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Sequential Decision Making

Thus far, we have considered only single decision problems. Often
however a decision maker has to select a sequence of actions, or a
plan. Sometimes, a sequence of action is not enough and it is
required a function given observations

In the football decision problem used before, Clare might have a
choice as to whether to obtain the weather forecast (perhaps by
calling the weather bureau)

In the diagnostics example, the physician must decide whether to
order another exam, before deciding on a treatment option.

This type of decision problem has two stages:
1. The decision whether to run a test or make an observation

2. The selection of a final action




A decision network showing the general structure
for these test-act decision sequences....
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Test-action Decision Sequence

- If the decision is made to run the test, evidence
will be obtained for the observation node Obs,
before the Action decision 1s made; hence there 1is
an information link from Obs to Action.

- The question then arises as to the meaning of this
information link if the decision is made not to
run the test. This situation is handled by adding
an additional state, unknown, to the Obs node and
setting the CPT for Obs

P(Obs = unknown|Test = no) = 1
P(Obs = unknown|Test = yes) =0




Test-action Decision Sequence - 2

- In this generic network, there are arcs from the
Action node to both the chance node X and the
utility node U, indicating intervening actions with
a direct associated cost. However, either of these
arcs may be omitted, representing a non -
intervening action or one with no direct cost,
respectively

- There is an implicit assumption of no—forgetting in
the semantics of a decision network. The decision
maker remembers the past observations and
decisions, indicated explicitly by the information
and precedence links




Algorithm for Test-action Decision
Sequence

. Evaluate decision network with any available evidence (other than for the Test
result).
Returns Test decision.
. Enter Test decision as evidence.
3. If Test decision is ‘yes’
Run test, get result;
Enter test result as evidence to network.
Else
Enter result ‘unknown’ as evidence to network.

. Evaluate decision network.
Returns Action decision.




Real estate investment example

Paul is thinking about buying a house as an investment. While it looks fine externally,
he knows that there may be structural and other problems with the house that aren’t
immediately obvious. He estimates that there is a 70% chance that the house is really
in good condition, with a 30% chance that it could be a real dud. Paul plans to re-
sell the house after doing some renovations. He estimates that if the house really is
in good condition (i.e., structurally sound), he should make a $5,000 profit, but if
it isn’t, he will lose about $3,000 on the investment. Paul knows that he can get a
building surveyor to do a full inspection for $600. He also knows that the inspection
report may not be completely accurate. Paul has to decide whether it is worth it to




A Decision Network
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Evaluation using a decision tree model

- In order to show the evaluation of the decision
network, we will use a decision tree representation

To understand a decision tree, we start with the
root node, which in this case is the first decision
node, whether or not to inspect the house. Taking
the path from the root to leaves each path means:
From a decision node, it indicates which decision is made

From a chance node, it indicates which value has been
observed




Evaluating by Decision tree

When Paul decides about Inspection, he doesn’ t have any information about

the chance nodes, so there are no information links entering the Inspect
decision node.
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When he decides whether or not to buy, he will know the outcome of that
decision hence the information link from Report to BuyHouse.

The temporal ordering of his decisions, first about the inspection, and then

whether to buy, is represented by the precedence link from Inspect to
BuyHouse.

Note that there is a directed path from Inspect to BuyHouse (via Report) so
even if there was no explicit precedence link added by the knowledge

engineer for this problem, the precedence could be inferred from the rest of
the network structure
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[: Inspect the house

BH: Buy the house
C: Condition
R: Report

Note: We could include

R=unknown, when I=no

But it wouldn’ t change
anything




How to decide? Decision Tree
Evaluation Algorithm

1. Starting with nodes that have only leaves (utility nodes) as children.

2. If the node X is a chance node, each outgoing link has a probability and each
child has an associated utility. Use these to compute its expected utility

EUX)= ) U(C)xP(C)
CeChildren(X)

If the node is a decision node, each child has a utility or expected utility at-
tached. Choose the decision whose child has the maximum expected utility and

EU(X) = MAXccChildren(X) (EU(C))

3. Repeat recursively at each level in the tree, using the computed expected utility
for each child.

4. The value for the root node is the maximal expected utility obtained if the
expected utility is maximized at each decision.
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Decisions and their Expected Utilities

Decisions calculated for the real estate investment problem.

Evidence

Bel(C=good)

EU(I=yes)

EU(I=no)

Decision

None

0.70

2635

2600

[=yes

Given I=no

Report=unknown

0.70

EU(BH=yes)
2600

EU(BH=no)
0

BH=yes

Given [=yes
Report=good
Report=bad

15 =¥
0.115

EU(BH=yes)
4055
-2682

EU(BH=no)
-600
-600

BH=yes
BH=no

The report may change the decision of buying

the house!




Value of information

- The decision of whether to gather new
information 1is based on the value of the
information.

EB(Test) = EU(Test = yes) — EU(Test = no)

- In the real estate investment problem,

EB(Inspect) = EU(Inspect = yes)—EU (Inspect = no)
—  2635-—2600 =35

- Note that it already computes the cost of the
inspection. So the price is worth paying




Sequential Decision Making

- Sequential Decision Making may be approached
using another type of Graph Probabilistic Model
(Modelos Probabilisticos em Grafos)

Markov Chain (Redes ou Cadeias de Markov)

- Sequential Decision making is complex in
Bayesian Networks, one way of dealing with it
is using Dynamic Bayesian Network (DBN) which
1s going to be our next subject




I Dynamic Bayesian networks




Dynamic Bayesian networks

DBN are also called dynamic belief networks (Russell and
Norvig, 1995, Nicholson, 1992), probabilistic temporal
networks (Dean and Kanazawa, 1989, Dean and Wellman, 1991)
and dynamic causal probabilistic networks (Kjerulff, 1992).

Dynamic Bayesian networks (DBNs) explicitly model change over
time.

In the next chapter, we will extend these DBNs with decision
and utility nodes, to give dynamic decision networks, which
are a general model for sequential decision making or
planning under uncertainty.




Bayesian Networks and time

Although a causal relationship represented by an arc implies a
temporal relationship, BNs do not explicitly model temporal
relationships between variables.

And the only way to model the relationship between the current value
of a variable, and its past or future value, is by adding another
variable with a different name. We saw an example of this with the
fever example earlier with the use of the FeverLater node.
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BN and time

A Bayesian network is defined by a set of random variable and
arcs connecting them

When constructing a DBN for modeling changes over time, we
include one node for each X; for each time step. If the
current time step is represented by t, the previous time step
by t-1, and the next time step by t +1, then the
corresponding DBN nodes will be:

¢ Current: {X;;X5; ... X3 }
e Previous: {X{ ' X5~

o Nexp {3+ xr




Dynamic Bayesian Network

- The relationships between variables in a time—slice
are represented by intra—-slice arcs, Although it
1s not a requirement, the structure of a time-slice
does not usually change over time

The relationships between variables at successive
time steps are represented by inter—slice arcs,
also called temporal arcs, including relationships
between the same variable over time, 1i.e:

t+1
A




General structure of a Dynamic
Bayesian Network

Previous time 1—1 Current time 1 Next time 7+]

= intra—slice arcs — jnter—slice arcs

- Note that there are no arcs that span more than a
single time step. This is another example of the
Markov assumption
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Variables and their relations intra-
slice and inter-slice

The relationships between variables, both intra-slice and inter-slice, are quanti-
fied by the conditional probability distribution associated with each node. In general.
for node X! with intra-slice parents Y/, ..., Y) and inter-slice parents X_{_l and Z‘;_] ;
o iy Z&1  the CPT is

- Given the usual restriction that the networks for each time slice
are exactly the same and that the changes over time also remain the
same (i.e., both the structure and the CPTs are unchanging), a DBN
can be specified very compactly. The specification must include:

Node names
Intra-slice arcs
Temporal (inter—slice) arcs
CPTs for the first time slice t0 (when there are no parents from a previous time)

CPTs for t +1 slice (when parents may be from t or t +1 time-slices).




The Fever Aspirin Example

Suppose that you know that a fever can be caused by the flu. You can use a thermome-
ter; which is fairly reliable, to test whether or not you have a fever. Suppose you also
know that if you take aspirin it will almost certainly lower a fever to normal. Some
people (about 5% of the population) have a negative reaction to aspirin. You'll be
happy to get rid of your fever, as long as you don’t suffer an adverse reaction if you
take aspirin.
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DBN Fever Aspirin Example




Reasoning in DBN

Given evidence about a set of nodes, from the first time
slice up to and including the current time—-slice t, we can
perform belief updating on the full DBN, using standard BN
inference algorithms.

This means obtaining new posterior distributions for all the
non—evidence nodes, including nodes in the t+l1 and later
time—slices. This updating into the future is called
probabilistic projection

However, this type of DBN gets very large, very quickly,
especially if the interval between time slices is short. To
cope, in most cases the DBN is not extended far into the
future. Instead, a fixed size, sliding “window” of time
slices i1s maintained.




DBN and sliding “window” of two time-slices
(Shading indicates evidence node.)

current next




Sliding window...

As the reasoning process moves forward with time, one older
time slice is dropped off the DBN, while another is added.

This use of a window means that every time we move the window
along, the previous evidence received is no longer directly
available. Instead, it is summarized taking the current
belief for (root) nodes, and making these distributions the
new priors

The DBN updating process is given in the next Algorithm.

Note: steps of this DBN updating algorithm are exactly
those of a technique used in classical control theory,
called a Kalman Filter




DBN updating process

1. Sliding: Move window along.
2. Prediction:

(a) We already know Bel(X;_1|Ey,_yy), the estimated probability distribu-
tion over X, _.

(b) Calculate the predicted beliefs, Bel (Xe|Ef14-13),
3. Rollup:

(a) Remove time-slicet — 1.

(b) Use the predictions for the t slice as the new prior by setting P(X) to
Bel (X [Eq ;1))

4. Estimation:

(a) Add new observations E,.

(b) Calculate Bel(X, E{I__,}), the probability distribution over the current
state.

(c) Add the slice fort + 1.




Inference in DBN

- Exact clustering algorithms can be applied to
DBNs, particularly if the inference is
restricted to two time—slices

- Unfortunately, it is common that there is a
cluster containing all the nodes in a time
slice with inter—-slice connections, so the
clusters become hard computationally




Dynamic decision networks

- Just as Bayesian networks can be extended with a temporal
dimension to give DBNs so can decision networks be extended
to give dynamic decision networks (DDNs).




A DDN for the Fever problem

——

/"

—./- t+1




Mobile Robot Example

The robot’s task is to detect and track a moving object, using sonar and vision sensor
information, given a global map of the office floor environment. The robot must also
continually reassess its own position (called localization) to avoid getting lost. At
any point in time, the robot can make observations of its position with respect to
nearby walls and corners and of the target’s position with respect to the robot.

- The problem of a mobile robot that does localization and tracking
can be modeled with a DDN as follows: The nodes S; and S; represent
the locations of the target and the robot, respectively

The decision node is M, representing the robot’ s movement actions
options

The nodes Oy and O; represent the robot’ s observations of its own
and the target’ s location, respectively

The overall utility is the weighted sum over time of the utility at
each step U, , which is a measure of the distance between the robot
and its target.
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