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80: Abstract and Table of Contents

Applications of cross-products to geometrical problemsin Euclidean 3-Space lead to formulas
that are easier to manipulate with associative matrix multiplications than with conventional non-
associative and anti-commutative cross-products. Thisthesisis supported by derivations of neat
formulas for rotations and for solutions to nearest-point problems. However, regardless of their
notation, many neat formulas in textbooks can be rendered numerically deceptive by roundoff
unlessthey are evaluated extra-precisely. Otherwise extra effort must be expended to compute
results at least about as accurately as the data deserve.
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81: V() in Euclidean 2-Space (a Summary and Review)
The operator —| reversesvectors. Intwo dimensionsit has a skew-symmetric square root

J:= h ‘(ﬂ determined uniquely but for its sign by the two equations J=—1 and J' =-J. This

operator J rotates the plane through a quarter turn; whether clockwise or counter-clockwise
depends upon the respectively left- or right-handed orientation of the coordinate system. More
generaly, exp(6-J) :=1-cos(B) + J-sin(B) turnsthe plane through an angle 6. To construct a

vector of length [|u]| = V(uTu) perpendicular to any given vector u inthe Euclidean plane, form
Ju. Forany 2-by-2 matrix B:=[u v] wefindthat BTJB = Jv'Ju = Jdet(B) , whichimplies
Adj(B) =—JB'J. (Recal Adj(B) := det(B)-B~* when det(B) # 0.) Our formulas use associative
matrix multiplication for the scalar product v'-w =w'-v instead of the non-associative dot
product vew for reasons that will become increasingly persuasive in the following pages.

Because J isunchanged by rotations of coordinates, it can produce ostensibly coordinate-free
solutions for many geometric problemsin the Euclidean plane. For instance, the equation of a
linethrough v perpendicular to w is w'(x—v) = 0 the equation of alinethrough v parallel to
u is u'J(x—v) =0; two lineswhose equationsare u'x = and v'x = B intersect at a point

z 1= J(u-R—v-p)/(v'du) . However, not every orthogonal change of basis (coordinates) leaves J
unchanged; a Reflection W =W =WT # +| changes J to W1JW = W'JW = J-det(W) = -J,
which reminds us that reflection reverses orientation in the plane.

Do you seewhy sucha W must be areflection? Why it must havetheform W = | —2ww'/w'w for asuitable
vector w ? Why det(W) =—-1? Can you confirm every unobvious assertion in the summary above?)

In many ways, but not all, J istothe Euclidean planewhat 1:=+v(-1) istothe complex plane. J operates upon
vectors in the plane but is not a vector in that plane, whereas 1 is simultaneously a multiplicative operator and a
vector in the complex plane. The two planes are topologically different, though often confused: Roughly speaking,
the complex plane has just one point at infinity best visualized by Sereographically projecting the complex plane
upon asphere, whereasthe Euclidean plane hasacircle (or at least aline) at infinity. We won't pursue this here.

Cross-products of vectorsin Euclidean 2-Space appear in restrictionsto 2-space of formulas
derived originally for vectorsin Euclidean 3-Space. Consequently the 2-space interpretation of

“uxv” often reducesto ascalar uxv =v'Ju . Because cross-products are neither associative nor
commutative, triple productslike “ uevxw”, * uxvew” and “ uxvxw” can generate confusion
if parsed improperly. When all vectors u, v and w lieinthe same Euclidean 2-Space, ...
us(vxw) and (uxv)sw should both be zero if they appear at all, and
(Uxv)xw = —wx(uxv) = Jw-(v'Ju) in 2-space.
Whence come these formulas? From 884-5. They will make sense after we have found and
adopted a matrix notation for cross-products, which motivates the notes that follow.

§2: Cross-Products and Rotations in Euclidean 3-Space
Henceforth bold-faced lower-case letters p, q, T, ..., X, Y, Z stand for real 3-dimensional column-

vectors. Then row vector p' :=[p, p, pa isthe transpose of column vector p, and p'-q isthe
scalar product peq of row p' andcolumn q. Euclideanlength ||p||:=V(p'p) .
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Do not confuse the scalar p'-q=q'p withthe 3-by—3 matrices (“dyads’) p-q' #q-p' of

rank 1, nor with the vector cross-product pxgq =-qgxp . Cross-products are important enough

to justify introducing anotation “ p®”, pronounced “ pee-cross’, for a 3-by-3 skew-symmetric

(p*T = %) matrix of rank 2 defined by the vector cross-product thus: pxq = p®q . Explicitly
0 -P3 Py

the matrix p¢ =|pg 0 -py - We shall see whence this comes after we see why we like it.
—Py Py O

We prefer matrix notation for these geometrical entities because matrix multiplication is
associ ative

pl-g®r=(p'q%)r =p'(q*r) =p(gxr) and p®q®r=(p®q%)r =p®(q"r) = px(gxr)
unllkescalar and cross-products; (peq)-r # p-(ger) and (pxq)xr # px(qxr) . Besideslegibility,
amatrix notation promotes simpler expressions, shorter proofs, and easier operator overloading
in programming languages.

* k kk kk kk kK kk kK %k
83 For Readers Reluctant to Abandon ¢ and x Products
( Other readers can skip to the next string of asterisks.)
We're not abandoning familiar locutions; we're just writing most of them shorter. Compare the
following classical formulas with their matrix equivalents for succi nctness and ease of proof:
Triple Cross-Product: (pxq)xr = q-per—p-ger vs. (p® q)¢— q p'—pq’
Jacobi’sIdentity:  px(gxr) + gx(rxp) = —x(pxq) vs. p*q®-q®p®=(p*q)*
Lagrange's [dentity: (txu)s(vxw) = tev-Uusw — uev-tew vs. (t% u)T (v w) = det([t u]T[v w])

Some things don’t change much; pxq =—gxp becomes p*-q=-q%p, so p*p=o0 (thezero
vector), and pe(gxr) = p'-q%r = det([p q ).

The notations’ difference becomes more pronounced as problems become more complicated. For
instance, given aunit vector U (with ||0]|=1) and ascalar |, what orthogonal matrix

R=(R")™ rotates Euclidean 3-space through an angle @ radians around the axis (i ? In other
words, R:x isto transform every vector x by rotating it through an angle y about an axis U
fixed through the origin o.

Anostensibly simpleformula R := exp(- u¢) uses the skew-symmetric cross-product matrix a°

defined above. Here exp(...) is not the array exponential that is applied elementwise, but is
the matrix exponential; think of R=R(J)) asamatrix-valued function of { that solvesthe

differential equation dR/dy = (%R = R-0® starting from the identity matrix R(0) =1. Given 0
and , anexplicit formulafor this R is R= 1 + 2:(1-cos(y/2) + 0*-sin(y/2) )-a%-sin(y/2) .
Rewriting this expression with solely < and x products doesn’t improveit. Try that!

In what follows the formulas above will be first derived and then applied to afew examples.

* k kkkk kkkk Kk k Kk k%
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84: A Derivation of Cross-Products in Euclidean 3-Space

What operatorsin Euclidean 3-space are analogous to the quarter-turn J in 2-space? Every
rotation of 3-spaceis characterized by its axis, aline left unchanged by the rotation, and its
angle of rotation about that axis. Let v be anonzero vector parallel to such an axis. Analogous

to -l in 2-space isthe operator wTivTv =1, which projects arbitrary vectorsinto the plane
through o perpendicular to v and then reverses the projection through o. That operator’s skew-
symmetric square root, determined (aswe shall see) uniquely but for itssignby v, isthe
analog of J, but different for every different direction v . Consequently that square root isa
discontinuous function of v at v =0. Multiplying that squareroot by ||v|| rendersit continuous.

Hence we define the operator v¢ to be one of the solutions v := +S of the equations
P=w'-vlvi and S=-5T.
To see why these equations determine S uniquely but for sign, choose an orthonormal basiswith
V/||v|| asitsfirst basis vector and find a matrix representing S in that coordinate system. Every
such matrix S must satisfy Sv =0 hereiswhy: Evidently S’ =0, so det(S)? = det(S?) =0,
andso Sz=o0 for some z#0; butthen S’z=o0, andthisimpliesthat z isascalar multiple of
v, whencefollows Sv =0 asclamed. Consequently, inthe foregoing orthonormal coordinate
system, every skew-symmetric solution S isrepresented by a matrix whose first row and column
contain only zeros, whereupon the remaining 2-by-2 principal submatrix must be £J:||v|| as
explained in the second sentence of 81. Thus, S isdetermined uniquely but for sign.

, 0 —(n
Given v = 7 0 -

f, E] of the equations Sv =0 and S=-S';

4 N ¢ 0

this S2=w' —vTvl too, which combineswith the previous paragraph toimply v®=+S. Its
sign could be chosen arbitrarily but we set v¢ := +S | thereby classifying the coordinate system as
“right-handed”. Note now that v® isacontinuous function of v. Insummary, ...

¢

, consider the solution S:=

For every vector v in Euclidean 3-space, thelinear operator v* isacontinuous linear
function of v determined but for sign by the equations (v®)?=w' —vTvl and (v®)T = ~°.
Itssign isdetermined for every v by itssign for any one v # o and by continuity.

The notation for v*, pronounced “vee-cross’, isinspired by the relation viw = vxw , where

the latter cross-product coincides with the one defined in texts on vector analysis. Here are four of
its properties:
v®w =0 justwhen +v and w areparallel; thiswas proved using z above.
viw Ov  because vIviw = (v®)'w=0'w=0.
viw Ow  because wvw = (w'vew)T =wT(v®)w =-w"v®w=0.
VW2 = [IvII? [wli? = (vIw)?  becauseitis -w'(v®)?w, etc.
Combining the formula v'w = |IVI[llw||-cos (v, w) with the last equation proves that
IVl = £[v]-wll-SinO (v, w)
with a sign that depends upon the orientation, if any, assigned to the angle [I(v, w) when it has
to be distinguished from [I(v, w) = -[1(w, v) . Anyway,
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[Iv®w]| = | the area of a parallelogram with adjacent sides v and w |.

From the foregoing properties we infer by symmetry that w® must be one of +v®w whenever
they are nonzero because they are vectors with the same length and perpendicular to the same two

nonparallel vectors v and w . Trialswith basisvectorsfor v and w show that

wh = —viw,

and this equation must persist for all v and w since both sides are continuous bilinear functions.

This anti-commutative identity isagood reason to prefer the notation v®w over vxw ; and later

the preference will intensify when we find the triple cross-product non-associative. Besides, we
shall need V¢ inisolation later to describe rotations.

85: Triple Products
T,/

The scalar expression u'v-w islinear in each vector separately, and reverses sign when any two
vectors are swapped; thisfollows from anti-commutativity when v and w are swapped, from

skew-symmetry of v® when u and w are swapped; andwhen u and v are swapped it follows
from uTv®w = —wTv®u = wTu®v = —vTu®w . Compare this with the characterization of the
determinant det(Ju v w]) asafunctional, linear in each columnof [u v w] separately, that
reverses sigh when any two columns are swapped. It followsthat uv®w/det([u v w]) must bea
constant provided the denominator does not vanish. Setting matrix [u v w] =1 determines that
constant to be 1, whereupon continuity implies an important identity for all u, v and w:
u'vow = det([u v w]) .
This formula can be confirmed by direct but tedious algebraic manipulation, and also by the
following geometric argument:

Let parallelogram P have adjacent sides v and w so that itsarea |P| = |v®w||# 0. Nextlet Q
be a parall el epiped whose sides emanating from avertex are u, v and w ; thenitsvolumeis
|Q| = det([u v w]) and aso

|Q| = |PJ|| projection of u onto the unit-normal to P ||

= |v*w]| - || projection of u onto v®w/|v®w]|| || = JuTv®w].

Now to confirm that uTv®w = +det([u v w]) try any three vectors u, v and w, say the basis

vectors, and then invoke continuity to cope with the casewhen v and w are (anti)parallel.

Almost as important as that determinantal formulaisthe triple cross-product formula
ux(vxw) = u®'w = vu'w—w-uTv = (vw' —wvTu .

To prove this, note that it must be perpendicular to avector v®w perpendicular to both v and
w, and hencemust lieintheplaneof v and w. Therefore u®v®w = v-R—w-p for some scalars
R and p. Premultiplicationby u' revealsthat 0=u'v-R—u'w-p and therefore some scalar
functional f =uTv/u =uw/R exists satisfying u®v®w = (v-u'w—w-uTv )/f . Since both sides
of thisequation are linear in each of u, v and w separately, f can vary with none of them; it
must be aconstant. Itsvalue f =1 can be found by substituting one basis vector for u and w
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and a second basis vector for v . Alternatively, brute-force manipulation by a computerized

algebrasystem like Derive, Maple, Mathematica or Macsyma can be used to confirm the triple

cross-product formula. It iseasier to remember in §3's form: (vfw)®=wvT —vwT .

That formulashows that (uxv)xw = (u%)%w = —w®u® = (vuT —uv")w # ux(vxw) ; the cross-

product is not associative, though matrix multiplication is associative: (u®v®)w = u¢(v®w) .

That formula also confirms Jacobi’s [dentity:

uvOw + viwlu +wlu®v =0, or U%)®=u%

and helpsto confirm Lagrange's |dentity:

(t¢-u)T(v¢-W) = t'viu'w—uTvt'w = det([t u]T[v w]) .
Since they are not long, you should work out the confirmations of theseidentities, which figurein both classical and
Quantum mechanics.

¢ _ oyt

86: Rotations R about an Axis v in Euclidean 3-Space

If skew-symmetric matrix S=-ST isconstant, the unique solution of the initial-value problem
R(O)=1 and dR/dt=SR foral t

isamatrix R(t) that must be orthogonal; R" = R because d(R'R)/dt = RTSTR+RTSR=0
and therefore RTR =1 forall 1. Thisimplies det(R)?=1 andthen det(R) = +1 becauseit is
continuousfor all t. Thus, R(t) isaproper rotation;— no reflection. It has a power series too:
R(T) = exp(t-S) = 3 oo TF-SK! .
Now, every 3-by-3 skew-symmetric matrix S determinesavector v suchthat S=v®; then
Sv=o, P=w' ||, SL=-v|?S, S*=-V|FS?, ..., ST = (Hv|HKS™ for m>0.
By taking odd and even terms separately in the series for exp(t-v*) we condenseit to
R(T) = exp(tv®) = | + (1= cos(t-|IVI[))-(v*/IvI)? + sin(t-{IvI)v*/| vl
= |+ 2sin(r|vIl/2)-( sin(t-{IvIV2) v |IvI| + cos(t|VII2)-1 ) vVl ,
thus providing arelatively simple and verifiable formulafor the operator that rotates Euclidean 3-
space through an angle t+||v|| about agiven axis v # 0. Its T-derivative isextremely simple:
d exp(t-v®)/dt = v&-exp(t-v®) = exp(tv®)vE.
( The v-derivative would require along expression too complicated to serve the didactic purposes of these notes.)

The converse problem isthis: Given an orthogonal matrix R = R that effects a proper rotation
because det(R) =+1, how canitsaxis v be determined? What seemsthe simplest way at firstis
to compute R-R" = 2:sin(t|v|)) v¥/|Iv||, which works provided sin(t-|lv||) isnot so tiny that
roundoff in R obscures the desired result. Generally a more reliable procedure is to apply
Gaussian elimination to solve the equation (R-1)v =0 fora v # o0, or aternatively to compute

an appropriate (not too small) column of Adj(R-1) = (some scalar)-vv' . This procedure works
because R issingular (to within roundoff) withrank 2; hereishow we know thisto be so:
Consider any eigenvalue p of R; this 4 may be complex, inwhich caseits eigenvector z is
complex too, and we shall write z* for its complex-conjugate transpose. Next we find that
W%z*z = (R2)*(Rz) = z*R"Rz = z*z > 0, whereupon |u|=1. Now, R hasthree eigenvalues
K, theroots of the characteristic equation det(ul —R) = 0. Becauseits coefficientsarereal, any
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of the three eigenvalues that are not real must come in complex-conjugate pairs whose product,
their squared magnitude, must equal 1. The product of all three eigenvaluesis det(R) = +1 too.
Two cases can arise:
* If R hasanon-real eigenvalue p then p* isanother and thethirdis 1/(u*p) =1.
o Otherwise all three eigenvalues arereal, namely +1, andthen +1 appears among them

an odd number of times because their product is +1 too.
Thus R-I must be singular; theaxis v isan eigenvector of R belonging to eigenvalue +1.
Problem (hard): Show that Adj(R-1) = (3 —Trace(R)) -va/||v||2 provided proper orthogonal R# 1| .

Must each proper orthogonal R = exp(t-0%) for somereal T and unit vector (1 (with [a]|=21) 7
Yes, and U =V/||v|| where v isthe axisfound above. To seewhy, changeto anew orthonormal
coordinate system with O asitsfirst basis vector. The matrix representing R in this new basis
has [1 0 0] anditstranspose asfirst row and column. (Why?) Thelast principal 2-by-2
submatrix must be exp(t-J) becauseit is proper orthogonal too; thus T isdetermined. After

changing back to the original basiswefind R = exp(ir-0¢) . (We'll explainthe = sign later.)

87: Constructing Rotations out of Reflectionsin a Euclidean Space of any Dimension = 2

Forany w#o0 in any Euclidean space, W := I —2ww"/|w||® isan orthogonal reflection.
Problem: Verify that W=WT =W, that w=-Ww isreversed by the reflection, and that it preserves the
(hyper)plane of vectors x orthogonal to w . Thus the reflection’s mirror-plane satisfies the equation w'x =0 .
Verify too that det(W) =—1 by applying the formula det(l —uv') =1 —v'u. Canyou provethis last formula?

Suppose distinct nonzero vectors X, y, s and t aregivenwith |[x|| = |ly|| and ||s|| = ||t|] and

s'x =ty. (Thislast equation saysthat |CI(s, x) | = [O(t, y) |.) Wewish to construct a proper
orthogonal R that rotates x to Rx =y and s to Rs=t. Weshall construct this R :=HW asa
product of two orthogonal reflections: W := | —2ww'/|w|[? and H :=1—2hhT/||h|[? in which

w:=x-y and h:=Ws-, exceptthatif Ws=t then h may be any nonzero vector orthogonal
toboth y and t provided such avector exists. ( R might not exist in 2-space; why not?)

Problem: Verify that W swaps x and y, andthat H swaps Ws and t whilepreserving y, sothat R movesthe
pair (s, X) tothepair (t,y) while preserving their lengths and angle. Verify too that R is proper orthogonal.

Problem (harder): Provethat every rotationin Euclidean 2- or 3-space isaproduct of two orthogonal reflections..
(The proof must ensure that both reflections exist.) How many sufficein Euclidean N-space?

88: Changingto an Orthonormal Basiswith Opposite Orientation
Thevector vxw = v®w issometimes called a pseudo-vector because of how an arbitrary change
of orthonormal basis may affect it. For any orthogonal Q = Q™! we shall find that

(QV)*(Qw) = Qvw-det(Q) , or equivalently (Qv)®=Qu'Q"-det(Q) .

Of course det(Q) =+1; itsappearance in the formula above is what deserves an explanation.

If det(Q) =+1 then Q isaproper rotation and our geometrical intuition may well persuade usthat rotating v and

w together as arigid body must rotate v®w the sameway, whichiswhat the formulain question says. Otherwise
det(Q) =—1, inwhich case Q combines rotation and reflection; in this case the formulain question, intheform

(Qv)*Q = Qv*-det(Q) , will take some work to be confirmed. A comparatively simple proof is provided by ...
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David Meredith’s Identity: Adj(LT)v®=(Lv)®L forany 3-by-3 matrix L and vector v in Euclidean 3-space.

Into thisidentity substitute L :=Q anduse Q" = Q! and Adj(Q") = (Q")2-det(Q") = Q-det(Q) to get the formula
in question. What remains to be doneis to prove the identity:
For all 3-vectors u, v and w regarded as columns of amatrix [v, w, u] , we find that

det(L)-uv®w = det(L)-det([v, w, u]) = det(L [v, w, u]) = det([Lv, Lw, Lu]) = (Lu)T(Lv)*Lw = uTLT(Lv)*Lw .
Consequently det(L)v® = LT(Lv)L . Into this equation substitute det(L)| = det(LT)1 = LT-Adj(L") when LT is
nonsingular to get first LT-Adj(LT)v® =LT(Lv)’L , and then the desired identity. It isa polynomial equation in the
elementsof L andthereforevalid alsowhen L issingular. Q.E.D.
When det(Q) =-1 theformulasjust proved remind us that reflections reverse sense, changing right-handed triad

(v, w, v®w) into left-handed triad (Qv, Qw, Qv®w) , whereas (Qv, Qw, (Qv)*(Qw)) isright-handed. (Look ina
mirror to see why.) Consequently the last two triads' last elements must be oppositely directed.

Question: Why, whenyou look inamirror, do you see left and right
reversed there but not up and down ?

Answer That’s not what you see. (What you do seeis described on the next page.)

89: Applicationsof Cross-Productsto Geometrical Problems

Cross-products pxq, or p¢-q inour matrix notation, figure prominently instead of determinants
in neat textbook solutions of many commonplace geometrical problems. Our first exampleis...

#0. Giventheequations p'x =1, b'x=RB, w'x=0Q of threeplanes, they intersect at point
z= (b®w-rt+wp-R+ p®b-Q)/(pT b w) .

Neat formulas are more memorable and therefore more likely to appear in textbookss and be used
by programmers than are ugly numerical algorithmslike Gaussian Elimination even if the latter
are numerically more stable. Gaussian Elimination isalso faster than the foregoing formula; but
aprogrammer can easily fix that by rewriting z = ( (b®w) -1+ p®(b-Q —w-R) )/(p"-(b®w)) and
reusing a common subexpression. Still, thisformulais not so robust numerically asis Gaussian
Elimination with pivotal exchanges.

Like Beauty, the neatness and speed of aformulalie in the eye of the beholding programmer
sooner than does numerical stability. Roundoff doesn’t figure in textbooks' formulas. The reader
will not easily determine which are numerically unstable among the neat textbook formulas that
solve the following eight commonplace geometrical problems each of the Nearest-Point kind:

Given apoint y and the definition of alineor plane G , weseek apoint z in G nearest y .
y

We expect the line segment joining y and z to stick out of G perpendicularly.
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Answer to the Question above: What you actually see reversed in amirror are forward and back .

If two formulasfor z are offered below they suffer differently from rounding errors; thefirst
formula suffers less than the second whenever |jz—y|| <<|ly|]| and the second less than the first
whenever ||z|]| << |ly]| . Unless parentheses indicate otherwise, associative products A-B-C
should be evaluated in whichever order, (A-B)-C or A-(B-C), requiresfewer arithmetic
operations; doing so below tends to diminish roundoff too. An exercise for the diligent reader is
to confirm the mathematical correctness of these formulas, even if roundoff may undermine their
validity; casual readerswill find their confirmationsin §12.

“Numerically stable” solutions for these eight “linearly constrained least-squares’” problems may be found in some
works on numerical linear algebra; but no known stable solution is simply arational formulalike all those below.

#1. Given the equation pT-x:n of aplane [], thepoint z in [] nearest y is
z:= y—p(p"y-m/pl* = (pm—p“pSy )ipl?.

#2. Giventhree points u-v, u and u+w through which one plane [] passes, thepoint z in []
nearest y is z:= y—pp (y-u/lpl® = u-p*p™(y-u)/lipl’ wherein p:=viw.

#3. Giventhreepoints u, v and w through which one plane [] passes, thepoint z in []
nearest y is

z:= y—pp (y—wlpl* = u—p®p*(y —u)llpl’ wherein p:=(v—u)®(w-u).
Theorder of u, v and w is permutable in each formula separately. To attenuate roundoff in p
choose u to maximize |lv —w|| roughly. (Why? See 811.) For z choose u to minimize
[ly —u]| inthefirst formula, ||u|| in the second.

#4. Giventwo points u and u+v through which oneline £ passes, thepoint z in £ nearest y
is z:= y+VveOSy—u)|VvPP = (vvTy=vEVEu)VIP = u+ vy —u)|vIP.

#5. Giventwo points u and u+v through which oneline £ passes, and two points y and y+w
through which another line ¥ passes, thepoint nearest £ in ¥ is x:= y +w-vT-p®(y—u)/||p|/?
wherein p=v®w. Nearest ¥ in £is z:=x—p-p"-(y=u)/||p|f=s:=u+vw'p®y—u)|p|l*.

#6. Giventwo points u and w through which aline £ passes, thepoint z in £ nearest y is

z:= y+VvOVES(y—u)VIP = (vvTy =vEVEu)vIP = u+ vy —u)/|v|? wherein
v:=w-—u. Since u and w are permutable, choose u to minimize |ly —u|| inthefirst and last
formulas, and to minimize |ju]| inthe middle formula, whichisbestif |[z|]| <<|Ju|| too.

#/. Given the two equations pT-X:T[ and b":x =R of aline £, the point z in £ nearest y is

z:= y +Vo(p(B-bTy) —b(repTy) MIVIP = (vvTy +vE(p-Rb-1) )/|Iv]?
wherein v = p¢-b. Of coursewe assume v # 0 inorder that £ be determined uniquely.
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File: Cross 810: An Unfortunate Numerical Example

#8. Given three non-collinear points u-v, u and u+w in Euclidean 3-space, the point
z:= u+ L)W + wVP/ VWP = u+ (VP = P -(v + w)flvew
isthe center of the circle through the three given points, and thiscircle'sradiusis
L IVIFIWIL-Iv+wl/ vl -

When the given points are infinitesimally close neighbors on a smooth curve traced by u = u(t)
with non-vanishing velocity u' = u'(1) := du(t)/dt and acceleration u" =u" (1) :=du'(t)/dt,
the Osculating Circle that matches the curve'stangent and curvature at u is centered at the
curve's Center of Curvature c¢:=u + [[u'[[2-(u'Su")S-u'/|ju'S-u” ||>. Thecircle'sradiusisthe

curve's Radius of Curvature ||c—u|| = ||u'||3/||u"?u" ||. Theseformulas are derived in 812.

Problem #8 can arisein plane geometry. When u, v and w lieina Euclidean 2-space, some
of the formulas above simplify: Thecircle's center z:=u + %J-(v-||w||2 +w- V[P (W' ) andits

radius [lc-ul| = L v]Iiw|l-v+wl/wdv] ; the center of curvature ¢ :=u + [Ju’[[Pu'/(u" Tdu') and

the curve's radius of curvatureis [lc—u|| = [Ju'|¥/ju" Tau'| .

810: An Unfortunate Numerical Example
It isnot at all obviousthat formula #7, say, isnumerically unstable. Infact all figures carried
can belost if afew too few are carried. Try thisdataall stored exactly as 4-byte floats :

p' =[ 38006, 23489, 14517], T=8972, b'=[23489, 14517, 8972], R=5545, and y'=[1, -1, 1].

This datadefines £ asthe intersection of two nearly parallel planes, sotiny changesin datacan
ater £ and z drastically. More troublesome numerically are the many correlated appearances of
thedata p and b intheformulasfor z in problem #7. Though mathematically crucial, these
correlations can be ruined by roundoff. Evaluating both formulas above for z naively in f | oat
arithmeticyields z," =[1, 1, -1] and 2z’ =[1, 1, -1.5]; but z; liesfarther from both
planesthan 0.8, and z, liesfarther from them than 0.6. These gaps cannot be attributed to
end-figure “errors’ in the given data which would shift £ and z but not separate them.

This naive arithmetic produces geometrically impossible results.

The correct point z" =[ 1/3, 2/3, —4/3] iscomputed correctly rounded when al intermediate
results ( sub-expressions and local variables) are evaluated in doubl e before z isrounded
back to f| oat . Naively computed z; and z, arenot so far from z asto be obviously wrong

if z were unknown, but but they are too wrong to be acceptable for most purposes.

This unfortunate example exemplifies behavior that occurs surprisingly often: Unless evaluated
extra-precisely, too many neat formulas can be intolerably more inaccurate than the data deserve.

WHY ?
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File: Cross 811: Bilinear forms vulnerable to roundoff followed by cancellation occur frequently:

811: Bilinear formsvulnerableto roundoff followed by cancellation occur frequently:

Scalar products: psb = pTb = Py [0y + py [y + palhy .

'py B—by O
Linear combinations. p-B—b-t = Py (B—b, 007 .
ngB—bg[T[

Py 3= P3thy
Cross products: pxb = p®b = |pyhy —p, [l .
Py Py =Py 0y

These entities are geometrically redundant; they are so correlated that (p-3—b-m)¢(pxb) =0
forall data {p, 1, b, 3} . Evenif dataare “accurate’ to few sig. digits and computed entities to
fewer, their geometrical redundancy must be conserved as accurately as possible. We can tolerate
dlightly inaccurate results interpretabl e as realizable geometrical objects slightly different from
our original intent, but not geometrically impossible objectslike a pxb too far from orthogonal
to p and b because of roundoff. Suppose ¢ isthe roundoff threshold, meaning that sums,

differences and products are computed accurately within afactor 1+e . For instance, € = 5/ 1010
for arithmetic rounded to 10 sig. dec. Then the angle between the desired cross product pxb

and its computed version will betypically about +e/sin(C](p, b)) and is proved never to get much
bigger in 813. This shows how roundoff degrades pxb as p and b approach (anti)parallelism

and, inview of the Sine Law of Triangles, justifies advice about (v —u)®-(w —u) in problem #3.

Therefore these bilinear forms and other matrix products should be computed carrying somewhat
more precision than in the data, thereby preserving geometrical redundancy despite “losses’ of
severa digitsto cancellation. At any precision, prolonged chains of computation risk losing
geometrical redundancy. The wider isthe precision, thelonger isthat loss postponed and the
more often prevented, provided that extra-precise arithmetic does not run intolerably slowly.
And extra precision usually costs less than error-analysis.
Thisisnot said to disparage error-analysis; it isawaystheright thing to do if you know how and
have thetime. But to know how you have to take advanced classes in numerical analysis since
elementary classes hardly ever cover error-analysis well enough to be useful. To spend enough
time you have to believe that the results being (in)validated by error-analysis are worth the time.

For extensive discussions of these and similar computational issues see ...
“Marketing versus Mathematics’ waw. cs. ber kel ey. edu/ ~wkahan/ Mkt ghat h. pdf
“How Java's Floating-Point Hurts Everybody Everywhere” ibid. ... / JAvAhurt . pdf
“Miscalculating Area and Angles of a Needle-like Triangle” ibid. ... / Tri angl e. pdf
“MATLAB’S LossisNobody’s Gain” ibid. ... / MMl Eps. pdf
“How Futile are Mindless Assessments of Roundoff in Floating-Point Computation 7 ibid. ... / M ndl ess. pdf
Prof. Jonathan Shewchuk’sweb page, starting with ww. cs. ber kel ey. edu/ ~j r s/ meshpaper s/ r obnot es. ps. gz

A good book about Error-Analysis is N.J. Higham’s Accuracy and Sability of Numerical Algorithms 2d ed. (2002)
Soc. Indust. & Appl. Math., Philadelphia; but itisabout 700 pageslong.
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File: Cross 812: Confirmations of the Eight Formulasin 89 :

812: Confirmationsof the Eight Formulas in §9:

#1. Giventhe equation p'-x =1t of aplane [], thepoint z in [] nearest y is
z:= y-p@E"y-1/lpl* =s:= (pm—p“pSy)iplf.
To confirm these formulas we must verify that p'-z=Tt, putting z in [], andthat p is

(anti)parallel to z—y sothat it isperpendicular to []. And then we must verify that z=s. Only
the last is unobvious:

z-9IpI? = y-lIpll> = p-(p"y =) — (p-rt—p®p®y ) =0 since (p%)2=p-p" —|lp|*! .

#2. Given three points u-v, u and u+w through which one plane [] passes, thepoint z in []
nearest y is z:= y—pp'-(y=u/|pl’ =s:= u—p®p®(y—-u)|p|? wherein p:=vtw.
These formulas follow from problem 1 because the plane’s equation is pT-x =T.= pT-u .

#3. Giventhreepoints u, v and w through which one plane [] passes, thepoint z in []
nearest y is

z:= y—pp"(y —u/lpl® =s:= u—p*p™(y —u)lipl* wherein p:=(v-u)*w-u).
These formulas follow from problem #2 afterits v and w arereplaced by u—v and w—u.

#4. Giventwo points u and u+v throughwhich oneline £ passes, thepoint z in £ nearest y
is z:= y+veOSy—w/|vI? =s:= (vvly =vEVEu)/|VIP =t = u+vvT(y—u)|v|]®. To
confirm these formulas we must verify that z—u isascalar multipleof v, whichplaces z on £,
andthat v'(z-y) =0 sothat z-y isperpendicular to £. Since (v$)2=vv' —|Vv|?1, wefind
that z—u :v-vT-(y—u)/||v||2=t—u isascalar multipleof v and, incidentally, z=t. And
v'(z-y) = 0 followsfrom v'v®=0". Finally s=t followsfrom the expansion of (v*)2.

#5. Giventwo points u and u+v through which oneline £ passes, and two points y and y+w
through which another line ¥ passes, the point nearest £ in ¥ is x := y +w-v'p%(y—u)/|]p||?
wherein p=v®w. Nearest ¥ in £is z:=x—p-p -(y=u)/|Ipl® = s:= u+vw'-p(y—u)/|p|.
To confirm these formulas, we confirm first that x liesin ¥ because x-y = w-(scalar) , and that
s liesin £ because s-u =v-(scaar). Then z=s because

IPIP(z=5) = (IpIP1 =ppT +wvT-p®—vwpHy-u) ... recal (p9?=pp" —|Ip|*
= (-p*+wv —vw)p®y-u) = Op™(y-u)=o
in view of the triple cross-product formula p® = (vw)® =w-vT —vaw' in &3 and §5. Finaly,
z—X = p-(scalar) isperpendicular to bothlines ¥ and £, so z and x are nearest each other.

L est binocular vision's depth perception and range-finding falter when £ and ¥ amost intersect,

(x+2)/2 = (u+y + (w-vT +v-w")-p®(y—u)/||p|[?)/2 isthe point nearest their near-intersection.

#6. Giventwo points u and w through whichaline £ passes, thepoint z in £ nearest y is
z= y+VSOSy—w/|vI? = (vvTy =vEVEW/VIE = u+vvT(y—u)/|v|? wherein
v=w—u. Theseformulasfollow from problem #4.
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File: Cross 812: Confirmations of the Eight Formulasin 89 :

#7. Given thetwo equations p'x =Tt and b'x =R of aline £, thepoint z in £ nearest y is
z:= y +Vo(p-(B-bTy) —b(repTy) MIMP = s:= (vvTy +vE(pR-bm) )/|IvIP?
wherein v=p®b#o0. This v isparale to £ becauseit is perpendicular to the normals of both

planesthat intersectin £. To confirmthat z isthepointin £ nearest y we must verify that z
liesin both those planesand that v isperpendicular to z—y . Inother words, we must verify that

p'z=m, b"z=R, v'-(z~y) =0 and s=z. Thiswasdonewith DERIVE™, acomputerized
algebra system, faster than the following dozen lines of a manual verification can be written out:
V(=) = v v (p-(3-bTy) —b-(ep y) Y|v|? =0 because vIv®=0.

plz—m= ply—1+p v®(p-B-bTy) —b-(repTy) )/|Iv|
= ply-m—pTv®o(repTy)/|v|? because pTv*p=0,
= ply -1+ v p®h(epTy)/|vI?  because pTv*b=—vTpb,
= pT
bTz—R= by —R+bTv*(p-(R-b"y) —b-(repTy) )/|vI[?
bTy —B+bTv®p-(B-bTy)/|v|* because bTv¢b=0,
bTy —R—vTb®p-(B-bTy)/|v|? because bTv¢p=—vT-b%p,
bTy =B+ v v-(B-bTy)/|v|? =0.
(Z9) VP = (vTvl —vvT)y +vE(p-(B-bTy) —b-(TepTy) ) v (p-R-b-T)
= (v9%y +v&(p-(R-bTy) —b-(repTy) — (p-B-b 1) )
= Vvi(~v*—pbT+bpT)y = vi(~v"+ (p"b)*)y =o0.

y =1+ vTv(repTy)/|vl? =0.

#8. Given three non-collinear points u—v, u and u+w in Euclidean 3-space, the center z of
the circle through the given pointsis z:=u + I(|Iv|Pww" — [w[ZwwT)-(v + w)/|vSw][?, and the
circlesradiusis §||v||-||w||-||v+w||/ IVw|| . To prove these formulas this problem will be reduced
to a problem solved previoudly.

Among points equidistant from the three given points, center z is nearest them. To simplify its
derivation shift the originto u temporarily. Now “equidistant” implies |v+z|]? = |lz||° = [w-z|]?
which boils down to two linear equations v'z = —v|[%/2 and w'z = |w|[%/2, restricting z toa
straight line. Thisreduces problem #8 to an instance of problem #7 whose solution becomes
— 2 2 2 _ 2./ T 2.0, 2
z=u+ (VW) (v Wl + we vV VW = u + SV ww ' = [Iwl[“wv ) -(v + w)/ Vo]l after
some simplification and restoration of the origin. Note that this formulamakes z coplanar with
the three given points, as must be expected. Now, z isthe center of acircle whose radiusis
llz=ull = 2P ww " = [P T (v + wll v Sw]?

= LI WAVIP-(wIP + v ) = veliw]P-(vIE + vTw) v = ...

= LMW+l (VIR = (v w)2) ISP = 2 v+ v
as claimed.
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File: Cross §13: Rounding Error-Bounds for Angles

Next let u:=u(t) trace asmooth curve with non-vanishing velocity u' :=u'(1) := du(t)/dt and

acceleration u" :=u" (1) :=du'(t)/dt . The Taylor series u(t+6) =u +6-u' +0%.u" /2 + ...

determines v :=u(t) —u(t—Q) = U’ —(pz-u" [2+ ... and w:=u(t+8) —u(1) intheforegoing

first formulafor z whoselimit, as 6 - 0 and ¢ - O, turnsinto the Center of Curvature
c=u—[u'[PurS(uSum ) jurSur |12 .

And then because u'T-(u'$-u") = 0, the Radius of Curvature |lc-ul| = |ju’|[3/|ju’Su"]| .

813: Rounding Error-Bounds for Angles

The angle between the desired cross product pxb and its computed versionisaleged in 811 to
never exceed &f|sin(C](p, b))| much. Here ¢ isthe roundoff threshold for individual arithmetic
operations. This means that executing an assignment statement “ x :=y-z” actually computes
and stores some rounded value x := (1x€)-y-z, whichishow an unknown number between
(1-€):y-z and (1+€)-y-z shall be described. Likewise “ x :=y-z” actually stores a number

X = (1x€)-(y-2) . Inspecia circumstances more than this can be said about x ; for instance, if
1/2<y/z<2 then “ x:=y—z" actualy stores x = y—z exactly on amost all today’s computers.

Problem: Perhaps aided by acalculator, explore and then confirm the last assertion, and then find examples that
would violateitif “ /2" werediminishedor “ 2" increased.

Inany event, € isvery tiny. € = 1/22*=5.96/10° for 4-byte wide f1oats. For the 8-byte
wide floating-point arithmetic used by MATLAB, & = 1/2%3 = eps/ 2 = 1.11/10%. Consequently
terms of order €2 will beignored below.

A strict version of 811's allegationisthat, if w # o isthe column vector computed for pxb # 0
from p and b using floating-point arithmetic whose roundoff threshold is €, then thereissome
constant | < 4/V3=2.3094 for which [sin(LJ(w, pxb))| < p-¢/|sin((p, b))|. A proof follows:

To reduce the strain on aged eyes, subscripts and superscripts will be avoided wherever possible.
Set column-vectors p =[x, y,z]" and b:=[e f,g]", so pxb=[y-g-zf, zexg, xf-y€.
The computed cross-product w has elements of which thefirst, (1+€)-((1t€)-y-g — (1x€)-zf), is
typical. Ignoring second-order termsin €, thisamountsto y-g—zf +2¢-(ly-g| + [zf]) at worst.

Consequently |w —pxb | < 2¢-|p%|b| elementwise; here p® isthe skew matrix that produces
p¢-b =pxb. Therefore, usingthe Euclidean norm ||| := \/(vTv), we conclude that

[ w —pxb [[* < 4e*[b|"-[p[*|b] < 4¢*Ib][*( the biggest eigenvalue of [p%)?,
since |p%| isareal symmetric matrix. Its Characteristic Polynomial turns out to be

f(A) := det( Al =) = A°—[IplI°A - 2x-y-Z| - wherein |jp|[* = x* +y*+2°>0.
To locateits zeros, the eigenvaluesof |p®|, we shall repeatedly use the Arithmetic-Geometric
Means Inequality, which saysthat (x?+y? + z%)/3 > 3V(x?y?-7%) ; it will beinvoked in the
equivalent form  [x-y-z| < ||p||¥/V27 . Then substitution of trial arguments reveals that

f2lplV3) <0< f(HIplV3), and f(0) <0< f(2llplIV3),
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File: Cross §13: Rounding Error-Bounds for Angles

so all three zeros of f (the eigenvaluesof [p?%) lie between +2||p|/v3. From thisweinfer that
| w —pxb || < (43)-€lpll[bll .

A diagram consisting of atriangle establishesthat || w —pxb || = [sin(L1(w, pxb))||lpxb]|; and

weknow that [|pxb]| = [Ip|l-|bll-|sin(C](p, b))| . Assemblethe last three relationsto finish the proof

that [sin(L(w, pxb))| < || w —pxb [[/|lpxb]| < (4/V3)-€[Ipll-lIbll/lpxbl| = (4/V3)-¢l|sin(C(p, b)) -

Actually 4/V3 can bereplaced by 2/V3 whenever sin(C(p, b)) isvery tiny sincethen all the elementsof pxb are
tiny because of cancellations during subtractions, which must then be exact, which removes one of the factors (1+t€)
from each element of w .

Attemptsto apply the last inequality falter when the unoriented angle |L1(p, b)| differsfrom O or
Tt by so little more than Ve that its best-known textbook formulas are vitiated by roundoff:

The familiar formula 0 < |J(p, b)| := arccos( p "b/(|p|l|lbll) ) < Tt can lose to roundoff as many

as half the significant digits carried by the arithmetic when |p"b|/(|lp|||lb|]) differsfrom 1 by less

than afew rounding errors. This happens because arccos skips so quickly at such arguments:
arccos(1) =0; arccos(1-€) = V2e; arccos(1-2¢) =2Ve; ...; arccos(e-1) = —V2e.

Consequently the arccos formula should be avoided when |LI(p, b)| isnear O or Tt.

Another formulaamost as familiar is
If p'b>0 then |T(p, b)| = arcsin( [lpxbl/(p]Ibll) )
else |U(p, b)| = mi—arcsin(|[Ipxbll/(lIp]l-lol) ) -
It can lose to roundoff as many as half the significant digits carried by the arithmetic when
llexb|l/(lIp]l-llbll) differsfrom 1 by lessthan afew rounding errors because, at such arguments,
arcsin skips so quickly through anglesnear 172. Avoid arcsin(...) for such angles.

More uniformly accurate than both familiar formulasis the following unfamiliar formula:
L (p, b)| = 2-arctan( || p/|lpll - b/lIbll | / I p/llpll + b/|IbI[1]) -
Valid for Euclidean space of any dimension, it never errs by more than a modest multiple of €.

('If the data’s magnitudes are not so extreme that exponent over/underflow can invalidate it, the algebraically
equivalent formula |CJ(p, b)| = 2-arctan( || p-lbll—b-Ipll |/ Il p-lloll + b-Ipll ) runs slightly faster.)
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