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Object recognition is the ultimate goal of most
computer vision research. An ideal object re-
cognition system should be able to recognize
objects in an image that are partially occluded

or have undergone geometric transformations. Most sys-
tems will use a large database of models and apply model-
based recognition.

Say you want to give a robot the ability to recognize all
objects and tools on a factory floor. If there are only a few
hundred objects, you could design a database of these ob-
jects and store it in the robot’s memory. When the robot
receives a sensory image of its environment from a video
camera or a range sensor, it should be able to quickly re-
trieve from memory objects that appear in the image. Al-
though quite natural in human vision, this task in a robot
requires the solution of several complicated problems:

1. The objects in the acquired scene appear rotated and
translated relative to their initial database position, and the
whole scene undergoes a sensor-dependent transformation,
such as the projective transformation of a video camera.

2.The objects in the scene may partially occlude each
other, and the scene may include additional objects not
included in the database.

3. It is computationally inefficient to retrieve each in-
dividual object from the database and compare it against
the observed scene in search of a match. For example, if
the scene contains only round objects, it does not make
sense to retrieve rectangular objects to match against it.

We need a method that allows direct access to only the
relevant information—such as an indexing-based ap-
proach. For example, if you are looking for words in long
strings of text, you could use a table accessed by indices
that are functions of individual words. The table contains
the strings where the word appears and the location of
the word in the strings. It would be easy then to locate a
word by retrieving all of its appearances from the table.

This kind of approach was originally proposed for geo-
metric object recognition, making use of indices based
on local geometric features that remained invariant to
the object transformation. The features were local to
handle partial occlusion, and their indexing function was
invariant to the relevant transformation, because unlike
words in text, geometric features have both location and
orientation. For over a decade now, indexing-based ap-
proaches have been gaining ground as the method of
choice for building working recognition systems that can
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operate with large model databases. 
In its modern incarnation, geometric hashing,

a method based on the indexing approach, origi-
nated in the work of Schwartz and Sharir.1,2

These first efforts concentrated on the recogni-
tion of rotated, translated, and partially occluded
two-dimensional objects from their silhouettes
using boundary-curve matching techniques. As
opposed to the simplified text analogy, the tech-
nique in reality is more complicated, requiring
shape information rather than just the location of
local features. Two shapes may have the same lo-
cal features yet be entirely different in appear-
ance. If the shape’s rigidity is conserved, then not
only the local features but also their relative spa-
tial configuration are important.

In order to exploit geometric consistency and
to tackle model-based object recognition in two-
dimensional and three-dimensional settings,
Schwartz, Wolfson, and Lamdan developed a
new geometric hashing technique applicable to
arbitrary point sets, or constellations, under var-
ious geometric transformations.3-5 They devel-
oped efficient algorithms for recognizing flat
rigid objects represented either by point sets or
by curves under the affine approximation of the
perspective transformation, and they extended
the technique to recognize point sets under ar-
bitrary transformations and to distinguish rigid
3D objects from single 2D images.6

Since this early work, many research groups
have built and used geometric hashing systems.
Most implementations have worked as well as
classical model-based vision systems, on the
whole delivering on the promise of greater effi-
ciency. One of the advantages is that geometric
hashing is inherently parallel. In fact, with min-
imal communication and maintenance costs, the
underlying data structure can be easily decom-
posed and shared among a number of cooperat-
ing processors, and the technique has been im-
plemented on the Connection Machine.7-8

Researchers also soon discovered  that the dis-
tribution of indices over the space of invariants is
nonuniform.9-13 (This nonuniformity, however,
is not specific to geometric hashing, but appears
to be endemic to all indexing schemes.14-15)
From a practical angle, nonuniform distribution
results in different lengths for the hash entry
lists. Since the length of the longest list domi-
nates the time needed to carry out the histogram
phase of the algorithm, a nonuniform distribu-
tion will adversely affect the method’s perfor-
mance. A uniform distribution, however, not
only reduces execution time but can also result

in much more efficient storage of the hash table
data structure. Additionally, in parallel imple-
mentation, a more or less constant co-occupancy
of all the hash bins results in an improved load
balancing among the proces-
sors.8 Knowledge of the expres-
sions for the index distributions
over the space of invariants
greatly facilitates the equaliza-
tion of the hash bin occupancy.

In addition, for the case where
models undergo similarity or
affine transformations, you can
incorporate a noise model into
the geometric hashing framework
and analytically determine its ef-
fect on invariants. This analysis
provides a detailed description of
the method’s behavior in the presence of noise.

With this augmented framework, you can de-
velop a Bayesian approach to object recognition
with geometric hashing.16 Augmentation of the
traditional geometric hashing algorithm with
an error model layer and a Bayesian layer allows
the creation of working systems that can oper-
ate with real-world photographs and large
model databases.17

Underlying ideas
In recognizing objects, geometric hashing and

indexing methods are efficient and can easily be
made parallel. These methods are especially at-
tractive in model-based schemes, but they also
hold significant advantages in pairwise object-
scene comparisons because of their ability to also
handle partially occluded objects. However, this
is difficult because it is not known which data-
base objects will appear and what their pose will
be. The model information is encoded in a pre-
processing step and stored in a large memory, in
this case a hash table. The contents of the hash
table are independent of the scene and can thus
be computed offline, not affecting the recogni-
tion time. Access to the memory is based on geo-
metric information that is invariant of the ob-
ject’s pose and computed directly from the scene.

During the recognition phase, and when pre-
sented with a scene, the method accesses the pre-
viously constructed hash table, indexing geo-
metric properties of features extracted from the
scene for matching with candidate models. A
search of all scene features is still required, but
geometric hashing obviates a search of all models
and their features. 

.

One of the advantages
is that geometric

hashing is inherently
parallel.

◆

◆
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Scene features—including such things as points,
linear and curvilinear segments, and corners—are
accumulated during the feature extraction stage.
The collection of features is represented by a set
of dots, each dot representing a feature’s location.
Associated with each dot is a list of one or more
attributes, depending on the feature’s type.

Suppose we wish to perform recognition of

patterns of point features in the presence of sim-
ilarity transformations—that is, the point fea-
tures may be translated, rotated, or scaled. (Geo-
metric hashing can tackle other transformations,
such as rigid and affine transformations, but
similarity transformations are of moderate diffi-
culty and effectively showcase the methodol-
ogy.) The left side of Figure 1 shows model M1,
which consists of five dots with position vectors
p1, p2, p3, p4, and p5. We want to encode this
dot information appropriately and store it into a
table. This way, if the system detects this collec-
tion of dots in a scene, it could conclude that
they belong to the model M1.

If we assume for the moment that each dot
has a unique, distinctive color, a potential albeit
simplistic indexing scheme would use the color
as the dot’s index: an entry in the hash bin would
include the identity of the model to which the
dot belongs. In the recognition stage, the sys-
tem would simply scan the dots, access the hash
table using each dot’s color, and increase the
count of the models appearing in the accessed
table bins. Models accumulating high counts
have high probability to be present in the scene.
The computational complexity of such a scheme
would be linear in the number of the scene dots.

However, what happens in the least informa-
tive case, where dots belonging to a model have
no attributes except for their geometric config-
uration? Is there a distinctive geometric “color”?
Yes, the natural geometric “color” of a dot is the
set of its coordinates, but coordinates depend on
a reference frame. The question then becomes
one of whether there is a natural reference frame
for a model that will remain present under par-
tial occlusion. One straightforward such choice

.
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Figure 1. Determining the hash table entries when points 4 and 1 are used to define a basis. The models are allowed to
undergo rotation, translation, and scaling. On the left of the figure, model M1 comprises five points. 
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Figure 2. The locations of the hash table entries for model M1. Each
entry is labeled with the information “model M1” and the basis pair
(i, j) used to generate the entry. The models are allowed to
undergo rotation, translation, and scaling.
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is a pair of dots belonging to the model and
defining an unambiguous reference frame that
remains unchanged if the model undergoes ro-
tation, translation, and/or scaling.

Let’s take the pair of dots p4, p1 as an ordered
basis to such a reference frame. As shown in Fig-
ure 1, we scale the model M1 so that the magni-
tude of in the Oxy system equals 1. Sup-
pose now that we place the midpoint between
dots 4 and 1 at the origin of a coordinate system
Oxy in such a way that the vector has the
direction of the positive x axis. The remaining
three points of M1 will land in three locations.
Let’s record in a quantized hash table—in each
of the three bins where the remaining points
land—the fact that model M1 with basis “(4, 1)”
yields an entry in this bin.

Since our goal is to perform recognition un-
der partial occlusion, we are not guaranteed that
both basis points p1 and p4 will appear in each
scene where model M1 will be present. Conse-
quently, we encode the model dot’s information
in all possible ordered basis pairs. Namely, the
hash table contains three entries of the form (M1,
(4, 2)), three entries of the form (M1, (4, 3)), and
so on. Each triplet of entries is generated by first
scaling the model M1 so that the corresponding
basis has unit length in the Oxy coordinate sys-
tem, and then by placing the midpoint of the ba-
sis at the origin of the hash table in such a way
that the basis vector has the direction of the pos-
itive x axis. The same process is repeated for each
model in the database. Of course, some hash
table bins may receive more than one entry. As
a result, the final hash table data structure will
contain a list of entries of the form (model, basis)
in each hash table bin. Figure 2 shows the loca-

tions of all the hash table entries for model M1.
In essence what we have done is define in

turn orthonormal bases for the coordinate sys-
tem Oxy using a pair of vectors
and ; µ1 and µ2 denote distinct
points taken from the model M1. For each
choice of a basis, the remaining points p of M1
are represented in this basis using the equation

(1)

where is the midpoint be-
tween pµ1

and pµ2
. The scalar quantities u and v

remain invariant under similarity transforma-
tion of M1, and their quantization allows us to
determine an index (uq, vq) that will take us into
a location of a 2D hash table data structure. In
the hash bin that is accessed via (uq, vq) we enter
the information (m, (pµ1

, pµ2
)).

In the recognition phase, a pair of points (pµ1
,

pµ2
) from the image is chosen as a candidate ba-

sis. As before, this ordered basis defines a coor-
dinate system Oxy whose center coincides with
the midpoint of the pair; the direction of the ba-
sis vector pµ2

− pµ1
coincides with that of the

positive x axis. The magnitude of the basis vec-
tor defines the “unit” length for Oxy. The coor-
dinates of all other points are then calculated in
the coordinate system defined by the chosen ba-
sis. Each of the remaining image points is
mapped to the hash table, and all entries in the
corresponding hash table bin receive a vote. In
essence, for the selected basis and for each re-
maining point in the scene, Equation 1 is used
to determine the index (uq, vq) of a hash bin to
access. As shown in Figure 3, each pair of (model,
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Figure 3. Determining the hash table bins that are to be notified when two arbitrary image points are selected as a basis.
Similarity transformation is allowed.
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basis) found in the accessed bin gets a vote.
If we select a pair of scene points that corre-

sponds to a basis on one of the models, we expect
it to accumulate as its score the votes from all
other unoccluded points belonging to this model.
If there are sufficient votes for one or more
(model, basis) combinations, then a subsequent
stage attempts to verify the presence of a model
with the designated basis matching the chosen
basis points. In the case where model points are
missing from the image because they are ob-
scured, recognition is still possible as long as a
sufficient number of points hash to the correct
bins. The list of entries in each bin may be large,
but because there are many possible models and
basis sets, the likelihood that a single model and
single basis set will receive multiple votes is quite
small, unless a configuration of transformed
points coincides with a model or part of it.

In general, we do not expect the voting scheme
to give only one candidate solution. The goal of
the voting scheme is to act as a sieve and reduce
significantly the number of candidate hypotheses
for the verification step. For the algorithm to be
successful it is sufficient to select as a basis tuple any
set of image points belonging to some model. It is not

necessary to hypothesize a correspondence be-
tween specific model points and specific scene
points, since all models and basis pairs are stored
redundantly within the hash table. Classification
or perceptual grouping of features can be used
to make the search over scene features more ef-
ficient—for example, by making use of only spe-
cial basis tuples.

The two stages making up the core of the geo-
metric hashing system are outlined in Figure 4.

We have seen that two points suffice to define
a basis when the models are allowed to undergo
a 2D similarity transformation. However, geo-
metric hashing represents a unified approach
that applies also to many other useful transfor-
mations encountered in object recognition
problems. The only difference from one appli-
cation to another is the number of features that
have to be used to form a basis for the reference
frame. This, of course, affects the computational
complexity of the algorithm in the different
cases, which still remains polynomial.

The following lists give a number of examples
where this general paradigm applies. Almost all
cases involve point matching. Use of other fea-
tures, such as lines, can be understood by anal-
ogy. The first list covers recognition of 2D ob-
jects from 2D data:

1.Translation in 2D: The technique is applica-
ble using a one-point basis, the point being
viewed as the origin of the coordinate frame.

2.Translation and rotation in 2D: A two-point
basis can be used, but one point with a direc-
tion (obtained, say, from an edge segment) pro-
vides enough information for a unique defini-
tion of a basis.

3.Translation, rotation, and scaling in 2D: Dis-
cussed earlier.

4. Affine transformation in 2D: A three-point ba-
sis defines an unambiguous reference frame.3-5

5.Projective transformation in 2D: A four-point
basis is needed to recover a projective transfor-
mation between two planes.

When 3D data—such as range or stereo data
of the objects—is available, the recognition of
3D objects from 3D images must be considered.
Development of techniques for this case is es-
pecially important in an industrial environment,
where 3D data can be readily obtained and used.
Geometric hashing for 3D rigid transformation
(translation and rotation) has been applied in
CAD/CAM, medical imaging, and protein com-
parison and docking in molecular biology (as de-

.

Preprocessing phase
For each model m do the following:
1. Extract the model’s point features. Assume that n such features

are found.
2. For each ordered pair, or basis, of point features do the following:
(a) Compute the coordinates (u, v) of the remaining features in the

coordinate frame defined by the basis.
(b) After proper quantization, use the tuple (uq, vq) as an index into a 2D

hash table data structure and insert in the corresponding hash table bin
the information (m, (basis)), namely the model number and the basis
tuple used to determine (uq, vq).

Recognition phase
When presented with an input image, do the following:
1. Extract the various points of interest. Assume that S is the set of the

interest points found; let S be the cardinality of S.
2. Choose an arbitrary ordered pair, or basis, of interest points in the 

image.
3. Compute the coordinates of the remaining interest points in the coordin-

nate system Oxy that the selected basis defines.
4. Appropriately quantize each such coordinate and access the appropriate

hash table bin; for every entry found there, cast a vote for the model and
the basis.

5. Histogram all hash table entries that received one or more votes during
step 4. Proceed to determine those entries that received more than a
certain number, or threshold, of votes: Each such entry corresponds to a
potential match.

6 . For each potential match discovered in step 5, recover the transforma-
tion T that results in the best least-squares match between all cor-
responding feature pairs.

7. Transform the features of the model according to the recovered transfor-
mation T and verify them against the input image features. If the verifica-
tion fails, go back to step 2 and repeat the procedure using a different
image basis pair.

Figure 4. The two stages of the geometric hashing system.
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scribed in other articles in this issue). Here are
examples of 3D transformations:

1.Translation in 3D: As in the 2D case, a one-
point basis will suffice.

2.Translation and rotation in 3D: This is the
interesting case corresponding to rigid motion.
A basis consisting of two noncollinear lines suf-
fices. Alternatively, three points, with additional
triangle-side length information, can be used to
define a basis.

3.Translation, rotation, and scaling in 3D: A ba-
sis comprising two noncollinear and nonplanar
lines will suffice. Alternatively, a point and a line
can be used.

In general, if
♦ the database contains M known models,

each comprising n features,
♦ the scene during recognition contains S fea-

tures, and
♦ c features are needed to form a basis,

then the time complexity of the preprocessing
phase is O(Mnc+1). The complexity of the recog-
nition phase is O(HSc+1), where H represents the
complexity of processing a hash table bin. As in all
hashing techniques, H depends on the hash table
occupancy and bin distribution. If the size of the
table is of the order of the elements it contains and
the distribution is uniform, the access complexity
H will be equal to O(1). If, on the other hand, the
table is small or all of the features hash into only a
few bins, the access time may be dominated by the
number of elements in the table, which is Mnc+1. 

This is, however, an unlikely situation. It is im-
portant to note that the hash table and its struc-
ture are known in advance and before the recog-
nition phase. Thus, you can evaluate this structure
and decide whether it requires the application of
rehashing procedures, the splitting of the table
into several tables, or the changing of the index
structure to a higher-dimensional one. It is also
important to mention the bins with high occu-
pancy, which cause significant computational ef-
fort, can simply be ignored—their information
content is not salient enough to assist recognition.
Thus, you can decide a priori on an upper bound
to the size of the hash table bins that will be
processed. An extension of this idea leads to
weighted voting, where the bin information is in-
versely proportional to the bin’s size.

In the recognition of 3D objects from single
2D images we have the additional problem of
different dimensions. A number of methods
have been suggested to tackle this problem using

geometric hashing; see elsewhere.6

Index distributions
One issue of particular importance is index dis-

tribution over the space of invariants when the al-
lowed transformation is known and fixed. The as-
sumption is that all point features are identically
and independently distributed following a random
process with a known probability density function
f( ). Recall that the indices used to access the hash
table are the quantized solution (u, v) to Equation
1. Since the properties of the random process gen-
erating the point features are known, the joint
probability density function f(u, v) of u and v can
be computed using the expression

(2)

where J is the Jacobian of the transformation (as
in Equation 1). Evaluation of this integral yields
the distribution of indices over the space of invari-
ants for the transformation under consideration.

For example, in the case of similarity trans-
formations and feature points generated by the
Gaussian random process 

,

evaluation of the integral 2 yields

.

The distribution over the space of invariants for
synthetically generated indices, as well as several
of its contours, are shown in Figure 5, with the
occupancies of the hash table encoded as heights. 

When the random process giving rise to the
feature points comprising the various database
models is not known, it is typically possible to ob-
tain an approximation f *( ) of the probability den-
sity function using numerical techniques: you can
use f *( ) instead of f ( ) in Equation 2. Alternatively,
you can use a numerical approximation of f *(u, v).

From hashing to rehashing
If the probability density function for the dis-

tribution of indices over the space of invariants
is available, you can effectively use it to provide
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substantial improvements in storage require-
ments and performance. The outlined method-
ology is generally applicable to all indexing-
based object identification methods.

The nonuniform occupancy of the hash bins
results in bins that contain a large number of
entries. Since the longest such list dominates
the time spent in the histogram phase, a uni-
form distribution of the entries is desirable. A
uniform distribution can be achieved by trans-
forming the coordinates of point locations so
that the equispaced quantizer in the space of in-
variants yields an expected uniform distribu-
tion. To this end, knowledge of the expected
joint probability density function f(u, v) (or an
approximation of it) for the distribution of the
untransformed coordinates (that is, the tuple of
invariants) is required.

In essence we seek a mapping, ,
that evenly distributes the hash bin entries over a
rectangular hash table. Notice that the range of

the function h is the space of transformed in-
variants and not the space of features extracted
from the input.

For the similarity transformation example
above, one such mapping is as follows:

(3)

In this expression, atan2(⋅,⋅) returns the phase in
the interval [−π, π]. It is interesting to note that
the computed rehashing function does not in-
clude the standard deviation s of the feature-gen-
erating process as a parameter. Figure 6 shows
the result of hash table equalization for synthetic
data. The reference spike at the upper left cor-
ner of the hash table is reproduced from Figure 5
and provides a measure of the benefits incurred
by the rehashing operation. Clearly, the remap-
ping is very efficient. This table has the same
number of bins as the one in Figure 5.17
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Figure 6. Hash table equalization for the case of similarity transformations and point features generated by the Gaussian
process : (a) the expected distribution of remapped invariants; (b) several of the distribution’s contours.

(a) (b)

Figure 5. The distribution over the space of invariants, and several of its contours, for the
case of Gaussian-distributed point features. Similarity transformation is allowed.
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Exploiting existing symmetries
In addition to savings from the use of rehash-

ing functions, further computational and stor-
age savings are possible. Symmetries typically
exist in the storage pattern of entries in the hash
table; these symmetries are independent of the
use of rehashing functions and thus can be used
in conjunction with the rehashing functions.

For rigid and similarity transformations, the
symmetries are with respect to a point: For every
entry of the form (µ, (µ1, µ2)) at location (u, v) of
the hash table, there will be an entry (µ, (µ2, µ1))
at location (−u, −v). For the affine transformation,
the symmetries are with respect to an axis: Every
entry of the form (µ, (µ1, µ2)) at location (u, v) of
the hash table will have a counterpart (µ, (µ2, µ1))
at location (v, u). The practical importance of this
is that we can dispose of half of the hash table—at
the expense of minimal additional bookkeeping.
This will result in entry lists that, on average, will
be half as long when spread among the existing
set of processors, leading to an expected speedup
by a factor of two.

Noise modeling
We have so far implicitly assumed that the

feature points in both the preprocessing and
recognition phases are noise-free, an assump-
tion that does not hold in practice.17 Figure 7
shows the method’s performance as a function
of the amount of noise. Noise at input leads to
positional errors, which in turn translate to er-
rors in the computed invariants. “Small” input
errors will give rise to the same computed in-
variant and thus the same index as the noise-free
input. The semantics of small directly depends
on the coarseness of quantization of the space
of invariants. Once this coarseness is decided,
an associated degree of tolerance is implicitly
built into the hash table.

Positional errors typically translate into the
computation of “wrong” hash bin indices. But be-
cause of the nature of the employed hashing func-
tions, the respective “wrong” bins are in the neigh-
borhood (in a Euclidean sense) of the “correct”
bins that would have been accessed had the input
been noise-free. Other solutions to this problem
involve accessing a rectangular region of the table
instead of a single bin,18 or weighted voting.9

The exact shape of the neighborhood to be
accessed during the recognition phase is gener-
ally complicated.17 In particular, the size, shape,
and orientation of the regions that need to be
accessed depend directly on the selected basis

tuple, as well as on the computed hash locations.
Figure 8 shows this dependence for certain
point arrangements and the similarity transfor-
mation. The variations of the region’s shape are
much more pronounced when an affine trans-
formation is allowed.

Since the ultimate goal is the creation of working
systems that can perform satisfactorily in the pres-
ence of noise, the method was enhanced by incor-
porating a noise model. The derived formulas, in
addition to being useful in quantifying the observed
behavior, turned out to also be compatible with a
Bayesian interpretation of geometric hashing.

.
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Figure 7. Percentage of the embedded model’s bases receiving k
votes, when used as probes, for different amounts of Gaussian noise.
The models can only undergo similarity transformations.
(a) The model points are distributed according to a Gaussian of σ = 1.
(b) The model points are distributed uniformly over the unit disc. In
both cases, the database contained 512 models, each consisting
of 16 points. 
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First, the sensor noise was modeled by treat-
ing it as an additive Gaussian perturbation.
The perturbations of the various feature points
were assumed to be statistically independent
and distributed according to a Gaussian distri-
bution of standard deviation σ, centered at the
“true” value of the variable. These errors were
propagated through the hashing function of
choice, and second and higher-order error
terms were dropped.17

The derived expressions allowed us to draw
the following qualitative conclusions:

1.The larger the separation of the two basis
points, the smaller the spread in the space of in-
variants in the presence of error.

2.For a given basis separation, the distance of
the point whose coordinates we compute in the
coordinate frame of the basis also affects the
spread: The smaller this point’s distance from
the center of the coordinate frame, the smaller
the spread in the space of invariants.

3.A trade-off exists between the indexing

power of an invariant tuple and its sensitivity to
noise: Index values corresponding to relatively
unpopulated regions of the space of invariants
carry more information but are very sensitive to
noise—the opposite also holds true. 

Bayesian formulation 
Recall that given a scene S containing

S points, , the geometric hashing
method selects two points as a basis pair, say
B = {pµ, pν}, and attempts to determine if a
model is present in the scene. The knowledge
base consists of a database of M models {Mk},
for k = 1,…, M. Occasionally the verification
step will fail to find a model that obtains suffi-
cient support, at which point another basis pair
is selected and the entire analysis is repeated.
The only source of evidence during each analy-
sis is the set S′ = S − B of scene points, with the
exception of those forming the basis.

We wish to compute the probability
Pr((Mk, i, j, B)|S′) that model Mk is present, with
points i and j of the model respectively match-
ing pµ and pν of the basis set B, based on the in-
formation from the hash locations as computed
by the scene points S′ relative to the basis set. In
particular, we wish to find the maximum of this
expression over all possible Mk, i, j, and B—a
maximum likelihood approach to object recogni-
tion. The model/basis combination maximizing
this expression is the most likely match given the
collection of hash values generated from S′. A
reasonable assumption made is that, in the ab-
sence of any match, the probability value of even
the maximum winner will not be large. On the
other hand, if there is a match, then for some
choice (or, most likely, multiple choices) of B
there will be a large probability value for some
(Mk, i, j, B). If there are multiple models present,
then several model/basis combinations will share
a large probability. It is sufficient to determine
those few combinations that lead to the largest
probabilities. Indeed, one can always subject
these “winners” to a verification phase. It suffices
to determine the relative probabilities and not
the actual values.

Additional conditional independence assump-
tions are needed: It is assumed that a large number
of hash values is expected near the points of the
table where (Mk, i, j) hash entries occur and a uni-
form density (or some fixed density) is expected
elsewhere, regardless of what other hash values
are known to occur. The assumptions are reason-
able if the features are chosen judiciously.

.

Figure 8. Regions of the hash table that need to be accessed when
there is Gaussian error in the positions of the point features. Simi-
larity transformation is allowed. The left graph of each pair shows
the feature space domain, whereas the right shows the space of in-
variants. For presentation purposes, the amount of Gaussian error
was deliberately made large.
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Using Bayes’s theorem, the above formulation
can be shown equivalent to maximizing

(4)

over all possible model/basis combinations and
basis selections.

This maximization captures the essence of the
geometric hashing approach within a Bayesian
framework: After having defined a basis B using
points from a scene, votes are tallied for all
model/basis combinations using the information
carried by the individual points in the scene, and
the hash locations are computed relative to the
basis B. The model/basis combinations that have
accumulated a lot of votes (or a large weighted
vote) are probable instances of a model: The ba-
sis combination from that model will match the
chosen basis B. The redundant representation of
the known models obviates the need for exhaus-
tive consideration of all model/basis combina-
tions and basis selections before an answer can be
reached. Also, the denominators in each term of
the second sum are the expected probability den-
sity values (whose calculation was outlined ear-
lier) attached to a given location in hash space.

We can quantify the contribution from a par-
ticular hash value generated by a scene point px
to a model/basis combination, thus allowing us
to extend the geometric hashing method to a
Bayesian maximum-likelihood model-matching
system as follows:

During preprocessing, every model Mk, and
every basis pair comprising points from Mk,
computes the hash locations of every other point
within M. At each such hash location (x, y) we
make an entry that contains information about
the model Mk, the basis pair (i,j), the model
point , (other than the basis points), and a pre-
dicted normalized covariance radius, which for
example in the similarity transformation case is
τ = (4(x2 + y2) + 3) σ 2. The entries containing this
information are organized in such a way that
given a location (u, v), all such records having an
(x, y) value lying nearby can be easily accessed.

During recognition, feature points are ex-
tracted from the scene and a trial basis formed
using a pair of these points—for example, pµ and
pν. The coordinates of the remaining points in S
are then computed relative to the basis set, and a
hash access is made to a location (u, v) in the
hash domain. All nearby records of the form (x,

y, Mk, i, j, ,, t) are accessed. For each such
nearby record, we record a weighted vote for the
model/basis combination (Mk, i, j). For the sim-
ilarity transformation, the amount of the vote is
determined as follows:

(5)

The neighborhood is defined as an expression
involving z: Something is considered to be in the
neighborhood if the value of the respective z is
greater than some threshold. Note that the above
expression incorporates the value of σ, the ex-
pected error in positioning of the scene points,
the number of scene points, S, and the basis-pair
separation distance. The value z is only an ap-
proximation of the expression (Equation 4),
which is the total contribution of the hash (u, v) to
the model/basis (Mk, i, j), obtained by neglecting
all terms in f except for the entry at (x, y).

The geometric hashing method allows sys-
tems to recognize objects even when the ob-

jects have undergone an arbitrary transformation
and when parts of them might be occluded. The
strength of the technique is in its efficiency, in its
ability to operate in the presence of only partial
information, and in its applicability to almost any
domain where geometric matching is required; it
does not require any domain-specific knowl-
edge—only the location of certain geometric in-
terest features. The method has been successfully
applied to pattern-matching problems in com-
puter vision, CAD/CAM, and medical imaging—
some covered in this special issue. A somewhat
unexpected application, introduced by Nussinov
and Wolfson,19 was to problems in structural
molecular biology20-21 and medicinal chemistry.

We have demonstrated the implementation of
the method for the least informative feature: a
point. Features carrying more information—such
as line segments, arcs, and corners of specified an-
gles—significantly speed up the algorithm by re-
ducing the number of features required for an un-
ambiguous definition of a basis. Stein and
Medioni have used gray encodings of groups of
consecutive edge segments (supersegments) of
varying cardinalities as informative features.11

Their TOSS system for 3D object recognition
from range sensor data uses characteristic curves
and local differential patches.22 Forsyth et al.23 use
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descriptors based on pairs of planar curves; the de-
scriptors are invariant under perspective transfor-
mations and thus generalize the affine invariant
curve-matching approach of Lamdan et al.4

Geometric hashing gains its efficiency from
indexing, or hashing, of geometric invariants in
a large memory. The matching process can be
separated into two stages, with complexities
adding one to another—and not multiplying
each other; the preprocessing stage can occur
off-line. In this stage, the system stores the rel-
evant information in the hash table using trans-
formation-invariant access keys. In the recogni-
tion stage, the system directly accesses the
relevant locations of the memory, without re-
trieving superfluous information. An advantage
of the technique is that the various successful re-
trievals, or hits, are scored in a way that pre-
serves the overall rigidity constraints of the ob-
jects, thus sharpening the “correct” hypothesis.

The geometric hashing method was recently
extended to efficiently handle the matching of
objects with internal degrees of freedom, such
as rotational or sliding (prismatic) joints.24 This
is an important extension, since robots, humans,
many manufactured objects, and biological mol-
ecules can be modeled as assemblies of rigid sub-
parts connected by such joints. This technique
and its derivatives have been applied to the
recognition of articulated objects in computer
vision,25 to the docking of flexible receptor-drug
molecules,26 and to the detection of partially
similar molecules in databases of drugs.15 An in-
teresting point about this extension is that both
geometric hashing and the generalized Hough
transform techniques applied to rigid object
matching can be viewed as particular cases of
this new flexible object-matching technique. ♦
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