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§0:  Abstract  and  Table of Contents

 

Applications of cross-products to geometrical problems in  Euclidean 3-Space  lead to formulas 
that are easier to manipulate with associative matrix multiplications than with conventional non-
associative and anti-commutative cross-products.  This thesis is supported by derivations of neat 
formulas for rotations and for solutions to nearest-point problems.  However,  regardless of their 
notation,  many neat formulas in textbooks can be rendered numerically deceptive by roundoff 
unless they are evaluated extra-precisely.  Otherwise extra effort must be expended to compute 
results at least about as accurately as the data deserve.
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§1:  

 

√

 

(–I)  in  Euclidean  2-Space  (a Summary and Review)

 

The operator  –I  reverses vectors.  In two dimensions it has a skew-symmetric square root   

J :=    determined uniquely but for its sign by the two equations   J

 

2

 

 = –I  and  J

 

T

 

 = –J .  This

operator  J  rotates the plane through a quarter turn;  whether clockwise or counter-clockwise 
depends upon the respectively left- or right-handed orientation of the coordinate system.  More 
generally,  exp(

 

θ

 

·J) := I·cos(

 

θ

 

) + J·sin(

 

θ

 

)  turns the plane through an angle  

 

θ

 

 .  To construct a 

vector of length  ||

 

u

 

|| = 

 

√

 

(

 

u

 

T

 

u

 

)  perpendicular to any given vector  

 

u

 

  in the  Euclidean  plane,  form  

J

 

u

 

 .  For any  2-by-2  matrix  B := [

 

u

 

  

 

v

 

]  we find that  B

 

T

 

JB = J·

 

v

 

T

 

J

 

u

 

 = J·det(B) ,  which implies  

Adj(B) = –JB

 

T

 

J .  (Recall  Adj(B) := det(B)·B

 

–1

 

  when  det(B) 

 

≠

 

 0 .)  Our formulas use associative 

matrix multiplication for the scalar product  

 

v

 

T

 

·

 

w

 

 = 

 

w

 

T

 

·

 

v

 

  instead of the non-associative dot 
product  

 

v

 

•

 

w

 

  for reasons that will become increasingly persuasive in the following pages.

Because  J  is unchanged by rotations of coordinates,  it can produce ostensibly coordinate-free 
solutions for many geometric problems in the  Euclidean  plane.  For instance,  the equation of a 

line through  

 

v

 

  perpendicular to  

 

w

 

  is  

 

w

 

T

 

(

 

x

 

–

 

v

 

) = 0

 

 

 

;  the equation of a line through  

 

v

 

  parallel to  

 

u

 

  is  

 

u

 

T

 

J(

 

x

 

–

 

v

 

) = 0

 

 

 

;  two lines whose equations are  

 

u

 

T

 

x

 

 = 

 

µ

 

  and  

 

v

 

T

 

x

 

 = ß  intersect at a point  

 

z

 

 := J·(

 

u

 

·ß – 

 

v

 

·

 

µ

 

)

 

/

 

(

 

v

 

T

 

J

 

u

 

) .  However,  not every orthogonal change of basis  (coordinates)  leaves  J  

unchanged;  a  

 

Reflection

 

  W = W

 

–1

 

 = W

 

T

 

 

 

≠

 

 

 

±

 

I  changes  J  to  W

 

–1

 

JW = W

 

T

 

JW = J·det(W) = –J ,  
which reminds us that reflection reverses orientation in the plane.

 

Do you see why such a  W  must be a reflection?  Why it must have the form  W = I – 2

 

ww

 

T

 

/

 

w

 

T

 

w

 

  for a suitable 
vector  

 

w

 

 ?  Why  det(W) = –1 ?  Can you confirm every unobvious assertion in the summary above?)

In many ways,  but not all,  J  is to the  Euclidean  plane what  

 

ı

 

 := 

 

√

 

(–1)  is to the complex plane.  J  operates upon 
vectors in the plane but is not a vector in that plane,  whereas  

 

ı

 

  is simultaneously a multiplicative operator and a 
vector in the complex plane.  The two planes are topologically different,  though often confused:  Roughly speaking,  
the complex plane has just one point at infinity best visualized by  

 

Stereographically

 

  projecting the complex plane 
upon a sphere,  whereas the  Euclidean  plane has a circle  (or at least a line)  at infinity.  We won’t pursue this here.

 

Cross-products of vectors in  Euclidean 2-Space  appear in restrictions to  2-space  of formulas 
derived originally for vectors in  Euclidean 3-Space.  Consequently the  2-space  interpretation of  

“

 

 

 

u

 

×

 

v

 

 ”  often reduces to a scalar  

 

u

 

×

 

v

 

 = 

 

v

 

T

 

J

 

u

 

 .  Because cross-products are neither associative nor 
commutative,  triple products like  “

 

 

 

u

 

•

 

v

 

×

 

w

 

 

 

”,  “

 

 

 

u

 

×

 

v

 

•

 

w

 

 

 

”  and  “

 

 

 

u

 

×

 

v

 

×

 

w

 

 ”  can generate confusion 
if parsed improperly.  When all vectors  u,  v  and  w  lie in the same  Euclidean 2-Space,  …

u•(v×w)  and  (u×v)•w  should both be zero if they appear at all,  and

(u×v)×w = –w×(u×v) = Jw·(vTJu)   in  2-space.
Whence come these formulas?  From  §§4-5.  They will make sense after we have found and 
adopted a matrix notation for cross-products,  which motivates the notes that follow.

§2:  Cross-Products  and  Rotations  in  Euclidean  3-Space
Henceforth bold-faced lower-case letters  p, q, r, …, x, y, z  stand for real 3-dimensional column-

vectors.  Then row vector  pT := [p1  p2  p3]  is the transpose of column vector  p ,  and  pT·q  is the 

scalar product  p•q  of row  pT  and column  q .   Euclidean length  ||p|| := √(pT·p) .

0 1–

1 0
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Do not confuse the scalar  pT·q = qT·p    with the  3–by–3  matrices  (“dyads”)  p·qT ≠ q·pT  of 
rank  1 ,  nor with the vector cross-product  p×q = –q×p .   Cross-products are important enough 

to justify introducing a notation  “ p¢
 ”,  pronounced  “ pee-cross”,  for a  3-by-3  skew-symmetric  

( p¢T = –p¢ )  matrix of rank  2  defined by the vector cross-product thus:  p×q = p¢·q .  Explicitly 

the matrix  p¢ :=  .  We shall see whence this comes after we see why we like it.

We prefer matrix notation for these geometrical entities because matrix multiplication is 
associative:

     pT·q¢·r = (pT·q¢)·r = pT·(q¢·r) = p•(q×r)    and    p¢·q¢·r = (p¢·q¢)·r = p¢·(q¢·r) = p×(q×r)  
unlike scalar and cross-products;   (p•q)·r ≠ p·(q•r)  and    (p×q)×r ≠ p×(q×r) .  Besides legibility,  
a matrix notation promotes simpler expressions,  shorter proofs,  and easier operator overloading 
in programming languages.

* * * * * * * * * * * * * * *
§3:                              For Readers Reluctant to Abandon  •  and  x  Products

( Other readers can skip to the next string of asterisks.)

We’re not abandoning familiar locutions;  we’re just writing most of them shorter.  Compare the 
following classical formulas with their matrix equivalents for succinctness and ease of proof:

   Triple Cross-Product:          (p×q)×r =  q·p•r – p·q•r   vs.   (p¢·q)¢ =  q·pT – p·qT 

   Jacobi’s Identity:        p×(q×r) + q×(r×p) = –r×(p×q)   vs.   p¢·q¢ – q¢·p¢ = (p¢·q)¢ 

   Lagrange’s Identity:   (t×u)•(v×w) = t•v·u•w – u•v·t•w   vs.   (t¢·u)T·(v¢·w) = det([t  u]T·[v  w]) 

Some things don’t change much;   p×q = –q×p   becomes  p¢·q = –q¢·p ,  so  p¢·p = o  ( the zero 

vector ),   and   p•(q×r)  =  pT·q¢·r  =  det([p  q  r]) .

The notations’ difference becomes more pronounced as problems become more complicated.  For 
instance,  given a unit vector  û  ( with  ||û|| = 1 )  and a scalar  ψ ,  what orthogonal matrix  

R = (RT)–1  rotates  Euclidean  3–space through an angle  ψ  radians around the axis  û ?  In other 
words,  R·x  is to transform every vector  x  by rotating it through an angle  ψ  about an axis  û  
fixed through the origin  o .

An ostensibly simple formula  R := exp(ψ·û¢)   uses the skew-symmetric cross-product matrix  û¢  
defined above.  Here  exp(…)  is  not  the  array  exponential that is applied elementwise,  but is 
the  matrix  exponential;  think of  R = R(ψ)  as a matrix-valued function of  ψ  that solves the 

differential equation  dR/dψ = û¢·R = R·û¢  starting from the identity matrix  R(0) = I .  Given  û  

and  ψ ,  an explicit formula for this  R  is    R =  I  +  2·( I·cos(ψ/2) + û¢·sin(ψ/2) )·û¢·sin(ψ/2) .
Rewriting this expression with solely  •  and  ×  products doesn’t improve it.  Try that!

In what follows the formulas above will be first derived and then applied to a few examples.

* * * * * * * * * * * * * * *

0 p3– p2

p3 0 p– 1

p2– p1 0
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§4:  A Derivation of  Cross-Products  in  Euclidean 3-Space
What operators in  Euclidean  3-space are analogous to the quarter-turn  J  in  2-space?  Every 
rotation of  3-space is characterized by its  axis,  a line left unchanged by the rotation,  and its 
angle of rotation about that axis.  Let  v  be a nonzero vector parallel to such an axis.  Analogous 

to  –I  in  2-space  is the operator  vvT/vTv – I ,  which projects arbitrary vectors into the plane 
through  o  perpendicular to  v  and then reverses the projection through  o .  That operator’s skew-
symmetric square root,  determined  (as we shall see)  uniquely but for its sign by  v ,  is the 
analog of  J ,  but different for every different direction  v .  Consequently that square root is a 
discontinuous function of  v  at  v = o .  Multiplying that square root by  ||v||  renders it continuous.

Hence we define the operator  v¢  to be one of the solutions  v¢ := ±S  of the equations

S2 = vvT – vTv·I    and    S = –ST .
To see why these equations determine  S  uniquely but for sign,  choose an orthonormal basis with  
v/||v||  as its first basis vector and find a matrix representing  S  in that coordinate system.  Every 

such matrix  S  must satisfy  Sv = o ;  here is why:  Evidently  S2v = o ,  so  det(S)2 = det(S2) = 0 ,  

and so  Sz = o  for some  z ≠ o ;  but then  S2z = o ,  and this implies that  z  is a scalar multiple of  
v ,  whence follows  Sv = o  as claimed.  Consequently,  in the foregoing orthonormal coordinate 
system,  every skew-symmetric solution  S  is represented by a matrix whose first row and column 
contain only zeros,  whereupon the remaining  2-by-2  principal submatrix must be  ±J·||v||  as 
explained in the second sentence of  §1. Thus,  S  is determined uniquely but for sign.

Given  v =  ,  consider the solution  S :=   of the equations  Sv = o  and  S = –ST ;  

this  S2 = vvT – vTv·I  too,  which combines with the previous paragraph to imply  v¢ = ±S .  Its 

sign could be chosen arbitrarily but we set  v¢ := +S ,  thereby classifying the coordinate system as  

“right-handed”.  Note now that  v¢  is a continuous function of  v .  In summary,  …

     For every vector  v  in  Euclidean  3-space,  the linear operator  v¢  is a continuous linear

     function of  v  determined but for sign by the equations  (v¢)2 = vvT – vTv·I  and  (v¢)T = –v¢ .
     Its sign is determined for every  v  by its sign for any one  v ≠ o  and by continuity.

The notation for  v¢ ,  pronounced  “vee-cross”,  is inspired by the relation  v¢w = v×w ,  where 
the latter cross-product coincides with the one defined in texts on vector analysis.  Here are four of 
its properties:

v¢w = o    just when  ±v  and  w  are parallel;  this was proved using  z  above.

v¢w ⊥  v    because  vTv¢w = –(v¢v)Tw = oTw = 0 .

v¢w ⊥  w    because  wTv¢w = (wTv¢w)T = wT(v¢)Tw = –wTv¢w = 0 .

||v¢w||2 = ||v||2 ||w||2 – (vTw)2    because it is  –wT(v¢)2w ,  etc.

Combining the formula  vTw = ||v||·||w||·cos∠ (v, w)  with the last equation proves that

||v¢w|| = ±||v||·||w||·sin∠ (v, w)
with a sign that depends upon the orientation,  if any,  assigned to the angle  ∠ (v, w)  when it has 
to be distinguished from  ∠ (v, w) = –∠ (w, v) .  Anyway,

ξ
η
ζ

0 ζ– η
ζ 0 ξ–

η– ξ 0
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||v¢w|| = | the area of a parallelogram with adjacent sides  v  and  w | .

From the foregoing properties we infer by symmetry that  w¢v  must be one of  ±v¢w  whenever 
they are nonzero because they are vectors with the same length and perpendicular to the same two 
nonparallel vectors  v  and  w .  Trials with basis vectors for  v  and  w  show that

w¢v  = – v¢w ,
and this equation must persist for all  v  and  w  since both sides are continuous bilinear functions.  

This  anti-commutative  identity is a good reason to prefer the notation  v¢w  over  v×w ;  and later 
the preference will intensify when we find the triple cross-product  non-associative.  Besides,  we 

shall need  v¢  in isolation later to describe rotations.

§5:  Triple Products
The scalar expression  uTv¢w  is linear in each vector separately,  and reverses sign when any two 
vectors are swapped;  this follows from anti-commutativity when  v  and  w  are swapped,  from 

skew-symmetry of  v¢  when  u  and  w  are swapped;  and when  u  and  v  are swapped it follows 

from  uTv¢w = –wTv¢u = wTu¢v = –vTu¢w .  Compare this with the characterization of the 
determinant  det([u  v  w])  as a functional,  linear in each column of  [u  v  w]  separately,  that 

reverses sign when any two columns are swapped.  It follows that  uTv¢w/det([u  v  w])  must be a 
constant provided the denominator does not vanish.  Setting matrix  [u  v  w] = I  determines that 
constant to be  1 ,  whereupon continuity implies an important identity for all  u,  v  and  w :

 uTv¢w = det([u  v  w]) .
This formula can be confirmed by direct but tedious algebraic manipulation,  and also by the 
following geometric argument:

Let parallelogram  P  have adjacent sides  v  and  w  so that its area  |P| = ||v¢w|| ≠ 0 .  Next let  Q  
be a parallelepiped whose sides emanating from a vertex are  u,  v  and  w ;  then its volume is  
|Q| = det([u  v  w])  and also

     |Q| =  |P|·|| projection of  u  onto the unit-normal to  P ||

=  ||v¢w|| · || projection of  u  onto  v¢w/||v¢w|| ||  =  |uTv¢w| .

Now to confirm that  uTv¢w = +det([u  v  w])  try any three vectors  u,  v  and  w,  say the basis 
vectors,  and then invoke continuity to cope with the case when  v  and  w  are  (anti)parallel.

Almost as important as that determinantal formula is the  triple cross-product formula 

 u×(v×w) = u¢v¢w  =  v·uTw – w·uTv  =  (vwT – wvT)u .

To prove this,  note that it must be perpendicular to a vector  v¢w  perpendicular to both  v  and  

w ,  and hence must lie in the plane of  v  and  w .  Therefore  u¢v¢w = v·ß – w·µ  for some scalars  

ß  and  µ .  Premultiplication by  uT  reveals that  0 = uTv·ß – uTw·µ  and therefore some scalar 

functional  ƒ = uTv/µ = uTw/ß  exists satisfying  u¢v¢w = ( v·uTw – w·uTv )/ƒ .  Since both sides 
of this equation are linear in each of  u,  v  and  w  separately,  ƒ  can vary with none of them;  it 
must be a constant.  Its value  ƒ = 1  can be found by substituting one basis vector for  u  and  w  
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and a second basis vector for  v .  Alternatively,  brute-force manipulation by a computerized 
algebra system like  Derive,  Maple,  Mathematica  or  Macsyma  can be used to confirm the triple 

cross-product formula.  It is easier to remember in  §3’s  form:   (v¢w)¢ = wvT – vwT .

That formula shows that  (u×v)×w = (u¢v)¢w = –w¢u¢v = (vuT – uvT)w ≠ u×(v×w) ;  the cross-

product is  not  associative,  though matrix multiplication  is  associative:  (u¢v¢)w = u¢(v¢w) .  
That formula also confirms  Jacobi’s Identity:

 u¢v¢w + v¢w¢u + w¢u¢v  = o ,   or   (u¢v)¢ = u¢v¢ – v¢u¢ ,
and helps to confirm  Lagrange’s Identity:

 (t¢·u)T(v¢·w)  =  tTv·uTw – uTv·tTw  = det([t  u]T[v  w]) .

Since they are not long,  you should work out the confirmations of these identities,  which figure in both classical and  
Quantum mechanics.

§6:  Rotations  R  about an  Axis  v  in  Euclidean 3-Space
If skew-symmetric matrix  S = –ST  is constant,  the unique solution of the initial-value problem

R(0) = I   and    dR/dτ = SR  for all  t

is a matrix  R(τ)  that must be orthogonal;  RT = R–1  because  d(RTR)/dτ = RTSTR+RTSR = O  

and therefore  RTR = I  for all  τ .  This implies  det(R)2 = 1  and then  det(R) = +1  because it is 
continuous for all  τ .  Thus,  R(τ)  is a proper rotation;–  no reflection.  It has a power series too:

R(τ) = exp(τ·S) = ∑k≥0 τk·Sk/k! .

Now,  every  3-by-3  skew-symmetric matrix  S  determines a vector  v  such that  S = v¢ ;  then  

Sv = o ,  S2 = vvT – ||v||2·I ,  S3 = –||v||2·S ,  S4 = –||v||2·S2
 ,  …,  Sm+2k = (–||v||2)k·Sm  for  m > 0 .  

By taking odd and even terms separately in the series for  exp(τ·v¢)  we condense it to

R(τ) = exp(τ·v¢)  =  I + (1 – cos(τ·||v||))·(v¢/||v||)2 + sin(τ·||v||)·v¢/||v||

    =  I + 2sin(τ·||v||/2)·( sin(τ·||v||/2)·v¢/||v|| + cos(τ·||v||/2)·I )·v¢/||v|| ,
thus providing a relatively simple and verifiable formula for the operator that rotates  Euclidean 3-
space through an angle  τ·||v||  about a given axis  v ≠ o .  Its  τ-derivative  is extremely simple:

d exp(τ·v¢)/dτ = v¢·exp(τ·v¢) = exp(τ·v¢)·v¢ .
( The  v-derivative  would require a long expression too complicated to serve the didactic purposes of these notes.)

The converse problem is this:  Given an orthogonal matrix  R = RT–1  that effects a proper rotation 
because  det(R) = +1 ,  how can its axis  v  be determined?  What seems the simplest way at first is 

to compute  R–RT = 2·sin(τ·||v||)·v¢/||v|| ,  which works provided  sin(τ·||v||)  is not so tiny that 
roundoff in  R  obscures the desired result.  Generally a more reliable procedure is to apply  
Gaussian  elimination to solve the equation  (R–I)v = o  for a  v ≠ o ,  or alternatively to compute 

an appropriate  (not too small)  column of  Adj(R–I) = (some scalar)·vvT .  This procedure works 
because  R–I  is singular  (to within roundoff)  with rank  2 ;  here is how we know this to be so:

Consider any eigenvalue  µ  of  R ;  this  µ  may be complex,  in which case its eigenvector  z  is 
complex too,  and we shall write  z*  for its complex-conjugate transpose.  Next we find that  

|µ|2·z*z = (Rz)*(Rz) = z*RTRz = z*z > 0 ,  whereupon  |µ| = 1 .  Now,  R  has three eigenvalues  
µ ,  the roots of the characteristic equation  det(µI – R) = 0 .  Because its coefficients are real,  any 
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of the three eigenvalues that are not real must come in complex-conjugate pairs whose product,  
their squared magnitude,  must equal  1 .  The product of all three eigenvalues is  det(R) = +1  too.  
Two cases can arise:
•  If  R  has a non-real eigenvalue  µ  then  µ*  is another and the third is  1/(µ*µ) = 1 .
•  Otherwise all three eigenvalues are real,  namely  ±1 ,  and then  +1  appears among them

an odd number of times because their product is  +1  too.
Thus  R–I  must be singular;  the axis  v  is an eigenvector of  R  belonging to eigenvalue  +1 .
Problem (hard):  Show that  Adj(R–I) = (3 – Trace(R))·vvT/||v||2  provided proper orthogonal  R ≠ I .

Must each proper orthogonal  R = exp(τ·û¢)  for some real  τ  and unit vector  û  (with  ||û|| = 1 ) ?  
Yes,  and  û = v/||v||  where  v  is the axis found above.  To see why,  change to a new orthonormal 
coordinate system with  û  as its first basis vector.  The matrix representing  R  in this new basis 
has  [1  0  0]  and its transpose as first row and column.  (Why?)  The last principal  2-by-2  
submatrix must be  exp(τ·J)  because it is proper orthogonal too;  thus  τ  is determined.  After 

changing back to the original basis we find  R = exp(±τ·û¢) .  ( We’ll explain the  ±  sign later.)

§7:  Constructing Rotations out of Reflections in a  Euclidean  Space of any  Dimension ≥ 2
For any  w ≠ o  in  any  Euclidean  space,  W := I – 2wwT/||w||2  is an orthogonal reflection.
Problem:  Verify that  W = WT = W–1 ,  that  w = –Ww  is reversed by the reflection,  and that it preserves the  

(hyper)plane  of vectors  x  orthogonal to  w .  Thus the reflection’s mirror-plane satisfies the equation  wTx = 0 .  

Verify too that  det(W) = –1  by applying the formula  det(I – uvT) = 1 – vTu .  Can you prove this last formula?

Suppose distinct nonzero vectors  x, y, s  and  t  are given with  ||x|| = ||y||  and  ||s|| = ||t||  and  

sTx = tTy .  (This last equation says that  |∠ (s, x) | = |∠ (t, y) | .)  We wish to construct a proper 
orthogonal  R  that rotates  x  to  Rx = y  and  s  to  Rs = t .  We shall construct this  R := HW  as a 

product of two orthogonal reflections:  W := I – 2wwT/||w||2  and  H := I – 2hhT/||h||2  in which  
w := x–y  and  h := Ws–t ,  except that if  Ws = t  then  h  may be any nonzero vector orthogonal 
to both  y  and  t  provided such a vector exists.  ( R  might not exist in  2-space;  why not?)

Problem:  Verify that  W  swaps  x  and  y ,  and that  H  swaps  Ws  and  t  while preserving  y ,  so that  R  moves the 
pair  (s, x)  to the pair  (t, y)  while preserving their lengths and angle.  Verify too that  R  is proper orthogonal.

Problem (harder):  Prove that every rotation in  Euclidean  2-  or  3-space  is a product of two orthogonal reflections..  
(The proof must ensure that both reflections exist.)  How many suffice in  Euclidean  N-space?

§8:  Changing to an Orthonormal Basis with Opposite Orientation
The vector  v×w = v¢w  is sometimes called a  pseudo-vector  because of how an arbitrary change 

of orthonormal basis may affect it.  For any orthogonal  Q = QT–1  we shall find that

(Qv)¢(Qw) = Qv¢w·det(Q) ,   or equivalently   (Qv)¢ = Qv¢QT·det(Q) .
Of course  det(Q) = ±1 ;  its appearance in the formula above is what deserves an explanation.

If  det(Q) = +1  then  Q  is a proper rotation and our geometrical intuition may well persuade us that rotating  v  and  

w  together as a rigid body must rotate  v¢w  the same way,  which is what  the formula in question says.  Otherwise  
det(Q) = –1 ,  in which case  Q  combines rotation and reflection;  in this case the formula in question,  in the form  

(Qv)¢Q = Qv¢·det(Q) ,  will take some work to be confirmed.  A comparatively simple proof is provided by …
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David Meredith’s Identity:  Adj(LT)·v¢ = (Lv)¢·L  for any  3-by-3  matrix  L  and vector  v  in  Euclidean  3-space.

Into this identity substitute  L := Q  and use  QT = Q–1  and  Adj(QT) = (QT)–1·det(QT) = Q·det(Q)  to get the formula 
in question.  What remains to be done is to prove the identity:

For  all  3-vectors  u,  v  and  w  regarded as columns of a matrix  [v, w, u] ,  we find that

       det(L)·uTv¢w = det(L)·det([v, w, u]) = det(L·[v, w, u]) = det([Lv, Lw, Lu]) = (Lu)T(Lv)¢Lw = uTLT(Lv)¢Lw .

Consequently  det(L)·v¢ = LT(Lv)¢L .  Into this equation substitute  det(L)·I = det(LT)·I = LT·Adj(LT)  when  LT  is 

nonsingular to get first  LT·Adj(LT)·v¢ = LT(Lv)¢L ,  and then the desired identity.  It is a polynomial equation in the 
elements of  L  and therefore valid also when  L  is singular.   Q.E.D.

When  det(Q) = –1  the formulas just proved remind us that reflections reverse sense,  changing right-handed triad  

(v, w, v¢w)  into left-handed triad  (Qv, Qw, Qv¢w) ,  whereas  (Qv, Qw, (Qv)¢(Qw))  is right-handed.  (Look in a 
mirror to see why.)  Consequently the last two triads’ last elements must be oppositely directed.

Question: Why,  when you look in a mirror,  do you see  left  and  right  
reversed there but not  up  and  down ?

Answer: That’s not what you see.  (What you do see is described on the next page.)

§9:  Applications of Cross-Products to Geometrical Problems
Cross-products  p×q ,  or  p¢·q  in our matrix notation,  figure prominently instead of determinants 
in neat textbook solutions of many commonplace geometrical problems.  Our first example is …

#0.  Given the equations   pT·x = π ,  bT·x = ß ,  wT·x = Ω   of three planes,  they intersect at point

z =  ( b¢·w·π + w¢·p·ß + p¢·b·Ω )/(pT·b¢·w)  .

Neat formulas are more memorable and therefore more likely to appear in textbookss and be used 
by programmers than are ugly numerical algorithms like  Gaussian Elimination  even if the latter 
are numerically more stable.  Gaussian Elimination  is also faster than the foregoing formula;  but 

a programmer can easily fix that by rewriting   z = ( (b¢·w)·π + p¢·(b·Ω – w·ß) )/(pT·(b¢·w))   and 
reusing a common subexpression.  Still,  this formula is not so robust numerically as is  Gaussian 
Elimination  with pivotal exchanges.

Like  Beauty,  the neatness and speed of a formula lie in the eye of the beholding programmer 
sooner than does numerical stability.  Roundoff doesn’t figure in textbooks’ formulas.  The reader 
will not easily determine which are numerically unstable among the neat textbook formulas that 
solve the following eight commonplace geometrical problems each of the  Nearest-Point  kind:

  Given a point  y  and the definition of a line or plane  G , we seek a point  z  in  G  nearest  y .

We expect the line segment joining  y  and  z  to stick out of  G  perpendicularly.

y

z
G

•

•
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Answer to the Question above:  What you actually see reversed in a mirror are  forward  and  back .
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If two formulas for  z  are offered below they suffer differently from rounding errors;  the first 
formula suffers less than the second whenever  ||z–y|| << ||y||  and the second less than the first 
whenever   ||z|| << ||y|| .  Unless parentheses indicate otherwise,  associative products  A·B·C  
should be evaluated in whichever order,  (A·B)·C  or  A·(B·C) ,  requires fewer arithmetic 
operations;  doing so below tends to diminish roundoff too.  An exercise for the diligent reader is 
to confirm the mathematical correctness of these formulas,  even if roundoff may undermine their 
validity;  casual readers will find their confirmations in  §12.

“Numerically stable”  solutions for these eight  “linearly constrained least-squares”  problems may be found in some 
works on numerical linear algebra;  but no known stable solution is simply a rational formula like all those below.

#1.  Given the equation  pT·x = π  of a plane  ∏ ,  the point  z  in  ∏  nearest  y  is

z :=  y – p·(pT·y – π)/||p||2   =   ( p·π – p¢·p¢·y )/||p||2 .

#2.  Given three points  u–v,  u  and  u+w  through which one plane  ∏  passes,  the point  z  in  ∏  

nearest  y  is    z :=  y – p·pT·(y – u)/||p||2   =   u – p¢·p¢·(y – u)/||p||2   wherein   p := v¢·w .

#3.  Given three points  u,  v  and  w  through which one plane  ∏  passes,  the point  z  in  ∏  
nearest  y  is

z :=  y – p·pT·(y – u)/||p||2  =  u – p¢·p¢·(y – u)/||p||2   wherein   p := (v – u)¢·(w – u) .
The order of  u,  v  and  w  is permutable in each formula separately.  To attenuate roundoff in  p  
choose  u  to maximize  ||v – w||  roughly.  (Why?  See  §11.)  For  z  choose  u  to minimize  
||y – u||  in the first formula,  ||u||  in the second.

#4.  Given two points  u  and  u+v  through which one line  £  passes,  the point  z  in  £  nearest  y  

is    z :=  y + v¢·v¢·(y – u)/||v||2   =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2 .

#5.   Given two points  u  and  u+v  through which one line  £  passes,  and two points  y  and  y+w  

through which another line  ¥  passes,  the point nearest  £  in  ¥  is   x :=  y + w·vT·p¢·(y – u)/||p||2   

wherein  p = v¢·w .  Nearest  ¥  in  £  is    z := x – p·pT·(y – u)/||p||2 = s := u + v·wT·p¢·(y – u)/||p||2 .

#6.  Given two points  u  and  w  through which a line  £  passes,  the point  z  in  £  nearest  y  is

z :=  y + v¢·v¢·(y – u)/||v||2  =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2  wherein  
v := w – u .  Since  u  and  w  are permutable,  choose  u  to minimize  ||y – u||  in the first and last 
formulas,  and to minimize  ||u||  in the middle formula,  which is best if  ||z|| << ||u||  too.

#7.  Given the two equations  pT·x = π  and  bT·x = ß  of a line  £ ,  the point  z  in  £  nearest  y  is

 z :=  y + v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2   =   ( v·vT·y + v¢·(p·ß–b·π) )/||v||2 

wherein   v := p¢·b .  Of course we assume  v ≠ o  in order that  £  be determined uniquely.
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#8.  Given three non-collinear points  u–v,  u  and  u+w  in  Euclidean 3-space,  the point

    z := u + (vçw)ç·(v·||w||2 + w·||v||2)/||vçw||2  =  u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||vçw||2 

is the center of the circle through the three given points,  and this circle’s radius is 

  ||v||·||w||·||v+w||/||vçw|| .

When the given points are infinitesimally close neighbors on a smooth curve traced by  u = u(τ)  
with non-vanishing velocity  u' = u'(τ) := du(τ)/dτ  and acceleration  u" = u"(τ) := du'(τ)/dτ ,  
the  Osculating Circle  that matches the curve’s tangent and curvature at  u  is centered at the 

curve’s  Center of Curvature   c := u + ||u'||2·(u'ç·u")ç·u'/||u'ç·u"||2 .   The circle’s radius is the 

curve’s  Radius of Curvature   ||c–u|| = ||u'||3/||u'çu"|| .  These formulas are derived in  §12.

Problem  #8  can arise in plane geometry.  When  u,  v  and  w  lie in a  Euclidean  2-space,  some 

of the formulas above simplify:  The circle’s  center  z := u + J·(v·||w||2 + w·||v||2)/(wTJv)  and its 

radius  ||c–u|| = ||v||·||w||·||v+w||/|wTJv| ;  the center of curvature  c := u + ||u'||2Ju'/(u"TJu')  and 

the curve’s radius of curvature is   ||c–u|| = ||u'||3/|u"TJu'| .

§10:  An Unfortunate Numerical Example
It is not at all obvious that formula  #7,  say,  is numerically unstable.  In fact all figures carried 
can be lost if a few too few are carried.  Try this data all stored exactly as  4-byte  floats :

 pT = [ 38006,  23489,  14517 ] ,   π = 8972 ,     bT = [ 23489,  14517,  8972 ] ,   ß = 5545 ,    and    yT = [ 1,  –1,  1 ] .

This data defines  £  as the intersection of two nearly parallel planes,  so tiny changes in data can 
alter  £  and  z  drastically.  More troublesome numerically are the many correlated appearances of 
the data  p  and  b  in the formulas for  z  in problem  #7.  Though mathematically crucial,  these 
correlations can be ruined by roundoff.  Evaluating both formulas above for  z  naively in  float  

arithmetic yields  z1
T = [ 1,  1,  –1 ]    and    z2

T = [ 1,  1,  –1.5 ] ;   but  z1  lies farther from both 
planes than  0.8 ,  and  z2  lies farther from them than  0.6 .  These gaps cannot be attributed to 
end-figure “errors” in the given data which would shift  £  and  z  but not separate them.

  This naive arithmetic produces geometrically impossible results. 

The correct point   zT = [ 1/3,  2/3,  –4/3 ]   is computed correctly rounded when all intermediate 
results  ( sub-expressions and local variables )  are evaluated in  double  before  z  is rounded 
back to  float .  Naively computed  z1  and  z2  are not so far from  z  as to be obviously wrong 
if  z  were unknown,  but but they are too wrong to be acceptable for most purposes.

This unfortunate example exemplifies behavior that occurs surprisingly often:  Unless evaluated 
extra-precisely,  too many neat formulas can be intolerably more inaccurate than the data deserve.

WHY ?
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§11:  Bilinear forms vulnerable to  roundoff  followed by  cancellation  occur frequently:

Scalar products:           p•b  =  pT·b  =   .

Linear combinations:       p·ß – b·π  =   .

Cross products:           p×b  =  p¢·b  =   .

These entities are  geometrically redundant;  they are so correlated that   (p·ß – b·π)•(p×b) = 0   
for all  data  {p, π, b, ß} .  Even if data are  “accurate”  to few sig. digits and computed entities to 
fewer,  their geometrical redundancy must be conserved as accurately as possible.  We can tolerate 
slightly inaccurate results interpretable as realizable geometrical objects slightly different from 
our original intent,  but not geometrically impossible objects like a  p×b  too far from orthogonal 
to  p  and  b  because of roundoff.  Suppose  ε  is the roundoff threshold,  meaning that sums,  

differences and products are computed accurately within a factor  1±ε .  For instance,  ε = 5/1010  
for arithmetic rounded to  10  sig. dec.  Then the angle between the desired cross product  p×b  
and its computed version will be typically about  ±ε/sin(∠ (p, b))  and is proved never to get much 
bigger in  §13.  This shows how roundoff degrades  p×b  as  p  and  b  approach  (anti)parallelism 

and,  in view of the  Sine Law of Triangles,  justifies advice about  (v – u)¢·(w – u)  in problem #3.

Therefore these bilinear forms and other matrix products should be computed carrying somewhat 
more precision than in the data,  thereby preserving geometrical redundancy despite  “losses”  of 
several digits to cancellation.  At any precision,  prolonged chains of computation risk losing 
geometrical redundancy.  The wider is the precision,  the longer is that loss postponed and the 
more often prevented,  provided that extra-precise arithmetic does not run intolerably slowly.

And extra precision usually costs less than error-analysis.
This is not said to disparage error-analysis;  it is always the right thing to do if you know how and 
have the time.  But to know how you have to take advanced classes in numerical analysis since 
elementary classes hardly ever cover error-analysis well enough to be useful.  To spend enough 
time you have to believe that the results being (in)validated by error-analysis are worth the time.

For extensive discussions of these and similar computational issues see …
   “Marketing versus Mathematics”  www.cs.berkeley.edu/~wkahan/MktgMath.pdf
   “How Java’s Floating-Point Hurts Everybody Everywhere”  ibid. … /JAVAhurt.pdf
   “Miscalculating Area and Angles of a Needle-like Triangle”  ibid. … /Triangle.pdf
   “MATLAB’s  Loss is Nobody’s Gain”  ibid. … /MxMulEps.pdf
   “How Futile are Mindless Assessments of Roundoff in Floating-Point Computation ?”  ibid. … /Mindless.pdf
    Prof. Jonathan Shewchuk’s web page,  starting with  www.cs.berkeley.edu/~jrs/meshpapers/robnotes.ps.gz

• • • • •

A good book about  Error-Analysis  is  N.J. Higham’s  Accuracy and Stability of Numerical Algorithms 2d ed. (2002) 
Soc. Indust. & Appl. Math., Philadelphia;  but it is about  700  pages long.

p1 b1⋅ p2 b2⋅ p3 b3⋅+ +

p1 β⋅ b1– π⋅

p2 β⋅ b2– π⋅

p3 β⋅ b3– π⋅

p2 b3⋅ p3– b2⋅

p3 b1⋅ p1– b3⋅

p1 b2⋅ p2– b1⋅
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§12:  Confirmations of the  Eight Formulas  in  § 9 :

#1.  Given the equation  pT·x = π  of a plane  ∏ ,  the point  z  in  ∏  nearest  y  is

z :=  y – p·(pT·y – π)/||p||2   = s :=   ( p·π – p¢·p¢·y )/||p||2 .

To confirm these formulas we must verify that  pT·z = π ,  putting  z  in  ∏ ,  and that  p  is  
(anti)parallel to  z–y  so that it is perpendicular to  ∏ .  And then we must verify that  z = s .  Only 
the last is unobvious:

(z–s)·||p||2 = y·||p||2 – p·(pT·y – π) – ( p·π – p¢·p¢·y ) = o  since  (p¢)2 = p·pT – ||p||2·I .

#2.  Given three points  u–v,  u  and  u+w  through which one plane  ∏  passes,  the point  z  in  ∏  

nearest  y  is    z :=  y – p·pT·(y – u)/||p||2   = s :=  u – p¢·p¢·(y – u)/||p||2   wherein   p := v¢·w .  

These formulas follow from problem  1  because the plane’s equation is  pT·x = π := pT·u .

#3.  Given three points  u,  v  and  w  through which one plane  ∏  passes,  the point  z  in  ∏  
nearest  y  is

z :=  y – p·pT·(y – u)/||p||2  = s :=  u – p¢·p¢·(y – u)/||p||2   wherein   p := (v – u)¢·(w – u) .
These formulas follow from problem  #2  after its  v  and  w  are replaced by  u–v  and  w–u .

#4.  Given two points  u  and  u+v  through which one line  £  passes,  the point  z  in  £  nearest  y  

is    z :=  y + v¢·v¢·(y – u)/||v||2  = s :=  ( v·vT·y – v¢·v¢·u )/||v||2  = t :=  u + v·vT·(y – u)/||v||2 .  To 
confirm these formulas we must verify that  z–u  is a scalar multiple of  v ,  which places  z  on  £ ,  

and that  vT(z–y) = 0  so that  z–y  is perpendicular to  £ .  Since  (v¢)2 = v·vT – ||v||2·I ,  we find 

that  z–u = v·vT·(y – u)/||v||2 = t–u  is a scalar multiple of  v  and,  incidentally,  z = t .  And  

vT(z–y) = 0  follows from  vTv¢ = oT
 .  Finally  s = t  follows from the expansion of  (v¢)2

 .

#5.  Given two points  u  and  u+v  through which one line  £  passes,  and two points  y  and  y+w  

through which another line  ¥  passes,  the point nearest  £  in  ¥  is   x :=  y + w·vT·p¢·(y – u)/||p||2   

wherein  p = v¢·w .  Nearest  ¥  in  £  is    z := x – p·pT·(y – u)/||p||2 = s := u + v·wT·p¢·(y – u)/||p||2 .  
To confirm these formulas,  we confirm first that  x  lies in  ¥  because  x–y = w·(scalar) ,  and that  
s  lies in  £  because  s–u = v·(scalar) .  Then  z = s  because

||p||2·(z–s) =  (||p||2·I – p·pT + w·vT·p¢ – v·wT·p¢)(y – u)    …  recall  (pç)2 = p·pT – ||p||2·I

     =  (–p¢ + w·vT – v·wT)·p¢·(y – u)  =  O·p¢·(y – u) = o
in view of the triple cross-product formula  p¢ = (v¢w)¢ = w·vT – v·wT   in  §3  and  §5.  Finally,  
z–x = p·(scalar)  is perpendicular to both lines  ¥  and  £ ,  so  z  and  x  are nearest each other.

Lest binocular vision’s depth perception and range-finding falter when  £  and  ¥  almost intersect,  

(x+z)/2 = ( u+y + (w·vT + v·wT)·p¢·(y – u)/||p||2 )/2  is the point nearest their near-intersection.

#6.  Given two points  u  and  w  through which a line  £  passes,  the point  z  in  £  nearest  y  is

z =  y + v¢·v¢·(y – u)/||v||2  =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2  wherein  
v = w – u .  These formulas follow from problem  #4.
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#7.  Given the two equations  pT·x = π  and  bT·x = ß  of a line  £ ,  the point  z  in  £  nearest  y  is

 z :=  y + v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2   =  s :=  ( v·vT·y + v¢·(p·ß–b·π) )/||v||2 

wherein   v = p¢·b ≠ o .  This  v  is parallel to  £  because it is perpendicular to the normals of both 
planes that intersect in  £ .  To confirm that  z  is the point in  £  nearest  y  we must verify that  z  
lies in both those planes and that  v  is perpendicular to  z–y .  In other words,  we must verify that  

pT·z = π ,  bT·z = ß ,  vT·(z–y) = 0  and  s = z .  This was done with  DERIVE™,  a computerized 
algebra system,  faster than the following dozen lines of a manual verification can be written out:

vT·(z–y) = vT·v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  = 0  because  vT·v¢ = oT .

pT·z – π =  pT·y – π + pT·v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  

   =  pT·y – π – pT·v¢·b·(π–pT·y)/||v||2     because  pT·v¢·p = 0 ,

   =  pT·y – π + vT·p¢·b·(π–pT·y)/||v||2     because  pT·v¢·b = –vT·p¢·b ,

   =  pT·y – π + vT·v·(π–pT·y)/||v||2  = 0 .

bT·z – ß =  bT·y – ß + bT·v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  

   =  bT·y – ß + bT·v¢·p·(ß–bT·y)/||v||2      because   bT·v¢·b = 0 ,

   =  bT·y – ß – vT·b¢·p·(ß–bT·y)/||v||2      because   bT·v¢·p = –vT·b¢·p ,

   =  bT·y – ß + vT·v·(ß–bT·y)/||v||2  = 0 .

(z–s)·||v||2 =  (vT·v·I – v·vT)·y + v¢·( p·(ß–bT·y) – b·(π–pT·y) ) – v¢·(p·ß–b·π)

      =  –(v¢)2·y + v¢·( p·(ß–bT·y) – b·(π–pT·y) – (p·ß–b·π) )

      =  v¢·( –v¢ – p·bT + b·pT )·y  =  v¢·( –v¢ + (p¢·b)¢ )·y  = o .

#8.    Given three non-collinear points  u–v,  u  and  u+w  in  Euclidean 3-space,  the center  z  of 

the circle through the given points is   z := u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||vçw||2 ,  and the 

circle’s radius is   ||v||·||w||·||v+w||/||vçw|| .  To prove these formulas this problem will be reduced 

to a problem solved previously.

Among points equidistant from the three given points,  center  z  is nearest them.  To simplify its 

derivation shift the origin to  u  temporarily.  Now  “equidistant”  implies  ||v+z||2 = ||z||2 = ||w–z||2  

which boils down to two linear equations  vTz = –||v||2/2  and  wTz = ||w||2/2 ,  restricting  z  to a 
straight line.  This reduces problem  #8  to an instance of problem  #7  whose solution becomes  

z = u + (vçw)ç·(v·||w||2 + w·||v||2)/||vçw||2 = u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||vçw||2  after 

some simplification and restoration of the origin.  Note that this formula makes  z  coplanar with 
the three given points,  as must be expected.  Now,  z  is the center of a circle whose radius is

   ||z–u|| = ||(||v||2·wwT – ||w||2·vvT)·(v + w)||/||vçw||2 

 = || w·||v||2·(||w||2 + vTw) – v·||w||2·(||v||2 + vTw) ||/||vçw||2 = …

 = ||v||·||w||·||v+w||·√(||v||2·||w||2 – (vTw)2)/||vçw||2 = ||v||·||w||·||v+w||/||vçw|| 

as claimed.
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Next let  u := u(τ)  trace a smooth curve with non-vanishing velocity  u' := u'(τ) := du(τ)/dτ  and 

acceleration  u" := u"(τ) := du'(τ)/dτ .  The  Taylor  series   u(τ+θ) = u + θ·u' + θ2·u"/2 + …  

determines   v := u(τ) – u(τ–φ) = φ·u' – φ2·u"/2 + …  and   w := u(τ+θ) – u(τ)  in the foregoing 
first formula for   z  whose limit,  as  θ → 0  and  φ → 0 ,  turns into the  Center of Curvature 

c = u – ||u'||2·u'ç·(u'ç·u")/||u'ç·u"||2 .

And then because  u'T·(u'ç·u") = 0 ,  the  Radius of Curvature   ||c–u|| = ||u'||3/||u'çu"|| .

§13:  Rounding Error-Bounds  for  Angles
The angle between the desired cross product  p×b  and its computed version is alleged in  §11  to 
never exceed  ε/|sin(∠ (p, b))|  much.  Here  ε  is the roundoff threshold for individual arithmetic 
operations.  This means that executing an assignment statement  “ x := y·z ”  actually computes 
and stores some rounded value  x := (1±ε)·y·z ,  which is how an unknown number between  
(1–ε)·y·z  and  (1+ε)·y·z  shall be described.  Likewise  “ x := y–z ”  actually stores a number  
x = (1±ε)·(y–z) .  In special circumstances more than this can be said about  x ;  for instance,  if  
1/2 ≤ y/z ≤ 2  then  “ x := y–z ”  actually stores  x = y–z  exactly on almost all today’s computers.

Problem:  Perhaps aided by a calculator,  explore and then confirm the last assertion,  and then find examples that 
would violate it if  “ 1/2 ”  were diminished or  “ 2 ”  increased.

In any event,  ε  is very tiny.  ε = 1/224 ≈ 5.96/108  for  4-byte  wide  floats.  For the  8-byte  

wide floating-point arithmetic used by  MATLAB,  ε = 1/253 = eps/2 ≈ 1.11/1016
 .  Consequently 

terms of order  ε2  will be ignored below.

A strict version of  §11’s  allegation is that,  if  w ≠ o  is the column vector computed for  p×b ≠ o  
from  p  and  b  using floating-point arithmetic whose roundoff threshold is  ε ,  then there is some 
constant  µ ≤ 4/√3 ≈ 2.3094  for which   |sin(∠ (w, p×b))| ≤ µ·ε/|sin(∠ (p, b))| .  A proof follows:

To reduce the strain on aged eyes,  subscripts and superscripts will be avoided wherever possible.

Set column-vectors  p := [x, y, z]T  and  b := [e, f, g]T
 ,  so  p×b = [y·g–z·f,  z·e–x·g,  x·f–y·e]T

 .  
The computed cross-product  w  has elements of which the first,  (1±ε)·((1±ε)·y·g – (1±ε)·z·f) ,  is 
typical.  Ignoring second-order terms in  ε ,  this amounts to  y·g–z·f  ±2ε·(|y·g| + |z·f|)  at worst.  

Consequently  | w – p×b | ≤ 2ε·|p¢|·|b|  elementwise;  here  p¢  is the skew matrix that produces  

p¢·b = p×b .  Therefore,  using the  Euclidean  norm  ||v|| := √(vTv) ,  we conclude that

|| w – p×b ||2 ≤ 4ε2·|b|T·|p¢|2·|b| ≤ 4ε2·||b||2·( the biggest eigenvalue of  |p¢| )2
 , 

since  |p¢|  is a real symmetric matrix.  Its  Characteristic Polynomial  turns out to be

ƒ(λ) := det( λI – |p¢| ) =  λ3 – ||p||2λ – 2|x·y·z|    wherein  ||p||2 = x2 + y2 + z2 > 0 .

To locate its zeros,  the eigenvalues of  |p¢| ,  we shall repeatedly use the  Arithmetic-Geometric 

Means Inequality,  which says that  (x2 + y2 + z2)/3 ≥ 3√(x2·y2·z2) ;  it will be invoked in the 

equivalent form   |x·y·z| ≤ ||p||3/√27 .  Then substitution of trial arguments reveals that
ƒ(–2||p||/√3) < 0 ≤ ƒ(–||p||/√3) ,   and   ƒ(0) ≤ 0 ≤ ƒ(2||p||/√3) ,
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so all three zeros of  ƒ  (the eigenvalues of  |p¢| )  lie between  ±2||p||/√3 .  From this we infer that
|| w – p×b || ≤ (4/√3)·ε·||p||·||b|| .

A diagram consisting of a triangle establishes that  || w – p×b || ≥ |sin(∠ (w, p×b))|·||p×b|| ;  and 
we know that  ||p×b|| = ||p||·||b||·|sin(∠ (p, b))| .  Assemble the last three relations to finish the proof 
that   |sin(∠ (w, p×b))| ≤ || w – p×b ||/||p×b|| ≤ (4/√3)·ε·||p||·||b||/||p×b|| = (4/√3)·ε/|sin(∠ (p, b))| .

Actually  4/√3  can be replaced by  2/√3  whenever  sin(∠ (p, b))  is very tiny since then all the elements of  p×b  are 
tiny because of cancellations during subtractions,  which must then be exact,  which removes one of the factors  (1±ε)  
from each element of  w .

Attempts to apply the last inequality falter when the unoriented angle  |∠ (p, b)|  differs from  0  or  
π  by so little more than  √ε  that its best-known textbook formulas are vitiated by roundoff:

The familiar formula   0 ≤ |∠ (p, b)| := arccos( pTb/(||p||·||b||) ) ≤ π   can lose to roundoff as many 

as half the significant digits carried by the arithmetic when  |pTb|/(||p||·||b||)  differs from  1  by less 
than a few rounding errors.  This happens because  arccos  skips so quickly at such arguments:
     arccos(1) = 0 ;   arccos(1–ε) ≈ √2ε ;   arccos(1–2ε) ≈ 2√ε ;  … ;   arccos(ε–1) ≈ π – √2ε .
Consequently the  arccos  formula should be avoided when  |∠ (p, b)|  is near  0  or  π .

Another formula almost as familiar is

     If  pTb > 0  then  |∠ (p, b)| = arcsin( ||p×b||/(||p||·||b||) ) 
else  |∠ (p, b)| = π – arcsin( ||p×b||/(||p||·||b||) ) .

It can lose to roundoff as many as half the significant digits carried by the arithmetic when  
||p×b||/(||p||·||b||)  differs from  1  by less than a few rounding errors because,  at such arguments,  
arcsin  skips so quickly through angles near  π/2 .  Avoid  arcsin(…)  for such angles.

More uniformly accurate than both familiar formulas is the following unfamiliar formula:
     |∠ (p, b)| = 2·arctan( || p/||p|| – b/||b|| || / || p/||p|| + b/||b|| || ) .

Valid for  Euclidean  space of any dimension,   it never errs by more than a modest multiple of  ε .

( If the data’s magnitudes are not so extreme that exponent over/underflow can invalidate it,  the algebraically 
equivalent formula   |∠ (p, b)| = 2·arctan( || p·||b|| – b·||p|| || / || p·||b|| + b·||p|| || )   runs slightly faster.)


