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Abstruct- Shell clustering algorithms are ideally suited for 
computer vision tasks such as boundary detection and surface 
approximation, particularly when the boundaries have jagged 
or scattered edges and when the range data is sparse. This 
is because shell clustering is insensitive to local aberrations, 
it can be performed directly in image space, and unlike tra- 
ditional approaches it does assume dense data and does not 
use additional features such as curvatures and surface normals. 
The shell clustering algorithms introduced in Part I of this 
paper assume that the number of clusters is known, however, 
which is not the case in many boundary detection and surface 
approximation applications. This problem can be overcome by 
considering cluster validity. In this paper, we introduce a validity 
measure called surface density which is explicitly meant for the 
type of applications considered in this paper. We show through 
theoretical derivations that surface density is relatively invariant 
to size and partiality (incompleteness) of the clusters. We describe 
unsupervised clustering algorithms that use the surface density 
measure and other measures to determine the optimum number 
of shell clusters automatically, and illustrate the application of the 
proposed algorithms to boundary detection in the case of intensity 
images and to surface approximation in the case of range images. 

I. MOTIVATION 
OUNDARY detection and surface approximation are im- B portant components of many computer vision applications 

such as object shape recognition and object orientation esti- 
mation. There is a plethora of techniques to fit parameterized 
curves such as conics to segmented edge pixels [15] and to fit 
parameterized surfaces to segmented range data [2], [ 5 ] ,  [12], 
[13], [19], [25], [26], [28]. Segmentation of edge and range 
data is difficult in the case of jagged edges and noisy or sparse 
range data, since features such as gradients and curvatures 
cannot be computed reliably. Jagged edges occur frequently in 
poor quality images and also in good quality images between 
textured regions (see [23] for examples). Many range finders 
produce only sparse data. A better approach in such situa- 
tions would be to perform segmentation and boundary/surface 
fitting simultaneously on the data, without making use of 
features that assume continuity and smoothness of the edges 
and surfaces. Since shell clustering algorithms can perform 
segmentation and fitting simultaneously, they are ideally suited 
for boundary detection and surface approximation when the 
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boundaries/surfaces are ill defined. They also require far less 
computations and memory compared to the GHT methods (see 
Section X of Part I of this paper). Since they look for global 
structures and do not use edge following or region growing, 
they are insensitive to local aberrations and deviations in 
shape. They do not use features such as gradients and curvature 
and hence are not sensitive to noise and sharp discontinuities 
at the boundaries. 

A major disadvantage of shell clustering methods is that the 
number of clusters has to be known in advance. Traditionally, 
the “optimum” number of clusters is determined by evaluating 
a certain global validity (performance) measure of the C- 
partition for a range of C values, and then picking the value of 
C that optimizes the validity measure in some sense [4], [lo], 
[18]. This is a very tedious and computationally expensive 
process, however, since one needs to cluster the data for each 
value of C. Moreover, since many performance measures are 
monotonic in C,  a significant point (such as a knee point) 
of the performance measure must be identified to select the 
optimum number of clusters, and this is not always easy. In 
the case of shell clustering, the algorithms frequently converge 
to local minima, particularly when the data is complex. When 
the C-partition corresponds to a local minimum rather than 
a global one, the computed performance measures will not 
be correct. As an example, Fig. l(a) shows the result of the 
FCQS algorithm on a data set with five clusters. The prototypes 
found by the algorithm are superimposed on the original data 
set. None of the five clusters is characterized correctly. The 
solution corresponds to a local minimum, which is usually 
the result of poor initialization. Fig. l(b) shows the result of 
the same algorithm with C = 12. This time the algorithm 
identifies all the clusters correctly, but it also finds many 
spurious clusters. The partition in Fig. l(b) may well have 
a more optimum value of a given validity measure compared 
to that of Fig. l(a). The situation is worse when the data set 
contains outliers, because in this case, the objective function 
may be globally optimized by a partition of the data set that is 
intuitively incorrect. In all these cases, the method of picking 
C that optimizes a certain global performance measure fails. 

Another approach to determining the number of clusters C 
is to perform progressive clustering [8], [17], [19], 1261. In 
this approach, after convergence of the clustering algorithm 
with an overspecified number of clusters. Spurious clusters are 
eliminated, compatible clusters are merged, “good” clusters 
are identified, and points belonging to these clusters are 
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(a) (b) 

Fig. 1 .  A data set with five elliptical clusters for which the FCQS algorithm 
fails when the correct number of clusters is specified. (a) Result with number 
of clusters = 5. (b) Result with number of clusters = 12. 

(a) (b) (C) 

Fig. 2. (a) A synthetic image with two circles surrounded by a large ellipse 
(b) Result of the PCQS algorithm with number of clusters = 3. The prototypes 
are shown superimposed on the original image. (c) Result of the PCQS 
algorithm with number of clusters = 6. 

temporarily removed from the data set. The clustering is 
performed again with the reduced number of clusters and data 
points. This procedure is repeated until no good clusters can 
be removed anymore or until no data points are left. This 
approach is more efficient than the previous one, since the 
clustering process need not be repeated for an entire range of 
C-values. Its results are also less influenced by local minima 
and noise, since it is based on the idea that at least one 
good cluster is found each time. As an example, Fig. 2(a) 
shows a data set with a large elliptical cluster surrounding two 
smaller circles. Fig. 2(b) shows the result of the Possibilistic C 
Quadric Shells (PCQS) algorithm (see Section IX of Part I of 
this paper) when C is chosen to be three, the optimum number 
of clusters. This result is obviously a local minimum. Fig. 2(c) 
shows the result of the PCQS algorithm with an overspecified 
number of clusters C = 6. The algorithm finds three identical 
elliptical clusters, two circular clusters, and a spurious cluster. 
Thus, by merging the three compatible clusters and eliminating 
the spurious cluster, one can obtain the correct final partition. 
For this approach to work, however, one needs a validity 
criterion to evaluate the goodness of a particular cluster. 

In summary, two kinds of validity measures are needed, de- 
pending on which approach is used to determine the optimum 
number of clusters. In the first approach, we need a global 
performance measure that evaluates the overall partition of the 
data set into C clusters. In the second approach, we need an 
individual cluster validity measure that evaluates the goodness 

been suggested in the literature and show through exam- 
ples that these validity measures cannot always distinguish 
between good clusters and spurious clusters. In Section 111, 
we introduce a new validity measure called surface density, 
which is particularly suitable for the type of applications 
being considered in this paper. We show through theoretical 
derivations that this measure is relatively independent of the 
size of the clusters as well as their partiality (incomplete- 
ness). To illustrate the use of the proposed validity measure, 
in Sections IV and V we develop boundary detection and 
surface approximation algorithms that use the surface density 
criterion and other validity measures to determine the optimum 
number of clusters automatically. Several experimental results 
involving boundary detection and surface approximation are 
presented in Section VI. Section VI1 contains the summary 
conclusions. 

11. CLUSTER VALIDITY 

A. Global Validity Measures 

Cluster validity has been extensively discussed in the liter- 
ature. Some methods measure the amount of fuzziness in each 
C-partition, and presume the least fuzzy partitions to be the 
most valid. This is consistent with the idea that in a fuzzy 
partition, feature vectors with the hardest memberships have 
the least uncertainty associated with their classification. Hence, 
the ultimate goal of these measures is to find the partition 
that minimizes the classification uncertainty. The underlying 
assumption that "good" clusters are not actually very fuzzy is 
only true when the data set consists of well separated clusters. 
Examples of such validity measures are the partition coefficient 
[3], the fuzzy set decomposition measure [ 11, the classification 
entropy [4], the proportion exponent [34], and the polarization 
degree [9]. Unfortunately, in our experience these measures 
generally do not perform well in the case of shell clusters. This 
may be attributed to the fact that, these measures are based 
solely on the fuzzy partition matrix, and hence they lack any 
direct connection to the geometric properties of the clusters 
themselves. Moreover, they cannot be used with possibilistic 
clustering methods [25],  because they are based on the fact 
that the sum of the memberships of a data point across the 
classes is one. 

Validity measures that relate more to the nature of the 
geometry of the data set also exist. Many are defined for 
the hard case, but can be easily generalized to the fuzzy 
case. Examples of such validities are the sum-of-squared-errors 
criterion [3 11, the related-minimum-variance criterion [ 111 and 
the figure of merit [16]. Gath and Geva introduced criteria 
based on hypervolume and density [ 141. They define the fuzzy 
hypervolume to be 

C 

V = x [ d e t  C;]''' 
i=l 

(1) l N  T c.  - - C(lbij)yxj - Ci)(Xj - c ; )  . 
shell clusters, i.e., clusters that resemble thin shells whose 
prototypes can be represented by second-degree hypersurfaces. " N i .  
In Section 11, we review some validity measures that have j=1 
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In the above equation, u;j is the membership of feature vector 
xj in cluster pi, m E [l, CO) is the fuzzifier, c; is the cluster 
center, and 

The average partition density is defined as 

where Si is the "sum of central members" of cluster ,!3i given 
by 

Si = c u i ,  such that (xj - c ~ ) ~ C ; ' ( X ~  - ci)  < 1. 
j 

The partition density is defined as 

S 
D'=v 

where 
C 

s = si. 
i=l 

The validity criteria discussed so far are meant for data sets 
consisting of "filled" (compact) clusters. To evaluate partitions 
that consist of shell-type clusters, different validity measures 
must be used. Dave [7] redefined the hypervolume and par- 
tition density performance measures for the case of spherical 
and elliptical shells. Here we generalize these definitions to 
more general shell types. 

Let the distance vector q j  from a feature point xj to a shell 
prototype be defined by 

T;j = (Xj  - 2;) (3) 

where z1 is the closest point on the shell ,@ to xi. In particular, 
for spherical clusters 

where ci is the center of cluster 0;. For other second-degree 
curves, the point z j  can be determined as explained in Ap- 
pendix A of Part I of this paper. For more general types of 
shells, the point z; may be difficult to compute. Therefore one 
can simply use the approximate closest point on the shell. For 
example, if the equation of the shell prototype is given by a 
set of functions f(x) = [fl(x),f2(~),...,fk(x)]~ = o (see 
Section VI11 of Part I of this paper), then the approximate 
closest point to xj is 

where Df is the Jacobian of f(x) evaluated at xj given by 

L ax, axc, 1 

If k = 1, then Df(xj) reduces to the gradient Vf(xj). The 
fuzzy shell covariance matrix can now be defined as 

The shell hypervolume of a cluster may be defined as 

vsi = I/-. (4) 

The shell density of a cluster may be defined as 

( 5 )  
sa Dsi = - 
VSZ 

where S; is the sum of close members of shell pi given by 

si = uij such that 7:C;fqj < 1. 
j 

The total shell hypervolume Vs and shell partition density, 
Ds may be defined as 

C C 

i=l i=l 

Dave also proposed another global validity index that measures 
the thickness of a spherical shell [8]. This measure is given by 

Krishnapuram er al. proposed similar measures [22], [24]. The 
total fuzzy average shell thickness Ts is defined as follows. 

(7) 

When 11~ij11~ is difficult to compute, the approximate distance 
from xj to a shell prototype may be used instead. The global 
shell thickness measures in (6) and (7) have a monotonic 
tendency, thus making it difficult to choose the optimum 
number of clusters. 

The global performance measures discussed in this section 
may be used to evaluate an overall C-partition of a data 
set, which is to be used in determining the optimal number 
of clusters. As we pointed out in Section I, this method of 
performing the clustering for an entire range of C-values is 
very time consuming, and is not guaranteed to work due to 
local minima, particularly for noisy or complex data sets. 

B.  Individual Validity Measures 

As discussed in Section I, the second approach to deter- 
mine the optimal number of clusters performs better than the 
first approach and is computationally more efficient. In this 
approach we need to evaluate the goodness of a particular 
cluster, so that we can make a decision as to whether it is a 
spurious cluster to be eliminated or a good cluster that should 
be temporarily removed from the data set. Several individual 
validity measures can be defined for shell clusters. 

Krishnapuram et al. proposed an individual cluster validity 
measure for spherical shell-type clusters [24]. The fuzzy 
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Cluster 

Large circle 

Small circle 

41 

shell thickness shell hypervolume shell density 

0.088 0.044 2592.5 

0.088 0.044 1317.3 

Large half circle 

Sparse circle 

0.1 15 0.057 1028.5 

0.087 0.044 827.3 

average shell thickness was defined to be 
+ N  

ClUSter 

Largeellipsel 

Largeellipse2 

Largeellipse3 
Circle 1 

Circle 2 

Spurious ellipse 

In (8), the thickness TsZ of each shell may be divided by the 
radius ri so that it is measured relative to its radius. Similarly, 
the individual shell hypervolume of a cluster defined in (4), 
and the individual shell partition density as defined in (5 ) ,  may 
be used as individual validity measures. 

The above cluster validity measures suffer from many draw- 
backs from the point of view of the applications considered 
in this paper. The major one being their large variability 
depending on the size, and the partiality (or incompleteness) of 
the shell cluster. They also lack a standard (theoretical) value 
against which one can compare the validity of a particular 
cluster. For example, the hypervolume and shell thickness 
may be very small for certain types of spurious clusters that 
contain only a few points. Fig. 3 shows an example to illustrate 
the problems with the validity measures mentioned above. 
The data set consists of four clusters: a large circle, a half- 
circle with the same radius, and a small circle with half 
the radius, and a sparse circle. After correctly clustering this 
data set using the Fuzzy C Spherical Shells algorithm [24] 
with C = 4, the values of the individual cluster validities 
hypervolume, shell density, and shell thickness of each cluster 
were computed. These are listed in Table I. As can be seen, 
the shell density varies very much depending on the partiality, 
size, and sparseness of the circle. Variation due to sparseness 
is not very important in the type of applications we consider, 
since the boundaries of objects can be assumed to have 
approximately the same sparseness in a given image. Objects 
in range images also have approximately the same sparseness. 
Although the variation in shell density due to size can be 
overcome by normalizing the value by the radius, variation 
due to partiality will still exist. Moreover, normalization in 
the case of other types of curves is not so straightforward. On 
the other hand, hypervolume and average shell thickness are 
quite good in this example. 

The situation is different when there are spurious clusters in 
the final partition. These validities can be quite misleading. As 
an example, Table I1 lists the validity measures average shell 
thickness, shell hypervolume, and shell density for the fuzzy 
partition corresponding to the result shown in Fig. 2(c). In this 
case, the average shell thickness, shell hypervolume and shell 
density for the spurious cluster are better than those for the 
two good circular clusters, giving the wrong indication that the 
spurious cluster is better than the good clusters. This is because 

shell thickness shell hypervolume shell density total membershie 

0.010 0.0039 56256.7 222 

0.010 0.0042 52325.2 211 

0.012 0.0059 37843.0 214 

0.064 0.0316 1834.1 58 

0.088 0.0439 1321.9 58 

0.026 0.0098 7467.1 71 

Fig. 3. A synthetic image with a large circle, a semi-circle, and a small circle. 

111. THE SURFACE DENSITY CRITERION 

A .  Definitions 

The validity measures defined in the previous section do not 
take into account the fact that shell clusters lie in subspaces of 
feature space. A more appropriate measure of validity for such 
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subspace clusters needs to relate to the density of the cluster 
as viewed in the subspace. We now develop an alternative 
validity measure specifically meant for shell clusters. 

The proposed validity measure is related to the shell density 
measure introduced in Section 11-A. Instead of measuring the 
number of points per unit shell volume, however, we measure 
the number of points per unit curve length or surface area. 
Using curve length or surface area takes into account the fact 
that shell clusters are subspace clusters. Computing the arc 
length or surface area of a shell cluster is quite trivial if the 
points in the cluster form a connected chain. We cannot assume 
connectivity, however, since the shell may be sparse, and since 
the points belonging to the shell may be scattered around the 
ideal prototype. Therefore, one has to resort to a method that 
can yield a good estimate rather than the exact value of the 
arc length or the surface area spanned by the cluster. As an 
estimate of the arc length spanned by a possibly incomplete 
shell cluster, one may use the circumference (surface area) of 
a complete circle (sphere) which is in some sense equivalent 
to the possibly incomplete shell cluster. We need to adopt a 
definition of equivalence that yields a value of circumference 
(surface area) of the complete circle (sphere) that is as close 
to the exact arc length (surface area) of the shell cluster 
as possible. We will henceforth refer to the radius of the 
equivalent circle (sphere) as the effective radius. Obviously, 
the definition of equivalence must involve the “span” of the 
shell cluster under consideration. Since the covariance matrix 
C (not the shell covariance matrix C S )  of a cluster measures 
the “span” of the cluster, C is an obvious choice to be used 
in the definition of equivalence. The information contained in 
C needs to be converted to a scalar. 

For a complete circle with radius r ,  the exact arc length L 
is 27rr, and the covariance matrix is given by 

c = [ ;  r2 ;I.  
Hence, Tr C = r2 .  This suggests that the effective radius Teff 

should be defined in n-dimension as to yield an exact 
estimate of the arc length 27rre~ = 2 w .  On the other hand, det 
C = r4/4, which suggests using Teff = [n”det C]l/’”, where 
n is the dimensionality of the data set. This definition has the 
disadvantage of giving a zero effective radius for straight lines 
for which det C = 0. Therefore, this is not a good choice. 

In the two-dimensional case, the surface density Si of cluster 
/3i is defined as the number of points per unit estimated arc 
length, i.e., 

(9) 

where Si is the “sum of central members” defined as 

u;j sum over j such that 11Tij 1 1  < Tmax. S; = (10) 
j 

In the above equation, 11~;jll is the distance from the point 
to the shell. In other words, we count only those points that 
lie within a distance T,, from the shell. A good value for 

T,,, is 6, where q~, is the bandwidth used in possibilistic 
clustering (see Section VI11 of Part I of this paper). In (9), Teff 

is the effective radius of shell cluster 0, given by 

Teff, = J;rrC, ( 1 1 )  

where C ,  is the fuzzy covariance matrix of cluster ,LIZ given 
in (1).  

From the definition in (ll), it is easy to show that the 
equivalent circle with radius Teff, has the same second moment 
as the shell cluster under consideration. Therefore, a geometric 
interpretation of the definition of equivalence is established. It 
is to be noted that 2rrefft is an estimate of the exact arc length 
of the cluster, since the latter cannot be computed easily for 
shell clusters that are sparse, scattered or partial. It is obvious 
that if the original cluster of radius r, is partial, then Teff, and 
r, will not be the same. 

In the three-dimensional case, we define the surface density 
S, of a cluster ,f3, as follows 

(12) 
st 6, = - 

4 7 4 T  
where S, is given by (lo), and Teff, is given by (1 1). In this 
case, 6, measures the number of points per unit surface area of 
shell cluster ,Oz. The sum of the surface densities of all clusters 
may be used as a global performance measure to evaluate an 
overall C-shell-partition. 

In the remaining part of this section, we derive the theoret- 
ical values of the surface density validity measure for some 
common shell types to study the discrepancies between the 
desired and actual values of this measure. 

B .  Surface Density for Circles 

Consider a circular arc of radius r shown in Fig. 4 sub- 
tending an angle y. The covariance matrix of this’arc is given 
by 

= L J712 xxT dl - mm‘ 

L7 = J-,,, 

(13) 

where x = [r cos 8, r sin 6’1‘ is a point on the arc, dl is the 
elemental arc length given by dl = r d6’ 

712  
dl = ry 

L7 -712 

is the arc length, and m is the mean (centroid) of the data 
points given by 

Hence 

sin 
Y 

1+- 
Y2 

Thus, the effective radius Teff is given by 
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type 

Complete circle 

Semicircle 

Quarter circle 
Line 
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theoretical compensation 
surface density factor 

1 .o 1 .o 
0.65 1.54 
0.57 1.74 
0.55 1.81 

TABLE 111 
RATIOS OF EFFECTIVE RADII TO RADII AND SURFACE 
DENSITY FOR SOME TYPICAL CIRCULAR CLUSTERS 

Fig. 4. Segment of a circular shell. 

Therefore, the theoretical value of surface density 6 (assuming 
the arc is perfect and continuous) is 

It can be seen from (14) that the surface density criterion 
is independent of size (radius), and for a complete circle, it 
reaches its upper bound of one. This sets an absolute value 
for surface density against which to compare the validities of 
individual clusters. 

C. Surface Density for Lines 
For a line of length L, the variance = Tr C is given by 

L2 
T r C = - - .  

12 

Hence Teff = L, meaning that the theoretical value of 
2 v 5  

surface density 6 is 

(15) 
L a  a=----  - - = 0.55. 

2TTeff 7r 

Since we deal with mixtures of lines and quadrics in this paper, 
we need to have a validity measure that works for both cases; 
however, the theoretical value for a perfect line is rather low. 
We now discuss this problem in more detail. 

D. Compensation for Circular Arcs and Linear Segments 
From the theoretical values of surface density for circles 

and lines obtained in Sections 111-B and 111-C, we can construct 
Table 111 which shows the values of surface density for various 
values of y. In Table 111, lines are considered as circles with 
an infinite radius. Hence T = 0 for lines. As can be seen 
from Table 111, the values of surface density drop from the 
ideal value of 1.0 for partial circles and lines. In this section 
we will introduce compensation factors that can be used to 
make surface density invariant to partiality. 

can be used as a 
measure of partiality for circular clusters. It is to be noted that 
reff and r can be computed from the prototype parameters and 
the covariance matrix of the cluster before the computation 
of cluster validity. Our goal is to find a scaling factor fp to 
compensate for partiality effects, which when multiplied by 

It can be seen from Table 111 that 

c,wter type Complete Half circle Quarter circle 

1.0 0.65 0.57 0.55 

TABLE IV 
THEORETICAL VALUES OF SURFACE DENSITY AND COMPENSATION 
FACTORS FOR SOME TYPICAL CIRCULAR CLUSTERS AND A LINE 

the raw surface density value as given by (14) or (15), will 
bring it back to the ideal value. This is easily accomplished 
by choosing fp to be the reciprocal of the theoretical value of 
the surface density for the particular partial shell cluster. Thus, 
for the case of linear clusters (which can be identified from 
their prototype parameters), (15) gives us a scaling factor fp 
of 5. For the three types of circular arcs listed in Table IV, 
the surface density should be scaled by the corresponding fp 
given in the table. For other partial circles, we can obtain the 
scaling factor as a function of by linearly interpolating 
between the values listed in the table. This gives us the 
following function for the scaling factor fp. 

- 0.44) for 

- 0.77) for 

E [0, 0.441 

E [0.44, 0.771 

) for !?!? E [0.77, 1.01 . 
(16) 

Thus, the value of is first computed for every cluster, and 
the raw surface density is then scaled by the factor given in 
(16). 

E. Effects of Digitization on the Sum of Central Members 
Effect of Digitization on Line Length: We assume that the 

images are always thinned before our clustering algorithms 
are applied. In digital pictures, lines suffer from the effects 
of digitization. To see the effect of digitization on the value 
of the sum of central members Si in the numerator of (9), 
consider the case of a 45 degrees line and a 150 degrees line, 
as shown in Figs. 5(a) and 5(b). We can see that for a perfect 
(8-connected) digital line, the number of pixels on the line is 
not equal to the length of the line. Rather, it is equal to some 
factor fo  times the length. In other words, L = fo x number 
of pixels, where fo is a factor greater than 1. In this particular 
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' t  

(a) (b) 

(a) A 45 degrees digital line (b) A 150 degrees digital line. Fig. 6. Segment of an elliptic shell. Fig. 5 .  

case, f D  = fi for the 45 degrees line and f D  = 5 for the 
150 degrees line. It is only for horizontal and vertical lines 
that the estimate is exact, i.e., f~ = 1. In general, the sum of 
central members must be scaled by a factor fD to compensate 
for digitization effects, where 

1 
max(lcos6'1, lsin6'l) f D  = 

and B is the angle that the line makes with the x-axis. Therefore 
the final expression for the surface density of a 2-D linear 
cluster is 

(17) 

Effect of Digitization on Arc Length: In digital pictures, 
circular arcs are also distorted due to digitization. This will 
cause the arc length, and hence the surface density Si to be 
underestimated. We may assume that a circular arc can be 
approximated by a large number of line segments. In this 
case, every pixel on the arc should contribute to the sum of 
central members not by one unit, but by a factor fD as in 

s2 f P  S. - - z -  27rreff, max()cos8;), )s in&)) '  

F .  Surface Density for Ellipses 

Consider an elliptical arc of major diameter 2a, and minor 
diameter 2b that extends from 6' = 6'1 to 6' = 6'2, as shown in 
Fig. 6. The covariance matrix C of this elliptical segment is 
given by (1 3) where 

dl = d(rd6')2 + ( d r ) 2  = J r 2  + ( d ~ / d O ) ~  d0 

T being the radial distance of the point x = [r cos 0, r sin 0IT 
from the center. It is easily verified that 

ab 

db2 cos2 0 + a2 sin2 6' 
r =  

For the case of ellipses, the arc length Lol2 is given by 

and the mean m = [m,, m,lT is given by 

T cos eJ.2 + (dT/d6')2 dB (20) 
1 62 

m z =  GLl 
and 

the case of lines. This factor depends on the orientation of 
the tangent to the arc at a given pixel location. Hence, the 
membership contribution of each point xj in cluster pi to the 
sum of central members Si should be scaled by a digitization 

my = $ L: r s in6 'dr2  + ( d ~ / d B ) ~  d0.  (21) 

Hence 
factor given by 

1 
max( lcos 6';j 1 ,  Isin B i j  I) f D  = 

where 6'ij is the angle that the tangent to the arc at point xj 
makes with the z-axis. Taking this into account, the surface 
density 6; for a circular cluster b; may be computed as 

where 

u;3 

max( lcos B ; j  1,  lsin 6';j I) ' s: = 

sum over j such that 1 ) ~ ; j ) )  < T ~ ~ ~ .  

Equation (18) reduces to (17) for the case of lines, since all 
6';j are equal. Examples of compensated surface density values 
are given in Section III-J. 

1 62 
Tr C = - 

L@12 

r 2 J r 2  + ( d r / d B ) 2  dd-(m:+m:). (22) 

The integrals in (19)-(22) can be numerically computed to 
obtain Tr C = (Teff)' and the surface density S can then 
be computed as Lo12/27rretf. Values of the effective radius 
Teff and surface density Si obtained by performing numerical 
integrations for some values of a, b,  81, and 6'2 are listed in 
Table V. It can be seen that surface density does not vary very 
much for large variations in the partiality of the ellipse as well 
as its elongatedness. As in the case of circles, it is possible to 
compensate for the small variations; however, this will not 
be discussed in this paper. In practice, the uncompensated 
densities can be used with no serious problems. 

G. Surface Density for Planes 
For a plane with dimensions L x M 

L~ + M~ 
12 

r e p  = Tr C = ~ 
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unnormalized 
Shell-type surface density 

1 .oo Complete sphere 
0 ~4 I IC, 0 se I ~ I C  

0 14s d2.0 I e I  ~ I C  

o I#< M ,  o se I ~ I C  

0 s4 I d 2 , o  se I IC 

Hemisphere 0.67 

0.54 Partial sphere 

Quarter sphere 0.50 

51 

normalized 
surface density 

1 .00 

0.81 

0.75 

TABLE V 
THEORETICAL VALUES OF EFFECTIVE RADIUS AND SURFACE 

DENSITY FOR SOME TYPICAL ELLIITICAL CLUSTERS 

Ellipse type 

Complete 

Half (symmetric with 
respect to major axis) 

Half (symmetric with 
respect to minor axis) 

Quarter (symmetric with 
respect to major axis) 

Qu;uter 
(one quadrant) 

major axis to 
ninor axis ratio 

2 

5 
10 

2 

5 
10 

2 

5 
10 

2 

5 
10 

2 

5 
10 

effective 
radius 

1.50 

3.04 
5.90 

0.98 

1.69 
3.03 

1.33 

3.01 
5.85 

0.58 

0.94 
1.58 

0.68 

1.51 
2.93 

surface 
density 

1.03 

1.08 
1.09 

0.79 

0.99 
1.07 

0.58 

0.56 
0.55 

0.66 

0.89 

0.98 

0.56 

0.55 
0.55 

and the surface area is LM. Hence, the surface density 

3LM 
x ( L 2  + M 2 )  ' 

s =  

For the special case of a square plane ( L  = M ) ,  we get 
6 = & = 0.48. 

H .  Compensation for Planes 

Since the theoretical value of surface density for planes is 
3 / 2 x ,  we should compensate it by a factor fp = 2x13. In 
addition, we have to account for the effect of foreshortening 
which decreases the visible area of the plane and hence the 
count of the number of central members for the plane. We can 
expect a discrepancy whenever the foreshortened surface area 
(as seen in the image) differs from the actual surface area of 
the plane. This happens whenever the planar surface is not 
parallel to the image plane. Thus, the compensated surface 
density becomes 

where 8; is the angle between the normal to the plane and the 
viewing direction (z-axis). For a planar cluster with a surface 
normal ni = [nil, ni2, ni3IT 

ni3 

Jn:l + n& + n:3 ' 
cos& = 

TABLE VI 
THEORETICAL VALUES OF SURFACE DENSITY FOR SOME TYPICAL 
SPHERICAL SHELL CLUSTERS. HERE B Is THE AZIMUTH ANGLE 

AND d. Is THE ELEVATION ANGLE OF THE SPHERICAL PATCH 

I .  Surface Density for Spheres and Ellipsoids 
Expressions for the surface density of spherical and ellip- 

soidal patches can also be derived. Appendix A gives the 
details. In practice, the most we can see of a sphere in a 
range image is half of its surface area. Therefore, we must 
normalize the surface density for spherical patches by dividing 
it by the value f N  = 213 which is obtained for hemispheres. 
Table VI lists unnormalized and normalized surface density 
values for specific cases. As seen in Table VI, partiality does 
have an effect on the values of surface density for spherical 
shells. One can devise a scheme similar to that of the one for 
circles to compensate for this variation, although this is not 
required in most practical applications. We do need to account 
for the effect of foreshortening in 3-D, however, which causes 
the estimation of the sum of central members to be less than 
the actual value. We may approximate a spherical surface at 
each pixel location by a planar surface, and compensate for 
foreshortening by scaling the contribution of the pixel by a 
factor similar to the one used for planes. This leads to 

where 

where $ i j  is the angle between the surface normal at xj = 
[ x j l ,  x j 2 ,  xj3IT and the viewing direction (z-axis) given by 

Some theoretical values for surface density for ellipsoidal 
patches found by numerical integration (using the expressions 
derived in Appendix A) are listed in Table VII. It can be seen 
that the surface density does not vary significantly for large 
variations in the ratios of the diameters of the ellipsoid as well 
as the partiality of the ellipsoid. Compensation for ellipsoidal 
shells will not be discussed in this paper. 
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c 
a 

2 

5 

2 

5 

2 

5 

- 
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surface 
density 

0.83 

0.86 

0.72 

0.84 

0.57 

0.58 

TABLE VI1 
VALUES OF SURFACE DENSITY FOR SOME TYPICAL ELLIPSOIDAL 

SHELL CLUSTERS. HERE 0 Is THE AZIMLITH ANGLE AND 6 
Is THE ELEVATION ANGLE OF THE ELLIPSOIDAL PATCH 

Cluster 

Large circle 

Small circle 

Large half circle 

Sparse circle 

b Shell-type I 

uncompensated compensated 
surface density surface density 

0.9 1 1.01 

0.93 1.04 

0.60 1.00 

0.29 0.32 I 

1 

2 

1 

2 

1 

2 

Half ellipsoid 
0 I# I d 2 , o  se I 2~ 

I, 

Partial ellipsoid 
0 I#< d 4 . 0  I 6 I  2a 

Partial ellipsoid 

,, 

0 I#< d2,O I 6 I  a 
I t  

TABLE VIII 
VALUES OF SURFACE DENSITY FOR THE CLUSTERS IN FIG. 3 

J .  Examples of Surface Density 

The surface density values for the circular clusters in Fig. 3 
and the elliptical and circular clusters in Fig. 2(c) are listed 
in Tables VI11 and IX. It can be seen in Table VI11 that the 
value of the compensated surface density as given by (18) is 
approximately the same for the small and large circles. Also, 
it is almost identical for the complete circle and for the half- 
circle; however, surface density does vary with the sparseness 
of the cluster. Since the sparse cluster has only about a third 
of the points of the complete big circle, its surface density is 
also roughly 1/3. As mentioned in Section 11-B, however, in 
most computer vision applications, this does not pose a serious 
problem. It can also be seen from Table IX that in the case 
of Fig. 2(c), surface density is high and close to 1.0 for all 
the good clusters, and low for the spurious cluster. Thus, it 
would be easy to devise an unsupervised algorithm to find 
the optimum number of clusters using this validity measure. 
This algorithm would initially use a large number of clusters 
and then progressively merge “good” compatible clusters and 
eliminate “bad” (spurious) clusters. Here, we would like to 
note that using the possibilistic versions (see Part I of this 
paper) of our shell clustering algorithms yields high validities 
for all three identical clusters, whereas fuzzy membership 
values would have caused an underestimation of the sum 
of central members of each cluster because the membership 

TABLE IX 
VALUES OF SURFACE DENSITY FOR THE CLUSTERS IN FIG. 2(c) 

Cluster 

Large ellipse 1 

Large ellipse 2 

Large ellipse 3 

Circle 1 

Circle 2 

Spurious ellipse 

uncompensated 
surface density 

1.14 

1.10 

1.11 

0.96 

0.93 

0.38 

values would have been about 1/3. Thus, in the fuzzy case, all 
three identical clusters could be considered spurious. 

In the next section, we will describe unsupervised algo- 
rithms for boundary detection and surface approximation using 
the validity measures discussed in this section. In developing 
these algorithms, we used the possibilistic versions (PCQS and 
PCPQS) rather than the fuzzy versions (FCQS and FCPQS) 
of the shell clustering algorithms introduced in Part I of this 
paper. The reason for this choice was to make the algorithms 
more robust. 

IV. THE UNSUPERVISED BOUNDARY DETECTION ALGORITHM 
In this section, we describe an unsupervised clustering 

algorithm which can be used to detect an unknown number 
of second-degree boundary curves (including the degenerate 
case of lines) and estimate their parameters. Our unsupervised 
clustering algorithm works by progressively clustering the 
data starting with an overspecified number C,,, of clusters. 
Initially, the PCQS algorithm is run with C = C,,,, followed 
by the Line Detection algorithm (see Part I of this paper). At 
this stage, spurious clusters are eliminated, compatible clusters 
are merged, good clusters are identified, and points with high 
memberships in good clusters are temporarily removed from 
the data set to reduce the complexity of the remaining data 
set. This also reduces the computational burden. The PCQS 
algorithm is invoked again with the remaining feature points. 
This procedure is repeated until no more elimination, merging, 
or removing occurs, or until C = 1. A more detailed discussion 
of the steps is described next. 

A .  Elimination of Spurious Clusters 
Cluster pi is considered spurious if the sum of the member- 

ships of all feature points in that cluster is very low or if the 
sum is low and the surface density is also low, i.e., 

N N 

Euij < N v L ,  or X I L ; ~  < NL 
j=1 j = 1  

and Si < SL. 

If the values of NVL,  N L ,  and S L  are too large, many clusters 
will be eliminated and there will not be enough clusters left 
to obtain the correct final partition. If they are too small, the 
unsupervised algorithm may take a long time to converge. In 
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our experience, a good choice for NVL is about 2% of the 
total number of data points and for NL it is about 4% of the 
total number of points. A good value for SL in our application 
was about 0.15, although any value below 0.4 seems to work 
quite well. 

B. Merging Compatible Clusters 

One way to determine if two clusters are compatible is to 
estimate the error of fit and the validity for the merged cluster. 
To do this, all points having a membership greater than an a- 
cut in either one of the two clusters are collected. Let this data 
set be denoted by Xij) .  A value of about 0.25 works best for 
a in practice. Then the PCQS algorithm is run with C = 1 
on this data set. If the fit and surface density for the resulting 
cluster are good, the two clusters are merged. In other words, 
the condition for merging is 

Ti < TL and 6; > S H  

where Ti and 6; are the average shell thickness and the surface 
density of the cluster formed by Xi j .  Suitable values for TL 
and SH for this application are about 2.0 and 0.7. 

The merging procedure described above is only valid for 
clusters with second-degree prototypes. Two linear clusters pi 
and pj are considered compatible if they satisfy the conditions 
used in the Compatible Cluster Merging (CCM) algorithm [23] 
(see next section). Combinations of linear and second-degree 
clusters are not considered in the merging step. 

For the special case of data sets with linear and circular 
clusters, the merging process can be simplified. Note that 
hyperspheres are described by pTq = [Pi l ,  p i2 ,  . . . , p;( ,+l)  , 

circular shell clusters pi and Pj  are considered compatible if 
they satisfy the following conditions 

~ i ( ~ + z ) ]  [(x: + X; + +.  . . + x:), X I , .  . . , ~ n ,  lIT = 0. TWO 

where ci and cj  are the centers, and ri and rj are the radii 
of the two clusters under consideration. These values can be 
computed from the parameter vectors pi and pj. Suitable 
values for ~1 and ~2 are about 1.0. A cluster is determined 
to be linear/planar if its prototype pi satisfies the following 
condition 

where EL is a suitable threshold. Typically E L  = 0.0001. In 
this case, the Possibilistic C Plano-Spherical Shells algorithm 
(Section VI, Part I) is used instead of the PCQS algorithm. 

C. Identification of Good Clusters and 
Removal of Feature Points 

Cluster Pi is characterized as good if 

where S V H  is a very high threshold for surface density, S H  
is the same value that was used for merging, and VL is a 
low value for the fuzzy hypervolume. It is to be noted that 

the second condition is designed to handle cases in which the 
surface density has borderline values. Suitable values for SVH 
and VL are about 0.85 and 0.5 in our application. Points are 
temporarily removed from the data set if their membership in 
one of the good clusters is greater than U H  = 0.5. 

In addition to the above steps, we need to identify noise 
points and temporarily remove them from the data set . Noise 
points are identified as those which have low memberships in 
all clusters, i.e., we remove feature point Xk if 

U i k  < U L  for 1 5 i 5 C. 

Noise points have to be removed at the end of each run the 
PCQS algorithm, because as the number of clusters decreases 
and points assigned to good clusters are removed, the number 
of noise points relative to the good points becomes too high, 
making it difficult to detect the few good clusters that are left. 
A good choice for U L  is about 0.1. Note that the condition 
for noise point removal can be used only when possibilistic 
memberships are used, and not when fuzzy memberships are 
used. In the case of fuzzy memberships the above condition 
can be true even for good points if they are shared among 
many clusters. A similar comment applies to the removal of 
good points. 

The threshold values mentioned in this section are meant 
only as a guideline, and the actual choice depends on the 
application. However, in our experience, the exact choice of 
thresholds is not crucial for a given application. A range of 
values produce the same final result, although the order in 
which particular clusters are eliminated, merged, or removed 
in the intermediate stages may vary. 

THE UNSUPERVISED BOUNDARY DETECTION 
ALGORITHM 

Set C = Cmax; Fix m, m E [l, CO); 

REPEAT 
Perform clustering using the PCQS algorithm; 
Run the Line Detection Algorithm; 
Eliminate spurious clusters and update C ,  
Merge compatible prototypes and update C; 
Detect good clusters, save their prototypes in a list, 

remove points with high memberships in them and 
update C; 

Remove noise points; 
UNTIL (No elimination or merger or removal 
takes place): 
Replace all the removed feature points back into the 
data set; 
Append remaining clusters’ prototypes from the 
last iterationin the above repeat loop to the list of removed 
clusters’ prototypes and? update C; 
REPEAT 

Perform the PCQS algorithm and the Line Detection 
Algorithm using the prototype list as initialization; 

Merge compatible prototypes and update C accordingly; 
Eliminate tiny clusters and update C accordingly; 

UNTIL (No more merging or elimination takes place); 
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. & j  I hn : hn 

The unsupervised boundary detection algorithm is summa- 
rized below. The first repeat loop typically requires three 
passes and the second one or two passes. The passes become 
progressively faster because the number of clusters is reduced 
and the points belonging to the good clusters are removed in 
each pass. The second repeat loop is used to fine-tune the 
results. In this loop, all clusters with a sum of memberships 
less than NL are considered tiny. 

and 

[ I C ;  - cjll I (&(a+ &). (27) 

In (26), t i j  is the unit vector in the direction of ci - c j .  In 
our experience, condition (27) does not work well in certain 
cases. Therefore, we modified this condition to 

5 C2, C2 close to zero, (26) 

V. THE UNSUPERVISED QUADRIC 
SURFACE FITTING ALGOFUTHM 

The unsupervised algorithm presented in the previous sec- (28) 
tion does not perform as well in 3-D. One reason is that the 
solution space is more complex, making convergence to local 
minima more probable. Another problem that arises when the 
algorithm in Section IV is directly applied to 3-D is that most 
quadric surfaces such as cones, cylinders, and planes have an 
infinite extent, i.e., they are not bounded surfaces. Therefore, 
if a cluster having the prototype of one of these surfaces is 
identified as good and the points assigned to it are removed, 
many other points which belong to other clusters may be 
removed because they lie on the extension of this good cluster. 
This may cause them to become partial and disconnected, and 
hence they become more difficult to detect. Another difference 
in the 3-D case is that, since computing the perpendicular 
distance is expensive, the PCPQS algorithm needs to be 
used instead of the PCQS algorithm. For these reasons, we 
developed an alternative unsupervised algorithm for the 3-D 
case. This algorithm is a generalization of the CCM algorithm 
[21]. The CCM algorithm is first briefly summarized in Section 
V-A, then its generalization is discussed in Section V-B. 

A. The CCM Algorithm 
The CCM algorithm produces a linear or planar approx- 

imation of a data set. Initially, the Gustafson-Kessel (G-K) 
algorithm (see [21] for details) is run with the number of 
clusters C set to C,, which is higher than the maximum 
number of clusters that may be expected for the particular 
problem. After the algorithm converges, the resulting clusters 
are first bunched into compatible groups such that the com- 
patibility conditions (to be discussed below) are satisfied for 
every pair of clusters in each group. The clusters in each group 
are merged, the centers and covariance matrices for the new 
clusters are calculated, and the G-K algorithm is reinitiated 
with the new values. This process is repeated until no more 
mergers can take place. 

The compatibility conditions are based on the eigenvalues 
and eigenvectors of the covariance matrices of the clusters. 
Let the centers of two clusters pi and pj be ci and cj; the 
eigenvalues of the covariance matrices of the two clusters 
be { A i l ,  . . . , A i n }  and { X j l ,  . . . , Ajn}; and the eigenvectors 
be {&, . . . , din}  and {q5jl,. . . , 4 j n } .  It is assumed that the 
eigenvalues and vectors are arranged in descending order. The 
compatibility conditions are given below 

(25) . 4jn I 2 C1, C1 close to 1 

In other words, rather than just using the largest eigenvalues 
of the two clusters, we use a weighted combination of all 
eigenvalues where the weights are equal to the projections of 
& j ,  in the directions of the respective eigenvectors. It is easy 
to see that in the 2-D case, when conditions (25) and (26) are 
satisfied, condition (28) reduces to (27). Good choices for the 
constants C1, C2 and Cs are 0.95, 0.05 and A, respectively, 
[231. 

B. The Quadric Compatible Cluster 
Merging (QCCM) Algorithm 

The quadric compatible cluster merging (QCCM) algorithm 
starts with the initial planar approximation achieved by the 
CCM algorithm. Then the points belonging to each pair of 
close clusters (i.e. the points satisfying condition (28)) are used 
as the input data set to the PCPQS algorithm with C = 1. If the 
fit of the resulting quadric cluster is good, then the two clusters 
are merged. The goodness of the fit can be verified using the 
shell thickness measure in (7). Since the exact distance from 
a feature point to a surface is difficult to compute in the 3-D 
case, we use the approximate distance while computing this 
measure. The QCCM algorithm is summarized below. 

THE QUADRIC COMPATIBLE CLUSTER MERGING 
ALGORITHM 

merge = TRUE 
WHILE (merge = TRUE) DO 

merge = FALSE; 
FOR each pair of clusters pi and pj DO 

IF clusters pi and pj satisfy condition (28 )  THEN 
Let X;j  be the set of all feature points having a 

membership greater than an a-cut in cluster 
pi or cluster pj; 

Run the PCPQS algorithm on Xi j  with C = 1; 
Estimate error offit Ti using (8); 

uik = max(uik,ujk) for all k ;  
Eliminate cluster pj and replace the 

IF (Ti < TL) THEN 

parameters of cluster p; with the parameters 
of the combined cluster; 

C = C - 1; merge = TRUE; 
END IF; 

END IF; 
END FOR; 

END WHILE. 
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A good value for TL in our applications was about 0.5. 
When finding the fit, we use the reweight procedure (see 
Section VI1 of Part I of this paper) for better accuracy. In other 
words, we estimate the fit with and without the reweight and 
accept the better fit. When the PCPQS algorithm is used inside 
the QCCM algorithm with C = 1, the parameter vector of 
cluster ,& is the solution of a generalized eigenvector problem. 
As mentioned in Section VI of Part I of this paper, we use 
a solution that corresponds to an “acceptable” surface type. 
However, this time we do not include planes and pairs of 
planes in the list of acceptable types since we assume that we 
have already obtained the best possible planar approximation 
by using the CCM algorithm. Hence, no more two planes can 
be merged into a single plane. 

C .  The Unsupervised Quadric Sugace Fitting Algorithm 

summarized below. 
THE UNSUPERVISED SURFACE FI’ITING ALGORITHM 

The Unsupervised Quadric Surface Fitting algorithm is 

C = Cmax; 
Sample the data set i f  required 
Perform the CCM algorithm; 
Perform the QCCM algorithm; 
Run the PCPQS algorithm with all data ponts, using the 

prototypes obtained at the end of the previous step 
as  initialization, using a distance measure that is a 
combination of Euclidean and approximate distances. 

The Unsupervised Quadric Surface Fitting algorithm con- 
sists of the following steps. The range image is first sampled so 
that the number of points to be processed is reduced. Initially, 
the number of clusters C is set to C,,, which is two or three 
times the maximum number of clusters that may be expected 
for the particular problem. Then a planar approximation of the 
data is obtained by running the CCM algorithm described in 
Section V-A. This results in a smaller value for the number 
of clusters C .  Then the QCCM algorithm is invoked, and 
all possible neighboring planes satisfying condition (28) are 
merged to produce quadric surface fits. This gives us the final 
number of clusters C. The results obtained at this point are 
fine-tuned further by running the PCPQS algorithm with the 
final value of C, using the prototype parameters obtained at the 
end of the QCCM algorithm for initialization. In this phase, 
all feature points are used, and a modified distance, which is 
a combination of the Euclidean distance and the approximate 
distance is used. The modified distance is required because in 
the 3-D case many quadric surfaces are not bounded surfaces 
(see Section VI of Part I of this paper). 

VI. EXPERIMENTAL RESULTS 
In this section we illustrate the effectiveness of the proposed 

unsupervised algorithms by examples involving several real 
and synthetic images. Due to space limitation, only a limited 
number of examples are presented. 

A .  Examples of Boundary Detection 

Parts (a) of Figs. 7-9 show three 200 x 200 images of 
objects whose boundaries can be described by linear and 

Fig. 7. (a) Original noisy image containing mechanical parts. (b) Edge image 
with jagged and noisy edges. (c) Prototypes found by the unsupervised 
boundary detection algorithm superimposed on the original image. (d) Cleaned 
edge image. 

second-degree curves. Uniformly distributed noise with an 
interval of 30 was added to the image intensity values. The 
object edges were then obtained by applying the Sobel operator 
and thresholding. The edge images were then thinned [20]. 
The thinning procedure is important because it makes all edges 
one-pixel thick. This ensures that the surface density values are 
always around the theoretically predicted range. The thinning 
process also reduces the number of pixels to be processed. 
Parts (b) of Figs. 7-9 show the thinned images which are used 
as inputs to the Unsupervised Boundary Detection algorithm. It 
can be seen that the boundaries are not always clean and there 
are many noise points. The resulting input images typically 
had about 2000 points. For all the images, the same values 
for the various thresholds were used. It was also observed that 
the unsupervised boundary detection algorithm was not very 
sensitive to the choice of these values. 

The Unsupervised Boundary Detection algorithm was al- 
ways applied with the initial number of clusters Cma, =25. 
In the first stage of the PCQS algorithm, the initial values of 
the bandwidths vi were estimated to be the shell thickness 
values computed after the FCQS algorithm converged. In the 
second stage, we fixed vi to 2.0 and ran the algorithm for five 
more iterations. While computing surface densities the value 
of rmax used was fi = a. 

Parts (c) of Figs. 7-9 show the final prototypes superim- 
posed on the images. The prototypes are shown three-pixels 
thick for emphasis. As can be seen, the results are good in all 
cases. The “cleaned edge images” in part (d) of Figs. 7-9 were 
obtained by plotting the prototypes only in those regions where 
there were at least two edge pixels within a 3 x3 neighborhood. 

Fig. 10 shows an example of the special case of linear and 
circular boundaries. The image of a color filter is shown in 
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Fig. 8. (a) Original noisy image containing a tube. and four rings. (b) Edge 
image with jagged and noisy edges. (c) Prototypes found by the unsupervised 
boundary detection algorithm superimposed on the original image. (d) Cleaned 
edge image. 

Fig. 9. (a) Original noisy image containing a box with holes. (b) Edge 
image with jagged and noisy edges. (c) Prototypes found by the unsupervised 
boundary detection algorithm superimposed on the original image. (d) Cleaned 
edge image. 

Fig. 10(a). The thinned edge image is shown in Fig. 10(b) 
where it can be seen that the edges are quite noisy. Fig. 1O(c) 
shows the correct prototypes found by an unsupervised version 
of the Possibilistic C Plano-Spherical Shells algorithm. 

(C) 

Fig. 10. (a) Original image of a color filter. (b) Thinned edges of the image 
in (a). (c) Prototypes obtained from the unsupervised boundary detection 
algorithm superimposed on the original image. 

The CPU time required to run the 2-D unsupervised algo- 
rithm on a Sun Sparc 1 workstation was between 30 to 60 
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Fig. 1 1 .  
obtained by the unsupervised surface fitting algorithm. 

(a) Original range image of a chair. (b) Surface approximation 

min. (No attempt was made to optimize the code.) This is rea- 
sonable, considering the number of pixels to be processed and 
complexity of the problem. Since shell clustering algorithms 
are inherently parallel in nature, the CPU requirements can be 
considerably reduced in a parallel implementation. 

B.  Examples of Surface Fitting 

The examples used in this section consist of some real 
and some synthetic range images. A sampling rate of three 
in the x and y directions was used to reduce computations. 
This also makes the data sparse, illustrating the fact that the 
algorithms work for sparse data. The number of feature points 
after sampling ranged from 2000 to 4000. In all the examples 
shown in this section, in the CCM algorithm the G-K algorithm 
was applied with m =1.5 and the initial number of clusters 
C,,, was 15. 

Fig. Il(a) shows a real 252x 263 range image of a chair 
obtained from the University of Southem Califomia. The result 
of the surface fitting algorithm is displayed in Fig. ll(b) 
which consists of the correct planar surfaces. Each surface 
is displayed with a different gray value. Since this image 
contains only planes, the QCCM algorithm does not merge any 
planes (because pairs of planes are considered “unacceptable”), 
and the result of the unsupervised surface fitting algorithm is 
identical to the result of the CCM algorithm. This example 
illustrates the fact that the unsupervised surface fitting algo- 
rithm can be used without any problems even when there are 
no quadric surfaces in the image. 

Fig. 12(a) shows a 200 x 200 synthetic range image con- 
sisting of two planes, a right circular cone, and an ellipsoid. 
Fig. 12(b) displays the planar approximation for the above 
mentioned image obtained by using the CCM algorithm. The 
final results of the unsupervised surface fitting algorithm 
consisting of the correctly identified surfaces are shown in 
Fig. 12(c). Fig. 13 shows similar results on a 200 x 200 
synthetic range image of a lamp consisting of a cone, a 
cylinder, and a plane. 

The CPU time requirements to run the 3-D unsupervised 
algorithm on a Sun Sparc 1 workstation were very similar 
to the 2-D case. This is not surprising because the PCPQS 
algorithm is run with a known number of clusters (determined 
in the previous stages) with excellent initialization. Much 
of the time is in fact spent on obtaining the initial planar 

approximation. As in the 2-D case, the CPU time can be 
reduced considerably in a parallel implementation. 

VII. SUMMARY AND CONCLUSION 

Although many techniques have been proposed in the lit- 
erature for the tasks of boundary description and surface 
approximation, in the case of jagged or scattered edges and 
noisy or sparse range data, these tasks still remain difficult. 
This is because region growing techniques cannot be applied 
when the data is sparse, and features such as gradients and 
curvatures cannot be computed reliably. In this paper, we have 
proposed a solution to this problem by combining the ability of 
shell clustering to deal with scattered and sparse data with the 
ability of the possibilistic approach to achieve noise immunity. 
A major disadvantage of clustering methods is that the number 
of clusters needs to be determined. The proposed approach 
overcomes this problem by using progressive clustering. The 
use of cluster elimination and merging avoids the tedious and 
unreliable altemative of performing clustering for a range of 
C values. 

In order for progressive clustering to work effectively, one 
needs a set of reliable validity measures. The surface density 
criterion introduced in this paper to assess the “goodness” of 
an individual linear or shell cluster is a good supplement to 
the existing validity measures such as shell thickness, shell 
density and shell volume. It is especially suitable for the type 
of computer vision applications considered in this paper. Shell 
thickness and shell volume cannot always distinguish between 
good clusters and spurious clusters, and shell density varies 
very much depending on size and partiality. These validity 
measures also have about an order of magnitude variation even 
for good clusters. Therefore, in our experience, by themselves 
they are not sufficient for the proposed applications. We have 
shown through derivations that surface density is relatively 
invariant to size and partiality, and its range can be predicted. 
This makes it an attractive candidate for use in progressive 
clustering algorithms. When used in combination with the 
existing measures, surface density is effective in unsupervised 
algorithms. We also believe that this validity measure will 
be quite good for even more complex shapes, as long as the 
shapes are convex. Some improvements are still possible. For 
example, our method of estimating the effective radius by 
using the covariance matrix, though simple to implement, may 
not be the best way. Moreover, the surface density measure is 
still not invariant to sparseness. The unsupervised algorithms 
proposed in this paper to describe boundaries and surfaces 
in terms of parameterized algebraic forms are particularly 
suitable for situations in which the data is noisy, scattered 
or sparse. 

The proposed unsupervised boundary detection and surface 
approximation algorithms can be used in a variety of ap- 
plications, including object recognition, pose estimation and 
character recognition. These algorithms can be generalized 
easily to deal with more complex shells such as those repre- 
sented by implicit algebraic curves (surfaces) of higher order 
[20], [30] and superquadrics [29], [33]. We are currently 
exploring this issue. 
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APPENDIX A 

A .  Derivation of Surface Density for Spherical 
and Ellipsoidal Surface Patches 

Consider a spherical shell patch as shown in Fig. 14. Let 
the radius of the sphere be r. In terms of the parameters 4 and 
8, a point x = [x, y, 251’ on the shell satisfies the following 
equations 

x =  [i] = [ rs in+sin8] .  (AI) 

Let us suppose that the patch extends from $1 to 4 2  in 4, 
and from 81 to 82 in 8. In this case, the covariance matrix 
is given by 

I- sin 4 cos 8 

r cos 4 

where dA = r2 sin 4 dqbd8, is the elemental area of the patch, 
and 

ez 42 m = i l l  1 1 x d A  (A31 

A = 1: i42 dA. 

is the centroid of the patch. The denominator of the first term 
in (A2) represents the surface area A of the shell patch, i.e., 

(A4) 
1 

In the case of spherical patches, it is easily verified that 

A = r2(& - Bl)(cos41 -  COS^^). (‘45) 

Hence, we may write 

r2 dA - mTm = r2 - mTm. (A6) 

For spherical shells, m = [m,, my, m,IT is given by 

sin 82 - sin 81 m, = 

sin 242 - sin 2qhl 
2 x ( ( 4 2  - 41) - 

sin 242 - sin 241 
2 x ( ( 4 2  - 41) - 

and 

649) ) cos 241 - cos 242 m, = r (  
4 cos41 - cos+, 

The theoretical values of surface density for various types of 
spherical shells can be found by using (12), (A5)-(A9). 

Fig. 12. (a) Original range image of a cone, two crossing planes and an 
ellipsoid. (b) Surface approximation obtained by the CCM algorithm. (c )  
Surface approximation obtained by the unsupervised surface fitting algorithm. 

Now consider an ellipsoidal shell patch with axes lengths 
= 2a, 2b and 2c in the x, y and z directions, respectively, as 
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(C) 

Fig. 13. (a) Original range image of a lamp. (b) Surface approximation 
obtained by the CCM algorithm. (c) Surface approximation obtained by the 
unsupervised surface fitting algorithm. 

shown in Fig. 15. In terms of the parameters 4 and 8, a point 
x = [x, y, .IT on the shell satisfies (Al), where T is now the 

c 

Fig. 14. Segment of a spherical shell. 

Fig. 15. Segment of an ellipsoidal shell. 

radial length from the center of the ellipsoid to point x given 
by 

T = d m  
1 

Let us suppose that the patch extends from $1 to 42 in 4, 
and from 81 to B2 in 8. In this case, the covariance matrix is 
still given by (A2), but dA is now the elemental area of the 
ellipsoidal patch given by 

and m = [mx,my,m,]T is the centroid of the ellipsoidal 
patch given by (A3). Hence 

Expressions for A, mx,  my and m,, can be found by using 
(Al), (A3), (A4), (A10) and (Al l ) .  The surface density can 
be then computed using (12) and (A12). 
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