

File: Cross

§0: Abstract and Table of Contents

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 1/15

Cross-Products and Rotations

in 2- and 3-Dimensional Euclidean Spaces

Prof. W. Kahan

Mathematics and Computer Science Depts.
University of California
Berkeley CA 94720

§0: Abstract and Table of Contents

Applications of cross-products to geometrical problems in Euclidean 3-Space lead to formulas
that are easier to manipulate with associative matrix multiplications than with conventional non-
associative and anti-commutative cross-products. This thesis is supported by derivations of neat
formulas for rotations and for solutions to nearest-point problems. However, regardless of their
notation, many neat formulas in textbooks can be rendered numerically deceptive by roundoff
unless they are evaluated extra-precisely. Otherwise extra effort must be expended to compute
results at least about as accurately as the data deserve.

Table of Contents

§1:

√

(–I) in Euclidean 2-Space (a Summary and Review) Page 2
§2: Cross-Products and Rotations in Euclidean 3-Space 2
§3: For Readers Reluctant to Abandon • and

×

 Products 3
§4: A Derivation of Cross-Products in Euclidean 3-Space 4
§5: Triple Products 5

Jacobi’s and Lagrange’s Identities 6
§6: Rotations R about an axis

v

 in Euclidean 3-Space 6
§7: Constructing Rotations out of Reflections in a Euclidean Space of any Dimension

≥

 2 7
§8: Changing to an Orthonormal Basis with Opposite Orientation 7

David Meredith’s Identity 8
§9: Applications of Cross-Products to Geometrical Problems 8

A curve’s Center of Curvature and Radius of Curvature 10
§10: An Unfortunate Numerical Example 10
§11: Bilinear forms vulnerable to roundoff followed by cancellation occur frequently: 11
§12: Confirmations of the Eight Formulas in § 9 : 12

Binocular vision’s depth perception and range-finding 12
§13: Rounding Error-Bounds for Angles 14

A uniformly accurate arctan(…) formula for the angle between two vectors 15

Starting in 1981, these notes were assembled from lecture notes for classes in Sophomore Multi-
Variable Calculus and Linear Algebra, and in Junior Numerical Analysis. Students and diligent
readers are expected to fill in some omitted but routine algebraic manipulations and proofs.

File: Cross

§1:

√

(–I) in Euclidean 2-Space (a Summary and Review)

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 2/15

§1:

√

(–I) in Euclidean 2-Space (a Summary and Review)

The operator –I reverses vectors. In two dimensions it has a skew-symmetric square root

J := determined uniquely but for its sign by the two equations J

2

 = –I and J

T

 = –J . This

operator J rotates the plane through a quarter turn; whether clockwise or counter-clockwise
depends upon the respectively left- or right-handed orientation of the coordinate system. More
generally, exp(

θ

·J) := I·cos(

θ

) + J·sin(

θ

) turns the plane through an angle

θ

 . To construct a

vector of length ||

u

|| =

√

(

u

T

u

) perpendicular to any given vector

u

 in the Euclidean plane, form

J

u

 . For any 2-by-2 matrix B := [

u

v

] we find that B

T

JB = J·

v

T

J

u

 = J·det(B) , which implies

Adj(B) = –JB

T

J . (Recall Adj(B) := det(B)·B

–1

 when det(B)

≠

 0 .) Our formulas use associative

matrix multiplication for the scalar product

v

T

·

w

 =

w

T

·

v

 instead of the non-associative dot
product

v

•

w

 for reasons that will become increasingly persuasive in the following pages.

Because J is unchanged by rotations of coordinates, it can produce ostensibly coordinate-free
solutions for many geometric problems in the Euclidean plane. For instance, the equation of a

line through

v

 perpendicular to

w

 is

w

T

(

x

–

v

) = 0

; the equation of a line through

v

 parallel to

u

 is

u

T

J(

x

–

v

) = 0

; two lines whose equations are

u

T

x

 =

µ

 and

v

T

x

 = ß intersect at a point

z

 := J·(

u

·ß –

v

·

µ

)

/

(

v

T

J

u

) . However, not every orthogonal change of basis (coordinates) leaves J

unchanged; a

Reflection

 W = W

–1

 = W

T

≠

±

I changes J to W

–1

JW = W

T

JW = J·det(W) = –J ,
which reminds us that reflection reverses orientation in the plane.

Do you see why such a W must be a reflection? Why it must have the form W = I – 2

ww

T

/

w

T

w

 for a suitable
vector

w

 ? Why det(W) = –1 ? Can you confirm every unobvious assertion in the summary above?)

In many ways, but not all, J is to the Euclidean plane what

ı

 :=

√

(–1) is to the complex plane. J operates upon
vectors in the plane but is not a vector in that plane, whereas

ı

 is simultaneously a multiplicative operator and a
vector in the complex plane. The two planes are topologically different, though often confused: Roughly speaking,
the complex plane has just one point at infinity best visualized by

Stereographically

 projecting the complex plane
upon a sphere, whereas the Euclidean plane has a circle (or at least a line) at infinity. We won’t pursue this here.

Cross-products of vectors in Euclidean 2-Space appear in restrictions to 2-space of formulas
derived originally for vectors in Euclidean 3-Space. Consequently the 2-space interpretation of

“

u

×

v

 ” often reduces to a scalar

u

×

v

 =

v

T

J

u

 . Because cross-products are neither associative nor
commutative, triple products like “

u

•

v

×

w

”, “

u

×

v

•

w

” and “

u

×

v

×

w

 ” can generate confusion
if parsed improperly. When all vectors u, v and w lie in the same Euclidean 2-Space, …

u•(v×w) and (u×v)•w should both be zero if they appear at all, and

(u×v)×w = –w×(u×v) = Jw·(vTJu) in 2-space.
Whence come these formulas? From §§4-5. They will make sense after we have found and
adopted a matrix notation for cross-products, which motivates the notes that follow.

§2: Cross-Products and Rotations in Euclidean 3-Space
Henceforth bold-faced lower-case letters p, q, r, …, x, y, z stand for real 3-dimensional column-

vectors. Then row vector pT := [p1 p2 p3] is the transpose of column vector p , and pT·q is the

scalar product p•q of row pT and column q . Euclidean length ||p|| := √(pT·p) .

0 1–

1 0

File: Cross §3: For Readers Reluctant to Abandon • and x Products

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 3/15

Do not confuse the scalar pT·q = qT·p with the 3–by–3 matrices (“dyads”) p·qT ≠ q·pT of
rank 1 , nor with the vector cross-product p×q = –q×p . Cross-products are important enough

to justify introducing a notation “ p¢
 ”, pronounced “ pee-cross”, for a 3-by-3 skew-symmetric

(p¢T = –p¢) matrix of rank 2 defined by the vector cross-product thus: p×q = p¢·q . Explicitly

the matrix p¢ := . We shall see whence this comes after we see why we like it.

We prefer matrix notation for these geometrical entities because matrix multiplication is
associative:

 pT·q¢·r = (pT·q¢)·r = pT·(q¢·r) = p•(q×r) and p¢·q¢·r = (p¢·q¢)·r = p¢·(q¢·r) = p×(q×r)
unlike scalar and cross-products; (p•q)·r ≠ p·(q•r) and (p×q)×r ≠ p×(q×r) . Besides legibility,
a matrix notation promotes simpler expressions, shorter proofs, and easier operator overloading
in programming languages.

* * * * * * * * * * * * * * *
§3: For Readers Reluctant to Abandon • and x Products

(Other readers can skip to the next string of asterisks.)

We’re not abandoning familiar locutions; we’re just writing most of them shorter. Compare the
following classical formulas with their matrix equivalents for succinctness and ease of proof:

 Triple Cross-Product: (p×q)×r = q·p•r – p·q•r vs. (p¢·q)¢ = q·pT – p·qT

 Jacobi’s Identity: p×(q×r) + q×(r×p) = –r×(p×q) vs. p¢·q¢ – q¢·p¢ = (p¢·q)¢

 Lagrange’s Identity: (t×u)•(v×w) = t•v·u•w – u•v·t•w vs. (t¢·u)T·(v¢·w) = det([t u]T·[v w])

Some things don’t change much; p×q = –q×p becomes p¢·q = –q¢·p , so p¢·p = o (the zero

vector), and p•(q×r) = pT·q¢·r = det([p q r]) .

The notations’ difference becomes more pronounced as problems become more complicated. For
instance, given a unit vector û (with ||û|| = 1) and a scalar ψ , what orthogonal matrix

R = (RT)–1 rotates Euclidean 3–space through an angle ψ radians around the axis û ? In other
words, R·x is to transform every vector x by rotating it through an angle ψ about an axis û
fixed through the origin o .

An ostensibly simple formula R := exp(ψ·û¢) uses the skew-symmetric cross-product matrix û¢
defined above. Here exp(…) is not the array exponential that is applied elementwise, but is
the matrix exponential; think of R = R(ψ) as a matrix-valued function of ψ that solves the

differential equation dR/dψ = û¢·R = R·û¢ starting from the identity matrix R(0) = I . Given û

and ψ , an explicit formula for this R is R = I + 2·(I·cos(ψ/2) + û¢·sin(ψ/2))·û¢·sin(ψ/2) .
Rewriting this expression with solely • and × products doesn’t improve it. Try that!

In what follows the formulas above will be first derived and then applied to a few examples.

* * * * * * * * * * * * * * *

0 p3– p2

p3 0 p– 1

p2– p1 0

File: Cross §4: A Derivation of Cross-Products in Euclidean 3-Space

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 4/15

§4: A Derivation of Cross-Products in Euclidean 3-Space
What operators in Euclidean 3-space are analogous to the quarter-turn J in 2-space? Every
rotation of 3-space is characterized by its axis, a line left unchanged by the rotation, and its
angle of rotation about that axis. Let v be a nonzero vector parallel to such an axis. Analogous

to –I in 2-space is the operator vvT/vTv – I , which projects arbitrary vectors into the plane
through o perpendicular to v and then reverses the projection through o . That operator’s skew-
symmetric square root, determined (as we shall see) uniquely but for its sign by v , is the
analog of J , but different for every different direction v . Consequently that square root is a
discontinuous function of v at v = o . Multiplying that square root by ||v|| renders it continuous.

Hence we define the operator v¢ to be one of the solutions v¢ := ±S of the equations

S2 = vvT – vTv·I and S = –ST .
To see why these equations determine S uniquely but for sign, choose an orthonormal basis with
v/||v|| as its first basis vector and find a matrix representing S in that coordinate system. Every

such matrix S must satisfy Sv = o ; here is why: Evidently S2v = o , so det(S)2 = det(S2) = 0 ,

and so Sz = o for some z ≠ o ; but then S2z = o , and this implies that z is a scalar multiple of
v , whence follows Sv = o as claimed. Consequently, in the foregoing orthonormal coordinate
system, every skew-symmetric solution S is represented by a matrix whose first row and column
contain only zeros, whereupon the remaining 2-by-2 principal submatrix must be ±J·||v|| as
explained in the second sentence of §1. Thus, S is determined uniquely but for sign.

Given v = , consider the solution S := of the equations Sv = o and S = –ST ;

this S2 = vvT – vTv·I too, which combines with the previous paragraph to imply v¢ = ±S . Its

sign could be chosen arbitrarily but we set v¢ := +S , thereby classifying the coordinate system as

“right-handed”. Note now that v¢ is a continuous function of v . In summary, …

 For every vector v in Euclidean 3-space, the linear operator v¢ is a continuous linear

 function of v determined but for sign by the equations (v¢)2 = vvT – vTv·I and (v¢)T = –v¢ .
 Its sign is determined for every v by its sign for any one v ≠ o and by continuity.

The notation for v¢ , pronounced “vee-cross”, is inspired by the relation v¢w = v×w , where
the latter cross-product coincides with the one defined in texts on vector analysis. Here are four of
its properties:

v¢w = o just when ±v and w are parallel; this was proved using z above.

v¢w ⊥ v because vTv¢w = –(v¢v)Tw = oTw = 0 .

v¢w ⊥ w because wTv¢w = (wTv¢w)T = wT(v¢)Tw = –wTv¢w = 0 .

||v¢w||2 = ||v||2 ||w||2 – (vTw)2 because it is –wT(v¢)2w , etc.

Combining the formula vTw = ||v||·||w||·cos∠ (v, w) with the last equation proves that

||v¢w|| = ±||v||·||w||·sin∠ (v, w)
with a sign that depends upon the orientation, if any, assigned to the angle ∠ (v, w) when it has
to be distinguished from ∠ (v, w) = –∠ (w, v) . Anyway,

ξ
η
ζ

0 ζ– η
ζ 0 ξ–

η– ξ 0

File: Cross §5: Triple Products

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 5/15

||v¢w|| = | the area of a parallelogram with adjacent sides v and w | .

From the foregoing properties we infer by symmetry that w¢v must be one of ±v¢w whenever
they are nonzero because they are vectors with the same length and perpendicular to the same two
nonparallel vectors v and w . Trials with basis vectors for v and w show that

w¢v = – v¢w ,
and this equation must persist for all v and w since both sides are continuous bilinear functions.

This anti-commutative identity is a good reason to prefer the notation v¢w over v×w ; and later
the preference will intensify when we find the triple cross-product non-associative. Besides, we

shall need v¢ in isolation later to describe rotations.

§5: Triple Products
The scalar expression uTv¢w is linear in each vector separately, and reverses sign when any two
vectors are swapped; this follows from anti-commutativity when v and w are swapped, from

skew-symmetry of v¢ when u and w are swapped; and when u and v are swapped it follows

from uTv¢w = –wTv¢u = wTu¢v = –vTu¢w . Compare this with the characterization of the
determinant det([u v w]) as a functional, linear in each column of [u v w] separately, that

reverses sign when any two columns are swapped. It follows that uTv¢w/det([u v w]) must be a
constant provided the denominator does not vanish. Setting matrix [u v w] = I determines that
constant to be 1 , whereupon continuity implies an important identity for all u, v and w :

 uTv¢w = det([u v w]) .
This formula can be confirmed by direct but tedious algebraic manipulation, and also by the
following geometric argument:

Let parallelogram P have adjacent sides v and w so that its area |P| = ||v¢w|| ≠ 0 . Next let Q
be a parallelepiped whose sides emanating from a vertex are u, v and w ; then its volume is
|Q| = det([u v w]) and also

 |Q| = |P|·|| projection of u onto the unit-normal to P ||

= ||v¢w|| · || projection of u onto v¢w/||v¢w|| || = |uTv¢w| .

Now to confirm that uTv¢w = +det([u v w]) try any three vectors u, v and w, say the basis
vectors, and then invoke continuity to cope with the case when v and w are (anti)parallel.

Almost as important as that determinantal formula is the triple cross-product formula

 u×(v×w) = u¢v¢w = v·uTw – w·uTv = (vwT – wvT)u .

To prove this, note that it must be perpendicular to a vector v¢w perpendicular to both v and

w , and hence must lie in the plane of v and w . Therefore u¢v¢w = v·ß – w·µ for some scalars

ß and µ . Premultiplication by uT reveals that 0 = uTv·ß – uTw·µ and therefore some scalar

functional ƒ = uTv/µ = uTw/ß exists satisfying u¢v¢w = (v·uTw – w·uTv)/ƒ . Since both sides
of this equation are linear in each of u, v and w separately, ƒ can vary with none of them; it
must be a constant. Its value ƒ = 1 can be found by substituting one basis vector for u and w

File: Cross §6: Rotations R about an Axis v in Euclidean 3-Space

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 6/15

and a second basis vector for v . Alternatively, brute-force manipulation by a computerized
algebra system like Derive, Maple, Mathematica or Macsyma can be used to confirm the triple

cross-product formula. It is easier to remember in §3’s form: (v¢w)¢ = wvT – vwT .

That formula shows that (u×v)×w = (u¢v)¢w = –w¢u¢v = (vuT – uvT)w ≠ u×(v×w) ; the cross-

product is not associative, though matrix multiplication is associative: (u¢v¢)w = u¢(v¢w) .
That formula also confirms Jacobi’s Identity:

 u¢v¢w + v¢w¢u + w¢u¢v = o , or (u¢v)¢ = u¢v¢ – v¢u¢ ,
and helps to confirm Lagrange’s Identity:

 (t¢·u)T(v¢·w) = tTv·uTw – uTv·tTw = det([t u]T[v w]) .

Since they are not long, you should work out the confirmations of these identities, which figure in both classical and
Quantum mechanics.

§6: Rotations R about an Axis v in Euclidean 3-Space
If skew-symmetric matrix S = –ST is constant, the unique solution of the initial-value problem

R(0) = I and dR/dτ = SR for all t

is a matrix R(τ) that must be orthogonal; RT = R–1 because d(RTR)/dτ = RTSTR+RTSR = O

and therefore RTR = I for all τ . This implies det(R)2 = 1 and then det(R) = +1 because it is
continuous for all τ . Thus, R(τ) is a proper rotation;– no reflection. It has a power series too:

R(τ) = exp(τ·S) = ∑k≥0 τk·Sk/k! .

Now, every 3-by-3 skew-symmetric matrix S determines a vector v such that S = v¢ ; then

Sv = o , S2 = vvT – ||v||2·I , S3 = –||v||2·S , S4 = –||v||2·S2
 , …, Sm+2k = (–||v||2)k·Sm for m > 0 .

By taking odd and even terms separately in the series for exp(τ·v¢) we condense it to

R(τ) = exp(τ·v¢) = I + (1 – cos(τ·||v||))·(v¢/||v||)2 + sin(τ·||v||)·v¢/||v||

 = I + 2sin(τ·||v||/2)·(sin(τ·||v||/2)·v¢/||v|| + cos(τ·||v||/2)·I)·v¢/||v|| ,
thus providing a relatively simple and verifiable formula for the operator that rotates Euclidean 3-
space through an angle τ·||v|| about a given axis v ≠ o . Its τ-derivative is extremely simple:

d exp(τ·v¢)/dτ = v¢·exp(τ·v¢) = exp(τ·v¢)·v¢ .
(The v-derivative would require a long expression too complicated to serve the didactic purposes of these notes.)

The converse problem is this: Given an orthogonal matrix R = RT–1 that effects a proper rotation
because det(R) = +1 , how can its axis v be determined? What seems the simplest way at first is

to compute R–RT = 2·sin(τ·||v||)·v¢/||v|| , which works provided sin(τ·||v||) is not so tiny that
roundoff in R obscures the desired result. Generally a more reliable procedure is to apply
Gaussian elimination to solve the equation (R–I)v = o for a v ≠ o , or alternatively to compute

an appropriate (not too small) column of Adj(R–I) = (some scalar)·vvT . This procedure works
because R–I is singular (to within roundoff) with rank 2 ; here is how we know this to be so:

Consider any eigenvalue µ of R ; this µ may be complex, in which case its eigenvector z is
complex too, and we shall write z* for its complex-conjugate transpose. Next we find that

|µ|2·z*z = (Rz)*(Rz) = z*RTRz = z*z > 0 , whereupon |µ| = 1 . Now, R has three eigenvalues
µ , the roots of the characteristic equation det(µI – R) = 0 . Because its coefficients are real, any

File: Cross §7: Constructing Rotations out of Reflections in a Euclidean Space of any Dimension ≥ 2

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 7/15

of the three eigenvalues that are not real must come in complex-conjugate pairs whose product,
their squared magnitude, must equal 1 . The product of all three eigenvalues is det(R) = +1 too.
Two cases can arise:
• If R has a non-real eigenvalue µ then µ* is another and the third is 1/(µ*µ) = 1 .
• Otherwise all three eigenvalues are real, namely ±1 , and then +1 appears among them

an odd number of times because their product is +1 too.
Thus R–I must be singular; the axis v is an eigenvector of R belonging to eigenvalue +1 .
Problem (hard): Show that Adj(R–I) = (3 – Trace(R))·vvT/||v||2 provided proper orthogonal R ≠ I .

Must each proper orthogonal R = exp(τ·û¢) for some real τ and unit vector û (with ||û|| = 1) ?
Yes, and û = v/||v|| where v is the axis found above. To see why, change to a new orthonormal
coordinate system with û as its first basis vector. The matrix representing R in this new basis
has [1 0 0] and its transpose as first row and column. (Why?) The last principal 2-by-2
submatrix must be exp(τ·J) because it is proper orthogonal too; thus τ is determined. After

changing back to the original basis we find R = exp(±τ·û¢) . (We’ll explain the ± sign later.)

§7: Constructing Rotations out of Reflections in a Euclidean Space of any Dimension ≥ 2
For any w ≠ o in any Euclidean space, W := I – 2wwT/||w||2 is an orthogonal reflection.
Problem: Verify that W = WT = W–1 , that w = –Ww is reversed by the reflection, and that it preserves the

(hyper)plane of vectors x orthogonal to w . Thus the reflection’s mirror-plane satisfies the equation wTx = 0 .

Verify too that det(W) = –1 by applying the formula det(I – uvT) = 1 – vTu . Can you prove this last formula?

Suppose distinct nonzero vectors x, y, s and t are given with ||x|| = ||y|| and ||s|| = ||t|| and

sTx = tTy . (This last equation says that |∠ (s, x) | = |∠ (t, y) | .) We wish to construct a proper
orthogonal R that rotates x to Rx = y and s to Rs = t . We shall construct this R := HW as a

product of two orthogonal reflections: W := I – 2wwT/||w||2 and H := I – 2hhT/||h||2 in which
w := x–y and h := Ws–t , except that if Ws = t then h may be any nonzero vector orthogonal
to both y and t provided such a vector exists. (R might not exist in 2-space; why not?)

Problem: Verify that W swaps x and y , and that H swaps Ws and t while preserving y , so that R moves the
pair (s, x) to the pair (t, y) while preserving their lengths and angle. Verify too that R is proper orthogonal.

Problem (harder): Prove that every rotation in Euclidean 2- or 3-space is a product of two orthogonal reflections..
(The proof must ensure that both reflections exist.) How many suffice in Euclidean N-space?

§8: Changing to an Orthonormal Basis with Opposite Orientation
The vector v×w = v¢w is sometimes called a pseudo-vector because of how an arbitrary change

of orthonormal basis may affect it. For any orthogonal Q = QT–1 we shall find that

(Qv)¢(Qw) = Qv¢w·det(Q) , or equivalently (Qv)¢ = Qv¢QT·det(Q) .
Of course det(Q) = ±1 ; its appearance in the formula above is what deserves an explanation.

If det(Q) = +1 then Q is a proper rotation and our geometrical intuition may well persuade us that rotating v and

w together as a rigid body must rotate v¢w the same way, which is what the formula in question says. Otherwise
det(Q) = –1 , in which case Q combines rotation and reflection; in this case the formula in question, in the form

(Qv)¢Q = Qv¢·det(Q) , will take some work to be confirmed. A comparatively simple proof is provided by …

File: Cross §9: Applications of Cross-Products to Geometrical Problems

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 8/15

David Meredith’s Identity: Adj(LT)·v¢ = (Lv)¢·L for any 3-by-3 matrix L and vector v in Euclidean 3-space.

Into this identity substitute L := Q and use QT = Q–1 and Adj(QT) = (QT)–1·det(QT) = Q·det(Q) to get the formula
in question. What remains to be done is to prove the identity:

For all 3-vectors u, v and w regarded as columns of a matrix [v, w, u] , we find that

 det(L)·uTv¢w = det(L)·det([v, w, u]) = det(L·[v, w, u]) = det([Lv, Lw, Lu]) = (Lu)T(Lv)¢Lw = uTLT(Lv)¢Lw .

Consequently det(L)·v¢ = LT(Lv)¢L . Into this equation substitute det(L)·I = det(LT)·I = LT·Adj(LT) when LT is

nonsingular to get first LT·Adj(LT)·v¢ = LT(Lv)¢L , and then the desired identity. It is a polynomial equation in the
elements of L and therefore valid also when L is singular. Q.E.D.

When det(Q) = –1 the formulas just proved remind us that reflections reverse sense, changing right-handed triad

(v, w, v¢w) into left-handed triad (Qv, Qw, Qv¢w) , whereas (Qv, Qw, (Qv)¢(Qw)) is right-handed. (Look in a
mirror to see why.) Consequently the last two triads’ last elements must be oppositely directed.

Question: Why, when you look in a mirror, do you see left and right
reversed there but not up and down ?

Answer: That’s not what you see. (What you do see is described on the next page.)

§9: Applications of Cross-Products to Geometrical Problems
Cross-products p×q , or p¢·q in our matrix notation, figure prominently instead of determinants
in neat textbook solutions of many commonplace geometrical problems. Our first example is …

#0. Given the equations pT·x = π , bT·x = ß , wT·x = Ω of three planes, they intersect at point

z = (b¢·w·π + w¢·p·ß + p¢·b·Ω)/(pT·b¢·w) .

Neat formulas are more memorable and therefore more likely to appear in textbookss and be used
by programmers than are ugly numerical algorithms like Gaussian Elimination even if the latter
are numerically more stable. Gaussian Elimination is also faster than the foregoing formula; but

a programmer can easily fix that by rewriting z = ((b¢·w)·π + p¢·(b·Ω – w·ß))/(pT·(b¢·w)) and
reusing a common subexpression. Still, this formula is not so robust numerically as is Gaussian
Elimination with pivotal exchanges.

Like Beauty, the neatness and speed of a formula lie in the eye of the beholding programmer
sooner than does numerical stability. Roundoff doesn’t figure in textbooks’ formulas. The reader
will not easily determine which are numerically unstable among the neat textbook formulas that
solve the following eight commonplace geometrical problems each of the Nearest-Point kind:

 Given a point y and the definition of a line or plane G , we seek a point z in G nearest y .

We expect the line segment joining y and z to stick out of G perpendicularly.

y

z
G

•

•

File: Cross §9: Applications of Cross-Products to Geometrical Problems

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 9/15

Answer to the Question above: What you actually see reversed in a mirror are forward and back .
 -

If two formulas for z are offered below they suffer differently from rounding errors; the first
formula suffers less than the second whenever ||z–y|| << ||y|| and the second less than the first
whenever ||z|| << ||y|| . Unless parentheses indicate otherwise, associative products A·B·C
should be evaluated in whichever order, (A·B)·C or A·(B·C) , requires fewer arithmetic
operations; doing so below tends to diminish roundoff too. An exercise for the diligent reader is
to confirm the mathematical correctness of these formulas, even if roundoff may undermine their
validity; casual readers will find their confirmations in §12.

“Numerically stable” solutions for these eight “linearly constrained least-squares” problems may be found in some
works on numerical linear algebra; but no known stable solution is simply a rational formula like all those below.

#1. Given the equation pT·x = π of a plane ∏ , the point z in ∏ nearest y is

z := y – p·(pT·y – π)/||p||2 = (p·π – p¢·p¢·y)/||p||2 .

#2. Given three points u–v, u and u+w through which one plane ∏ passes, the point z in ∏

nearest y is z := y – p·pT·(y – u)/||p||2 = u – p¢·p¢·(y – u)/||p||2 wherein p := v¢·w .

#3. Given three points u, v and w through which one plane ∏ passes, the point z in ∏
nearest y is

z := y – p·pT·(y – u)/||p||2 = u – p¢·p¢·(y – u)/||p||2 wherein p := (v – u)¢·(w – u) .
The order of u, v and w is permutable in each formula separately. To attenuate roundoff in p
choose u to maximize ||v – w|| roughly. (Why? See §11.) For z choose u to minimize
||y – u|| in the first formula, ||u|| in the second.

#4. Given two points u and u+v through which one line £ passes, the point z in £ nearest y

is z := y + v¢·v¢·(y – u)/||v||2 = (v·vT·y – v¢·v¢·u)/||v||2 = u + v·vT·(y – u)/||v||2 .

#5. Given two points u and u+v through which one line £ passes, and two points y and y+w

through which another line ¥ passes, the point nearest £ in ¥ is x := y + w·vT·p¢·(y – u)/||p||2

wherein p = v¢·w . Nearest ¥ in £ is z := x – p·pT·(y – u)/||p||2 = s := u + v·wT·p¢·(y – u)/||p||2 .

#6. Given two points u and w through which a line £ passes, the point z in £ nearest y is

z := y + v¢·v¢·(y – u)/||v||2 = (v·vT·y – v¢·v¢·u)/||v||2 = u + v·vT·(y – u)/||v||2 wherein
v := w – u . Since u and w are permutable, choose u to minimize ||y – u|| in the first and last
formulas, and to minimize ||u|| in the middle formula, which is best if ||z|| << ||u|| too.

#7. Given the two equations pT·x = π and bT·x = ß of a line £ , the point z in £ nearest y is

 z := y + v¢·(p·(ß–bT·y) – b·(π–pT·y))/||v||2 = (v·vT·y + v¢·(p·ß–b·π))/||v||2

wherein v := p¢·b . Of course we assume v ≠ o in order that £ be determined uniquely.

File: Cross §10: An Unfortunate Numerical Example

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 10/15

#8. Given three non-collinear points u–v, u and u+w in Euclidean 3-space, the point

 z := u + (vçw)ç·(v·||w||2 + w·||v||2)/||vçw||2 = u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||vçw||2

is the center of the circle through the three given points, and this circle’s radius is

 ||v||·||w||·||v+w||/||vçw|| .

When the given points are infinitesimally close neighbors on a smooth curve traced by u = u(τ)
with non-vanishing velocity u' = u'(τ) := du(τ)/dτ and acceleration u" = u"(τ) := du'(τ)/dτ ,
the Osculating Circle that matches the curve’s tangent and curvature at u is centered at the

curve’s Center of Curvature c := u + ||u'||2·(u'ç·u")ç·u'/||u'ç·u"||2 . The circle’s radius is the

curve’s Radius of Curvature ||c–u|| = ||u'||3/||u'çu"|| . These formulas are derived in §12.

Problem #8 can arise in plane geometry. When u, v and w lie in a Euclidean 2-space, some

of the formulas above simplify: The circle’s center z := u + J·(v·||w||2 + w·||v||2)/(wTJv) and its

radius ||c–u|| = ||v||·||w||·||v+w||/|wTJv| ; the center of curvature c := u + ||u'||2Ju'/(u"TJu') and

the curve’s radius of curvature is ||c–u|| = ||u'||3/|u"TJu'| .

§10: An Unfortunate Numerical Example
It is not at all obvious that formula #7, say, is numerically unstable. In fact all figures carried
can be lost if a few too few are carried. Try this data all stored exactly as 4-byte floats :

 pT = [38006, 23489, 14517] , π = 8972 , bT = [23489, 14517, 8972] , ß = 5545 , and yT = [1, –1, 1] .

This data defines £ as the intersection of two nearly parallel planes, so tiny changes in data can
alter £ and z drastically. More troublesome numerically are the many correlated appearances of
the data p and b in the formulas for z in problem #7. Though mathematically crucial, these
correlations can be ruined by roundoff. Evaluating both formulas above for z naively in float

arithmetic yields z1
T = [1, 1, –1] and z2

T = [1, 1, –1.5] ; but z1 lies farther from both
planes than 0.8 , and z2 lies farther from them than 0.6 . These gaps cannot be attributed to
end-figure “errors” in the given data which would shift £ and z but not separate them.

 This naive arithmetic produces geometrically impossible results.

The correct point zT = [1/3, 2/3, –4/3] is computed correctly rounded when all intermediate
results (sub-expressions and local variables) are evaluated in double before z is rounded
back to float . Naively computed z1 and z2 are not so far from z as to be obviously wrong
if z were unknown, but but they are too wrong to be acceptable for most purposes.

This unfortunate example exemplifies behavior that occurs surprisingly often: Unless evaluated
extra-precisely, too many neat formulas can be intolerably more inaccurate than the data deserve.

WHY ?

1
2
--- 1

2

1
2

1
2

1
2

File: Cross §11: Bilinear forms vulnerable to roundoff followed by cancellation occur frequently:

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 11/15

§11: Bilinear forms vulnerable to roundoff followed by cancellation occur frequently:

Scalar products: p•b = pT·b = .

Linear combinations: p·ß – b·π = .

Cross products: p×b = p¢·b = .

These entities are geometrically redundant; they are so correlated that (p·ß – b·π)•(p×b) = 0
for all data {p, π, b, ß} . Even if data are “accurate” to few sig. digits and computed entities to
fewer, their geometrical redundancy must be conserved as accurately as possible. We can tolerate
slightly inaccurate results interpretable as realizable geometrical objects slightly different from
our original intent, but not geometrically impossible objects like a p×b too far from orthogonal
to p and b because of roundoff. Suppose ε is the roundoff threshold, meaning that sums,

differences and products are computed accurately within a factor 1±ε . For instance, ε = 5/1010
for arithmetic rounded to 10 sig. dec. Then the angle between the desired cross product p×b
and its computed version will be typically about ±ε/sin(∠ (p, b)) and is proved never to get much
bigger in §13. This shows how roundoff degrades p×b as p and b approach (anti)parallelism

and, in view of the Sine Law of Triangles, justifies advice about (v – u)¢·(w – u) in problem #3.

Therefore these bilinear forms and other matrix products should be computed carrying somewhat
more precision than in the data, thereby preserving geometrical redundancy despite “losses” of
several digits to cancellation. At any precision, prolonged chains of computation risk losing
geometrical redundancy. The wider is the precision, the longer is that loss postponed and the
more often prevented, provided that extra-precise arithmetic does not run intolerably slowly.

And extra precision usually costs less than error-analysis.
This is not said to disparage error-analysis; it is always the right thing to do if you know how and
have the time. But to know how you have to take advanced classes in numerical analysis since
elementary classes hardly ever cover error-analysis well enough to be useful. To spend enough
time you have to believe that the results being (in)validated by error-analysis are worth the time.

For extensive discussions of these and similar computational issues see …
 “Marketing versus Mathematics” www.cs.berkeley.edu/~wkahan/MktgMath.pdf
 “How Java’s Floating-Point Hurts Everybody Everywhere” ibid. … /JAVAhurt.pdf
 “Miscalculating Area and Angles of a Needle-like Triangle” ibid. … /Triangle.pdf
 “MATLAB’s Loss is Nobody’s Gain” ibid. … /MxMulEps.pdf
 “How Futile are Mindless Assessments of Roundoff in Floating-Point Computation ?” ibid. … /Mindless.pdf
 Prof. Jonathan Shewchuk’s web page, starting with www.cs.berkeley.edu/~jrs/meshpapers/robnotes.ps.gz

• • • • •

A good book about Error-Analysis is N.J. Higham’s Accuracy and Stability of Numerical Algorithms 2d ed. (2002)
Soc. Indust. & Appl. Math., Philadelphia; but it is about 700 pages long.

p1 b1⋅ p2 b2⋅ p3 b3⋅+ +

p1 β⋅ b1– π⋅

p2 β⋅ b2– π⋅

p3 β⋅ b3– π⋅

p2 b3⋅ p3– b2⋅

p3 b1⋅ p1– b3⋅

p1 b2⋅ p2– b1⋅

File: Cross §12: Confirmations of the Eight Formulas in § 9 :

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 12/15

§12: Confirmations of the Eight Formulas in § 9 :

#1. Given the equation pT·x = π of a plane ∏ , the point z in ∏ nearest y is

z := y – p·(pT·y – π)/||p||2 = s := (p·π – p¢·p¢·y)/||p||2 .

To confirm these formulas we must verify that pT·z = π , putting z in ∏ , and that p is
(anti)parallel to z–y so that it is perpendicular to ∏ . And then we must verify that z = s . Only
the last is unobvious:

(z–s)·||p||2 = y·||p||2 – p·(pT·y – π) – (p·π – p¢·p¢·y) = o since (p¢)2 = p·pT – ||p||2·I .

#2. Given three points u–v, u and u+w through which one plane ∏ passes, the point z in ∏

nearest y is z := y – p·pT·(y – u)/||p||2 = s := u – p¢·p¢·(y – u)/||p||2 wherein p := v¢·w .

These formulas follow from problem 1 because the plane’s equation is pT·x = π := pT·u .

#3. Given three points u, v and w through which one plane ∏ passes, the point z in ∏
nearest y is

z := y – p·pT·(y – u)/||p||2 = s := u – p¢·p¢·(y – u)/||p||2 wherein p := (v – u)¢·(w – u) .
These formulas follow from problem #2 after its v and w are replaced by u–v and w–u .

#4. Given two points u and u+v through which one line £ passes, the point z in £ nearest y

is z := y + v¢·v¢·(y – u)/||v||2 = s := (v·vT·y – v¢·v¢·u)/||v||2 = t := u + v·vT·(y – u)/||v||2 . To
confirm these formulas we must verify that z–u is a scalar multiple of v , which places z on £ ,

and that vT(z–y) = 0 so that z–y is perpendicular to £ . Since (v¢)2 = v·vT – ||v||2·I , we find

that z–u = v·vT·(y – u)/||v||2 = t–u is a scalar multiple of v and, incidentally, z = t . And

vT(z–y) = 0 follows from vTv¢ = oT
 . Finally s = t follows from the expansion of (v¢)2

 .

#5. Given two points u and u+v through which one line £ passes, and two points y and y+w

through which another line ¥ passes, the point nearest £ in ¥ is x := y + w·vT·p¢·(y – u)/||p||2

wherein p = v¢·w . Nearest ¥ in £ is z := x – p·pT·(y – u)/||p||2 = s := u + v·wT·p¢·(y – u)/||p||2 .
To confirm these formulas, we confirm first that x lies in ¥ because x–y = w·(scalar) , and that
s lies in £ because s–u = v·(scalar) . Then z = s because

||p||2·(z–s) = (||p||2·I – p·pT + w·vT·p¢ – v·wT·p¢)(y – u) … recall (pç)2 = p·pT – ||p||2·I

 = (–p¢ + w·vT – v·wT)·p¢·(y – u) = O·p¢·(y – u) = o
in view of the triple cross-product formula p¢ = (v¢w)¢ = w·vT – v·wT in §3 and §5. Finally,
z–x = p·(scalar) is perpendicular to both lines ¥ and £ , so z and x are nearest each other.

Lest binocular vision’s depth perception and range-finding falter when £ and ¥ almost intersect,

(x+z)/2 = (u+y + (w·vT + v·wT)·p¢·(y – u)/||p||2)/2 is the point nearest their near-intersection.

#6. Given two points u and w through which a line £ passes, the point z in £ nearest y is

z = y + v¢·v¢·(y – u)/||v||2 = (v·vT·y – v¢·v¢·u)/||v||2 = u + v·vT·(y – u)/||v||2 wherein
v = w – u . These formulas follow from problem #4.

File: Cross §12: Confirmations of the Eight Formulas in § 9 :

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 13/15

#7. Given the two equations pT·x = π and bT·x = ß of a line £ , the point z in £ nearest y is

 z := y + v¢·(p·(ß–bT·y) – b·(π–pT·y))/||v||2 = s := (v·vT·y + v¢·(p·ß–b·π))/||v||2

wherein v = p¢·b ≠ o . This v is parallel to £ because it is perpendicular to the normals of both
planes that intersect in £ . To confirm that z is the point in £ nearest y we must verify that z
lies in both those planes and that v is perpendicular to z–y . In other words, we must verify that

pT·z = π , bT·z = ß , vT·(z–y) = 0 and s = z . This was done with DERIVE™, a computerized
algebra system, faster than the following dozen lines of a manual verification can be written out:

vT·(z–y) = vT·v¢·(p·(ß–bT·y) – b·(π–pT·y))/||v||2 = 0 because vT·v¢ = oT .

pT·z – π = pT·y – π + pT·v¢·(p·(ß–bT·y) – b·(π–pT·y))/||v||2

 = pT·y – π – pT·v¢·b·(π–pT·y)/||v||2 because pT·v¢·p = 0 ,

 = pT·y – π + vT·p¢·b·(π–pT·y)/||v||2 because pT·v¢·b = –vT·p¢·b ,

 = pT·y – π + vT·v·(π–pT·y)/||v||2 = 0 .

bT·z – ß = bT·y – ß + bT·v¢·(p·(ß–bT·y) – b·(π–pT·y))/||v||2

 = bT·y – ß + bT·v¢·p·(ß–bT·y)/||v||2 because bT·v¢·b = 0 ,

 = bT·y – ß – vT·b¢·p·(ß–bT·y)/||v||2 because bT·v¢·p = –vT·b¢·p ,

 = bT·y – ß + vT·v·(ß–bT·y)/||v||2 = 0 .

(z–s)·||v||2 = (vT·v·I – v·vT)·y + v¢·(p·(ß–bT·y) – b·(π–pT·y)) – v¢·(p·ß–b·π)

 = –(v¢)2·y + v¢·(p·(ß–bT·y) – b·(π–pT·y) – (p·ß–b·π))

 = v¢·(–v¢ – p·bT + b·pT)·y = v¢·(–v¢ + (p¢·b)¢)·y = o .

#8. Given three non-collinear points u–v, u and u+w in Euclidean 3-space, the center z of

the circle through the given points is z := u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||vçw||2 , and the

circle’s radius is ||v||·||w||·||v+w||/||vçw|| . To prove these formulas this problem will be reduced

to a problem solved previously.

Among points equidistant from the three given points, center z is nearest them. To simplify its

derivation shift the origin to u temporarily. Now “equidistant” implies ||v+z||2 = ||z||2 = ||w–z||2

which boils down to two linear equations vTz = –||v||2/2 and wTz = ||w||2/2 , restricting z to a
straight line. This reduces problem #8 to an instance of problem #7 whose solution becomes

z = u + (vçw)ç·(v·||w||2 + w·||v||2)/||vçw||2 = u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||vçw||2 after

some simplification and restoration of the origin. Note that this formula makes z coplanar with
the three given points, as must be expected. Now, z is the center of a circle whose radius is

 ||z–u|| = ||(||v||2·wwT – ||w||2·vvT)·(v + w)||/||vçw||2

 = || w·||v||2·(||w||2 + vTw) – v·||w||2·(||v||2 + vTw) ||/||vçw||2 = …

 = ||v||·||w||·||v+w||·√(||v||2·||w||2 – (vTw)2)/||vçw||2 = ||v||·||w||·||v+w||/||vçw||

as claimed.

1
2

1
2

1
2
--- 1

2

1
2

1
2

1
2
--- 1

2

File: Cross §13: Rounding Error-Bounds for Angles

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 14/15

Next let u := u(τ) trace a smooth curve with non-vanishing velocity u' := u'(τ) := du(τ)/dτ and

acceleration u" := u"(τ) := du'(τ)/dτ . The Taylor series u(τ+θ) = u + θ·u' + θ2·u"/2 + …

determines v := u(τ) – u(τ–φ) = φ·u' – φ2·u"/2 + … and w := u(τ+θ) – u(τ) in the foregoing
first formula for z whose limit, as θ → 0 and φ → 0 , turns into the Center of Curvature

c = u – ||u'||2·u'ç·(u'ç·u")/||u'ç·u"||2 .

And then because u'T·(u'ç·u") = 0 , the Radius of Curvature ||c–u|| = ||u'||3/||u'çu"|| .

§13: Rounding Error-Bounds for Angles
The angle between the desired cross product p×b and its computed version is alleged in §11 to
never exceed ε/|sin(∠ (p, b))| much. Here ε is the roundoff threshold for individual arithmetic
operations. This means that executing an assignment statement “ x := y·z ” actually computes
and stores some rounded value x := (1±ε)·y·z , which is how an unknown number between
(1–ε)·y·z and (1+ε)·y·z shall be described. Likewise “ x := y–z ” actually stores a number
x = (1±ε)·(y–z) . In special circumstances more than this can be said about x ; for instance, if
1/2 ≤ y/z ≤ 2 then “ x := y–z ” actually stores x = y–z exactly on almost all today’s computers.

Problem: Perhaps aided by a calculator, explore and then confirm the last assertion, and then find examples that
would violate it if “ 1/2 ” were diminished or “ 2 ” increased.

In any event, ε is very tiny. ε = 1/224 ≈ 5.96/108 for 4-byte wide floats. For the 8-byte

wide floating-point arithmetic used by MATLAB, ε = 1/253 = eps/2 ≈ 1.11/1016
 . Consequently

terms of order ε2 will be ignored below.

A strict version of §11’s allegation is that, if w ≠ o is the column vector computed for p×b ≠ o
from p and b using floating-point arithmetic whose roundoff threshold is ε , then there is some
constant µ ≤ 4/√3 ≈ 2.3094 for which |sin(∠ (w, p×b))| ≤ µ·ε/|sin(∠ (p, b))| . A proof follows:

To reduce the strain on aged eyes, subscripts and superscripts will be avoided wherever possible.

Set column-vectors p := [x, y, z]T and b := [e, f, g]T
 , so p×b = [y·g–z·f, z·e–x·g, x·f–y·e]T

 .
The computed cross-product w has elements of which the first, (1±ε)·((1±ε)·y·g – (1±ε)·z·f) , is
typical. Ignoring second-order terms in ε , this amounts to y·g–z·f ±2ε·(|y·g| + |z·f|) at worst.

Consequently | w – p×b | ≤ 2ε·|p¢|·|b| elementwise; here p¢ is the skew matrix that produces

p¢·b = p×b . Therefore, using the Euclidean norm ||v|| := √(vTv) , we conclude that

|| w – p×b ||2 ≤ 4ε2·|b|T·|p¢|2·|b| ≤ 4ε2·||b||2·(the biggest eigenvalue of |p¢|)2
 ,

since |p¢| is a real symmetric matrix. Its Characteristic Polynomial turns out to be

ƒ(λ) := det(λI – |p¢|) = λ3 – ||p||2λ – 2|x·y·z| wherein ||p||2 = x2 + y2 + z2 > 0 .

To locate its zeros, the eigenvalues of |p¢| , we shall repeatedly use the Arithmetic-Geometric

Means Inequality, which says that (x2 + y2 + z2)/3 ≥ 3√(x2·y2·z2) ; it will be invoked in the

equivalent form |x·y·z| ≤ ||p||3/√27 . Then substitution of trial arguments reveals that
ƒ(–2||p||/√3) < 0 ≤ ƒ(–||p||/√3) , and ƒ(0) ≤ 0 ≤ ƒ(2||p||/√3) ,

File: Cross §13: Rounding Error-Bounds for Angles

Prof. W. Kahan Version dated February 25, 2007 8:56 am Page 15/15

so all three zeros of ƒ (the eigenvalues of |p¢|) lie between ±2||p||/√3 . From this we infer that
|| w – p×b || ≤ (4/√3)·ε·||p||·||b|| .

A diagram consisting of a triangle establishes that || w – p×b || ≥ |sin(∠ (w, p×b))|·||p×b|| ; and
we know that ||p×b|| = ||p||·||b||·|sin(∠ (p, b))| . Assemble the last three relations to finish the proof
that |sin(∠ (w, p×b))| ≤ || w – p×b ||/||p×b|| ≤ (4/√3)·ε·||p||·||b||/||p×b|| = (4/√3)·ε/|sin(∠ (p, b))| .

Actually 4/√3 can be replaced by 2/√3 whenever sin(∠ (p, b)) is very tiny since then all the elements of p×b are
tiny because of cancellations during subtractions, which must then be exact, which removes one of the factors (1±ε)
from each element of w .

Attempts to apply the last inequality falter when the unoriented angle |∠ (p, b)| differs from 0 or
π by so little more than √ε that its best-known textbook formulas are vitiated by roundoff:

The familiar formula 0 ≤ |∠ (p, b)| := arccos(pTb/(||p||·||b||)) ≤ π can lose to roundoff as many

as half the significant digits carried by the arithmetic when |pTb|/(||p||·||b||) differs from 1 by less
than a few rounding errors. This happens because arccos skips so quickly at such arguments:
 arccos(1) = 0 ; arccos(1–ε) ≈ √2ε ; arccos(1–2ε) ≈ 2√ε ; … ; arccos(ε–1) ≈ π – √2ε .
Consequently the arccos formula should be avoided when |∠ (p, b)| is near 0 or π .

Another formula almost as familiar is

 If pTb > 0 then |∠ (p, b)| = arcsin(||p×b||/(||p||·||b||))
else |∠ (p, b)| = π – arcsin(||p×b||/(||p||·||b||)) .

It can lose to roundoff as many as half the significant digits carried by the arithmetic when
||p×b||/(||p||·||b||) differs from 1 by less than a few rounding errors because, at such arguments,
arcsin skips so quickly through angles near π/2 . Avoid arcsin(…) for such angles.

More uniformly accurate than both familiar formulas is the following unfamiliar formula:
 |∠ (p, b)| = 2·arctan(|| p/||p|| – b/||b|| || / || p/||p|| + b/||b|| ||) .

Valid for Euclidean space of any dimension, it never errs by more than a modest multiple of ε .

(If the data’s magnitudes are not so extreme that exponent over/underflow can invalidate it, the algebraically
equivalent formula |∠ (p, b)| = 2·arctan(|| p·||b|| – b·||p|| || / || p·||b|| + b·||p|| ||) runs slightly faster.)

