The answer should now be obvious: it depends on the relative cost of
false positives, documents that are returned that aren’ t relevant,
and false negatives, documents that are relevant that aren’ t
returned

Information retrieval researchers define parameters called recall
and precision:

number of documents retrieved that are relevant

recall =
total number of documents that are relevant

number of documents retrieved that are relevant

precision =

total number of documents that are retrieved
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Other measures...

« precision=TP/(TP+FP)
« recall =TP/(TP+FN) (also called tp rate)

 In different context, one measure can have other names.
In medicine, the term sensitivity is used rather than recall.
« Sensitivity: proportion of people with disease who
have a positive test result: (TP / (TP + FN))
* FP rate: proportion of people without disease who
have a positive test result: (FP/ (FP+TN)). For the
FP rate, small numbers are better




Other measures 2...

« Specificity: proportion of people without disease
who have a negative test result: (TN/ (FP + TN)). Itis
equal to (1-FP rate)

« Sometimes the product sensitivity x specificity is
used as an overall measure

e Also used F-measure

2 X recall X precision 2-TP
recall+ precision 2- TP+FP+FN

*And the old success rate : (TP+TN)/(TP+FP+TN+FN)
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Analise de Classificadores -2

0 problema com a taxa de acerto ( e outras..) é que nao levam em
considerag¢ao os acertos por puro acaso-::

Uma alternativa: estatistica kappa (Cohen’ s kappa)
K = (po —Pe )/(1-pe )
P, € a concordancia observada
p. ¢ a concordancia esperada
Kappa mensura o ganho em rela¢ao a distribui¢ao esperada aleatéria,

0 significa que nao faz melhor do que ela e 1 significa perfeita
acurdcia.

Um problema da estatistica kappa (e também da taxa de acerto) é que
nao leva em considera¢ao o custo dos erros---que podem ser diferentes
e bem mais significativos que outros

Cada parametro de compara¢ao é parcial e deve-se fazer uma andlise
vdrios parametros (hda vdrios outros...precision, f-measure, etc)
considerando as particularidades do dominio do problema




Exemplo

O classificador A prevé uma distribui¢ao de classes com
<0.6:;0.3:0.1>, se o classificador fosse independente da
classe real haveria uma distribui¢ao na mesma propor¢ao

(Expected distribution)

Predicted class Predicted class

a b 3 b C Total

Actual a 88 10 Actual a 60 30 10 100
class b 14 40 class b 36 18 6 60
C 18 10 C 24 12 4 40

Total 120 60 Total 120 60 20
60% 30%  10%

(a) Classifier A (b) Expected Distribution

p, = 88+ 40+12 =140/200 (concordancia observada)
p. = 60+18+4=82/200 (concordancia esperada)
K= (po —Pe )/(1-p. ) = ( 140-82)/ (200-82)=52/118 =49,2%




Kappa statistic Interpretation

- Cohen’ s Kappa: Measures relative improvement on
random predictor: 1 means perfect accuracy, 0 means
we are doing no better than random

Level of

Value of Kappa Agreement

0-.20 None
.21-.39 Minimal
40-.59 Weak
.60-.79 Moderate
.80-.90 Strong

Above .90 Almost Perfect

(McHugh, 2012) Interrater reliability: the kappa statistic. Marry L.
McHugh.




Cost of errors

Default cost matrixes: (a) a two-class case and (b) a three-class case.

Predicted
class

Predicted
class

b

Actual
class

(a)

Actual
class

(b)

1
0




When error (s not uniform?

- Problem: Predicting return of financial
investment (very low, low, neutral, high, very
high ). Is it uniform?




Cost-sensitive classification

- Can take costs into account when making predictions
Basic idea: only predict high—cost class when very
confident about prediction

- Given: predicted class probabilities
Normally, we just predict the most likely class

Here, we should make the prediction that minimizes the
expected cost

Expected cost: dot product of vector of class
probabilities and appropriate column in cost matrix

Choose column (class) that minimizes expected cost

- This i1is the minimum—expected cost approach to cost-—
sensitive classification




Cost-sensitive learning

* Most learning schemes do not perform cost-sensitive
learning

« They generate the same classifier no matter what costs are
assigned to the different classes

« Example: standard decision tree learner
Simple methods for cost-sensitive learning:

 Resampling of instances according to costs
* Weighting of instances according to costs

Decision Networks can take cost into account using
utility function...




Summary

We have seen algorithm to learn probabilities (CPT,
conditional probabilities tables) and also to learn Bayes
network strucutures from datasets

We have seen some Bayesian Classifiers and criteria to

evaluate classifiers (Bayesian or non—Bayesian classifiers)
The process of building classifiers quite often uses the implicit
i.1.d hyphotesis. In the next classes, we are going to discuss

some challenging aspects of Machine learning when applied to
Financial environments

Now, let’ s discuss deeply the process of creating Bayesian
Network for real-world scenarios
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Knowledge Engineering with Bayesian
Networks

- When constructing a Bayesian network, the major
modeling issues that arise are:

What are the variables? What are their
values/states?

What is the graph structure?
What are the parameters (probabilities)?

- When building decision nets, the additional
questions are:

What are the available actions/decisions, and
what impact do they have?




KEBN life cycle model

- A simple view of the software engineering
process construes it as having a lifecycle: the
software is born (design), matures (coding),
has a lengthy middle age (maintenance) and dies
of old age (obsolescence).

- One effort at construing KEBN in such a
lifecycle model (also called a “waterfall”
model) is shown next.




KEBN “waterfall” life cycle model
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Phases

- In the building phase, the major network
components of structure, parameters and, if a
decision network, utilities (preferences) must
be determined through elicitation from experts,
or learned with data mining methods, or some
combination of the two




Phases - Validation

Validation aims to establish that the network is
right for the job, answering such questions as:

I[s the predictive accuracy for a query node satisfactory?
Does it respect any known temporal order of the variables?

Does it incorporate known causal structure?

Sensitivity analysis looks at how sensitive the
network is to changes in input and parameter
values, which can be useful both for validating
that the network is correct and for understanding
how best to use the network in the field




Phases — Field Testing

- Field testing first puts the BN into actual

use, allowing its usability and performance to
be gauged.

Alpha testing refers to an intermediate test of the
system by inhouse people who were not directly

involved in developing it; for example, by other
inhouse BN experts.

Beta testing is testing in an actual application by
a “friendly” end-user, who is prepared to accept
hitting bugs in early release software.

Acceptance testing is surely required: it means
getting the end users to accept that the BN
software meets their criteria for use.




Phases — Industrial Use and
Refinement

Industrial use sees the BN in regular use in the
field and requires that procedures be put in place
for this continued use.

[t is a good idea to collect statistics on the performance
of the BN and statistics monitoring the application domain,
in order to further validate and refine the network.

Refinement requires some kind of change management

regime to deal with requests for updating or fixing
bugs. Regression testing verifies that any changes

do not cause a degradation in prior performance




[terative approach for KEBN

- An iterative and incremental approach for KEBN
seems to be a better approach for us

- The software should grow by stages (prototypes)
from childhood to adulthood, but at any given stage
it 1s a self-sufficient, 1if limited, organism.

Prototypes are functional implementations of
software: they accept real input, such as the final
system can be expected to deal with, and produce
output of the type end-users will expect to find in
the final system




A spiral model for KEBN (Korb, Nicholson,
2011)

Requirements
Analysis

Implement




[terative lifecyle model for KEBN (Boneh, 2010)
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Common mistakes

KEBN aspect Mistake
The Process Parameterizing before evaluating structure
Trying to build the full model all at once
The Problem Not understanding the problem context
Complexity without value
Structure - Nodes | Getting the node values wrong
Node values aren’t exhaustive
Node values aren’t mutually exclusive
Incorrect modeling of mutually exclusive
outcomes
Trying to model fuzzy categories
Confusing state and probability
Confusion about what the node represents
Structure - Arcs | Getting the arc directions wrong
(a) Modeling reasoning rather than causation
(b) Inverting cause and effect
(c) Missing variables
Too many parents
Parameters Experts” estimates of probabilities are biased
(a) Overconfidence
(b) Anchoring
(c) Availability
Inconsistent “filling in™ of large CPTs
Incoherent probabilities (not summing to 1)
Being dead certain




Stage 1: Bayesian Network Structure

Common Modeling Mistake: Not understanding the problem
context

It is crucial for the knowledge engineer to gain a clear
understanding of the problem context. Ideally, this should be
available in some form of project description. The knowledge
engineer should ask questions like:

: “What do you want to reason about?”
: “What don’t you know?”

: “What information do you have?”

: “What do you know?”




Stage 1: Bayesian Network Structure

- Complexity without value

A very common impulse, when something is known
about the problem, is to want to put it in the
model.

But It may add complexity to the model without
adding any value (and in fact often reduces value)

- Instead, the knowledge engineer must focus on
the e

Q: “Which of the known variables are most relevant to the problem?”




Another commons mistakes in
structures

Getting the node values wrong
Node values aren’ t exhaustive
Node values aren’ t mutually exclusive

Incorrect modeling of mutually exclusive outcomes

Creation of separate nodes for different states of the same
variable. For example, create both a FineWeather variable
and a WetWeather variable (both Boolean). They are mutually
exclusive!

Trying to model fuzzy categories
Confusing state and probability

Confusion about what the node represents




Stage 1: Bayesian Network Structure

- Other common mistake: Getting the arc
directions wrong

(a) Modeling reasoning rather than causation
(b) Inverting cause and effect
(c) Missing variables

- Too many parentes

[t is usually worse to have many parents than more
parents. Modeling new nodes may help---




Reducing parents by intermediate
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Discretization

- While it 1s possible to build BNs with
continuous variables without discretization,
the simplest approach is to discretize them

- Indeed, many of the current BN software tools
available require this. They provides a choice
between its doing the discretization for you
crudely, ( into even—sized chunks) or allowing
the knowledge engineer more control over the
process




Stage 2: Probability Parameters

- Experts’ estimates of probabilities are
biased, including

Overconfidence: the tendency to attribute higher
than justifiable probabilities to events that have
a probability sufficiently greater than 0. 5.

Anchoring: the tendency for subsequent estimates to
be biased by an initial estimate (Kahneman and

Tversky, 1973)

Availability: Assessing an event as more probable
than is justifiable, because it is easily
remembered or more salient (Kahneman and Tversky,

1973)




Stage 2: Probability Parameters

- Inconsistent “filling in” of large CPTs

For example, the expert uses 0.99 for “almost
certain” 1in one part of the CPT, and 0.999 in
another. Or i1t may be inconsistency across the
CPT; for example, using different distributions
for combinations of parents that in fact are
very similar

- Incoherent probabilities (not summing to 1)

- Being dead certain




Stage 3: Decision Structure

First, we must model what decisions can be made, through the
addition of one or more decision nodes.

[f the decision task is to choose only a single decision at
any one time from a set of possible actions, only one
decision node is required

Combinations of actions can be modeled within the one node, for
example, by explicitly adding a sequence of actions (ex. “surgery-—
medication” )

This modeling solution avoids the complexity of multiple decision nodes,
but has the disadvantage that the overlap between different actions

Alternatively, you can use precedence links or Dynamic BN as you
have seen, but you will have to deal with additional complexity!




Stage 4: Utilities (Preferences)

- The next KE task for decision making is to
model the utility of outcomes.

- The first stage is to decide what the unit of
measure ( “utile” ) will mean. Remember that

money is not equal to utility ( but it is
related!)

- Remember the process to evaluate utilities of
situation through lotteries as we have seen!




Utility Assessment

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
‘best possible prize” u+ with probability p
“worst possible catastrophe’” ., with probability (1 — p)
adjust lottery probability p until A~ L,

continue as before

0.000001 instant death




Definindo Fungdes de Utilidades
através de loterias

Dado o intervalo [0,1] entre a “pior catastrofe
possivel” e “o melhor prémio possivel” , ao
encontrar uma loteria |p, 1;1-p, 0] que seja

indiferente a uma situa¢ao S o numero p é a
utilidade de S

Em ambientes, com prémios deterministicos pode—se
apenas estabelecer a ordem de preferéncias, nesse
caso usa-se o termo utilidades ordinais

- Fun¢oes de utilidades ordinais podem ser chamadas de fun¢oes
de valor e sao invariantes para qualquer transforma¢ao
monotonica




Utility of the Money

You choose between take part in the lottery [p,M;1-p, 0] or
receive the value X for not participating in the lottery

For each x, adjust p until half the class votes for lottery (M=10,000)
A
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Dinheiro vs Utilidade

Dinheiro nao tem uma rela¢ao linear (ou simples) com utilidade!

Ao estimar a utilidade em varios experimentos, observa—-se que dada
uma loteria L com valor esperado EMV(L) tem—se U(L) < U (EMV(L)),
isto é as pessoas sao aversas a risco

Un gréfico tipico de dinheiro (§) vs Utilidade (U):

58

T
800,000




[terative lifecyle model for KEBN (Boneh, 2010)
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