
44 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1 , FEBRUARY 1995

Fuzzy and Possibilistic Shell Clustering
Algorithms and Their Application to Boundary
Detection and Surface Approximation-Part I1

Raghu Krishnapuram, Member, IEEE, Hichem Frigui, and Olfa Nasraoui

Abstruct- Shell clustering algorithms are ideally suited for
computer vision tasks such as boundary detection and surface
approximation, particularly when the boundaries have jagged
or scattered edges and when the range data is sparse. This
is because shell clustering is insensitive to local aberrations,
it can be performed directly in image space, and unlike tra-
ditional approaches it does assume dense data and does not
use additional features such as curvatures and surface normals.
The shell clustering algorithms introduced in Part I of this
paper assume that the number of clusters is known, however,
which is not the case in many boundary detection and surface
approximation applications. This problem can be overcome by
considering cluster validity. In this paper, we introduce a validity
measure called surface density which is explicitly meant for the
type of applications considered in this paper. We show through
theoretical derivations that surface density is relatively invariant
to size and partiality (incompleteness) of the clusters. We describe
unsupervised clustering algorithms that use the surface density
measure and other measures to determine the optimum number
of shell clusters automatically, and illustrate the application of the
proposed algorithms to boundary detection in the case of intensity
images and to surface approximation in the case of range images.

I. MOTIVATION
OUNDARY detection and surface approximation are im- B portant components of many computer vision applications

such as object shape recognition and object orientation esti-
mation. There is a plethora of techniques to fit parameterized
curves such as conics to segmented edge pixels [15] and to fit
parameterized surfaces to segmented range data [2], [5] , [12],
[13], [19], [25], [26], [28]. Segmentation of edge and range
data is difficult in the case of jagged edges and noisy or sparse
range data, since features such as gradients and curvatures
cannot be computed reliably. Jagged edges occur frequently in
poor quality images and also in good quality images between
textured regions (see [23] for examples). Many range finders
produce only sparse data. A better approach in such situa-
tions would be to perform segmentation and boundary/surface
fitting simultaneously on the data, without making use of
features that assume continuity and smoothness of the edges
and surfaces. Since shell clustering algorithms can perform
segmentation and fitting simultaneously, they are ideally suited
for boundary detection and surface approximation when the

Manuscript received February 3, 1993; revised April 25, 1994. This work
was supported in part by the Alexander von Humboldt Foundation, Germany.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Missouri-Columbia, Columbia, MO 6521 1 USA.

IEEE Log Number 9406653.

boundaries/surfaces are ill defined. They also require far less
computations and memory compared to the GHT methods (see
Section X of Part I of this paper). Since they look for global
structures and do not use edge following or region growing,
they are insensitive to local aberrations and deviations in
shape. They do not use features such as gradients and curvature
and hence are not sensitive to noise and sharp discontinuities
at the boundaries.

A major disadvantage of shell clustering methods is that the
number of clusters has to be known in advance. Traditionally,
the “optimum” number of clusters is determined by evaluating
a certain global validity (performance) measure of the C-
partition for a range of C values, and then picking the value of
C that optimizes the validity measure in some sense [4], [lo],
[18]. This is a very tedious and computationally expensive
process, however, since one needs to cluster the data for each
value of C. Moreover, since many performance measures are
monotonic in C, a significant point (such as a knee point)
of the performance measure must be identified to select the
optimum number of clusters, and this is not always easy. In
the case of shell clustering, the algorithms frequently converge
to local minima, particularly when the data is complex. When
the C-partition corresponds to a local minimum rather than
a global one, the computed performance measures will not
be correct. As an example, Fig. l(a) shows the result of the
FCQS algorithm on a data set with five clusters. The prototypes
found by the algorithm are superimposed on the original data
set. None of the five clusters is characterized correctly. The
solution corresponds to a local minimum, which is usually
the result of poor initialization. Fig. l(b) shows the result of
the same algorithm with C = 12. This time the algorithm
identifies all the clusters correctly, but it also finds many
spurious clusters. The partition in Fig. l(b) may well have
a more optimum value of a given validity measure compared
to that of Fig. l(a). The situation is worse when the data set
contains outliers, because in this case, the objective function
may be globally optimized by a partition of the data set that is
intuitively incorrect. In all these cases, the method of picking
C that optimizes a certain global performance measure fails.

Another approach to determining the number of clusters C
is to perform progressive clustering [8], [17], [19], 1261. In
this approach, after convergence of the clustering algorithm
with an overspecified number of clusters. Spurious clusters are
eliminated, compatible clusters are merged, “good” clusters
are identified, and points belonging to these clusters are

1063-6706/95$04.00 0 1995 IEEE

~ ~~ ~ _ _

45 KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I1

(a) (b)

Fig. 1 . A data set with five elliptical clusters for which the FCQS algorithm
fails when the correct number of clusters is specified. (a) Result with number
of clusters = 5. (b) Result with number of clusters = 12.

(a) (b) (C)

Fig. 2. (a) A synthetic image with two circles surrounded by a large ellipse
(b) Result of the PCQS algorithm with number of clusters = 3. The prototypes
are shown superimposed on the original image. (c) Result of the PCQS
algorithm with number of clusters = 6.

temporarily removed from the data set. The clustering is
performed again with the reduced number of clusters and data
points. This procedure is repeated until no good clusters can
be removed anymore or until no data points are left. This
approach is more efficient than the previous one, since the
clustering process need not be repeated for an entire range of
C-values. Its results are also less influenced by local minima
and noise, since it is based on the idea that at least one
good cluster is found each time. As an example, Fig. 2(a)
shows a data set with a large elliptical cluster surrounding two
smaller circles. Fig. 2(b) shows the result of the Possibilistic C
Quadric Shells (PCQS) algorithm (see Section IX of Part I of
this paper) when C is chosen to be three, the optimum number
of clusters. This result is obviously a local minimum. Fig. 2(c)
shows the result of the PCQS algorithm with an overspecified
number of clusters C = 6. The algorithm finds three identical
elliptical clusters, two circular clusters, and a spurious cluster.
Thus, by merging the three compatible clusters and eliminating
the spurious cluster, one can obtain the correct final partition.
For this approach to work, however, one needs a validity
criterion to evaluate the goodness of a particular cluster.

In summary, two kinds of validity measures are needed, de-
pending on which approach is used to determine the optimum
number of clusters. In the first approach, we need a global
performance measure that evaluates the overall partition of the
data set into C clusters. In the second approach, we need an
individual cluster validity measure that evaluates the goodness

been suggested in the literature and show through exam-
ples that these validity measures cannot always distinguish
between good clusters and spurious clusters. In Section 111,
we introduce a new validity measure called surface density,
which is particularly suitable for the type of applications
being considered in this paper. We show through theoretical
derivations that this measure is relatively independent of the
size of the clusters as well as their partiality (incomplete-
ness). To illustrate the use of the proposed validity measure,
in Sections IV and V we develop boundary detection and
surface approximation algorithms that use the surface density
criterion and other validity measures to determine the optimum
number of clusters automatically. Several experimental results
involving boundary detection and surface approximation are
presented in Section VI. Section VI1 contains the summary
conclusions.

11. CLUSTER VALIDITY

A. Global Validity Measures

Cluster validity has been extensively discussed in the liter-
ature. Some methods measure the amount of fuzziness in each
C-partition, and presume the least fuzzy partitions to be the
most valid. This is consistent with the idea that in a fuzzy
partition, feature vectors with the hardest memberships have
the least uncertainty associated with their classification. Hence,
the ultimate goal of these measures is to find the partition
that minimizes the classification uncertainty. The underlying
assumption that "good" clusters are not actually very fuzzy is
only true when the data set consists of well separated clusters.
Examples of such validity measures are the partition coefficient
[3], the fuzzy set decomposition measure [11, the classification
entropy [4], the proportion exponent [34], and the polarization
degree [9]. Unfortunately, in our experience these measures
generally do not perform well in the case of shell clusters. This
may be attributed to the fact that, these measures are based
solely on the fuzzy partition matrix, and hence they lack any
direct connection to the geometric properties of the clusters
themselves. Moreover, they cannot be used with possibilistic
clustering methods [25], because they are based on the fact
that the sum of the memberships of a data point across the
classes is one.

Validity measures that relate more to the nature of the
geometry of the data set also exist. Many are defined for
the hard case, but can be easily generalized to the fuzzy
case. Examples of such validities are the sum-of-squared-errors
criterion [3 11, the related-minimum-variance criterion [111 and
the figure of merit [16]. Gath and Geva introduced criteria
based on hypervolume and density [141. They define the fuzzy
hypervolume to be

C

V = x [d e t C;]'''
i=l

(1) l N T c. - - C(lbij)yxj - Ci)(Xj - c ;) .
shell clusters, i.e., clusters that resemble thin shells whose
prototypes can be represented by second-degree hypersurfaces. " N i .
In Section 11, we review some validity measures that have j=1

46 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1 , FEBRUARY 1995

In the above equation, u;j is the membership of feature vector
xj in cluster pi, m E [l, CO) is the fuzzifier, c; is the cluster
center, and

The average partition density is defined as

where Si is the "sum of central members" of cluster ,!3i given
by

Si = c u i , such that (xj - c ~) ~ C ; ' (X ~ - ci) < 1.
j

The partition density is defined as

S
D'=v

where
C

s = si.
i=l

The validity criteria discussed so far are meant for data sets
consisting of "filled" (compact) clusters. To evaluate partitions
that consist of shell-type clusters, different validity measures
must be used. Dave [7] redefined the hypervolume and par-
tition density performance measures for the case of spherical
and elliptical shells. Here we generalize these definitions to
more general shell types.

Let the distance vector q j from a feature point xj to a shell
prototype be defined by

T;j = (Xj - 2;) (3)

where z1 is the closest point on the shell ,@ to xi. In particular,
for spherical clusters

where ci is the center of cluster 0;. For other second-degree
curves, the point z j can be determined as explained in Ap-
pendix A of Part I of this paper. For more general types of
shells, the point z; may be difficult to compute. Therefore one
can simply use the approximate closest point on the shell. For
example, if the equation of the shell prototype is given by a
set of functions f(x) = [fl(x),f2(~),...,fk(x)]~ = o (see
Section VI11 of Part I of this paper), then the approximate
closest point to xj is

where Df is the Jacobian of f(x) evaluated at xj given by

L ax, axc, 1

If k = 1, then Df(xj) reduces to the gradient Vf(xj). The
fuzzy shell covariance matrix can now be defined as

The shell hypervolume of a cluster may be defined as

vsi = I/-. (4)

The shell density of a cluster may be defined as

(5)
sa Dsi = -
VSZ

where S; is the sum of close members of shell pi given by

si = uij such that 7:C;fqj < 1.
j

The total shell hypervolume Vs and shell partition density,
Ds may be defined as

C C

i=l i=l

Dave also proposed another global validity index that measures
the thickness of a spherical shell [8]. This measure is given by

Krishnapuram er al. proposed similar measures [22], [24]. The
total fuzzy average shell thickness Ts is defined as follows.

(7)

When 11~ij11~ is difficult to compute, the approximate distance
from xj to a shell prototype may be used instead. The global
shell thickness measures in (6) and (7) have a monotonic
tendency, thus making it difficult to choose the optimum
number of clusters.

The global performance measures discussed in this section
may be used to evaluate an overall C-partition of a data
set, which is to be used in determining the optimal number
of clusters. As we pointed out in Section I, this method of
performing the clustering for an entire range of C-values is
very time consuming, and is not guaranteed to work due to
local minima, particularly for noisy or complex data sets.

B. Individual Validity Measures

As discussed in Section I, the second approach to deter-
mine the optimal number of clusters performs better than the
first approach and is computationally more efficient. In this
approach we need to evaluate the goodness of a particular
cluster, so that we can make a decision as to whether it is a
spurious cluster to be eliminated or a good cluster that should
be temporarily removed from the data set. Several individual
validity measures can be defined for shell clusters.

Krishnapuram et al. proposed an individual cluster validity
measure for spherical shell-type clusters [24]. The fuzzy

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I1

Cluster

Large circle

Small circle

41

shell thickness shell hypervolume shell density

0.088 0.044 2592.5

0.088 0.044 1317.3

Large half circle

Sparse circle

0.1 15 0.057 1028.5

0.087 0.044 827.3

average shell thickness was defined to be
+ N

ClUSter

Largeellipsel

Largeellipse2

Largeellipse3
Circle 1

Circle 2

Spurious ellipse

In (8), the thickness TsZ of each shell may be divided by the
radius ri so that it is measured relative to its radius. Similarly,
the individual shell hypervolume of a cluster defined in (4),
and the individual shell partition density as defined in (5) , may
be used as individual validity measures.

The above cluster validity measures suffer from many draw-
backs from the point of view of the applications considered
in this paper. The major one being their large variability
depending on the size, and the partiality (or incompleteness) of
the shell cluster. They also lack a standard (theoretical) value
against which one can compare the validity of a particular
cluster. For example, the hypervolume and shell thickness
may be very small for certain types of spurious clusters that
contain only a few points. Fig. 3 shows an example to illustrate
the problems with the validity measures mentioned above.
The data set consists of four clusters: a large circle, a half-
circle with the same radius, and a small circle with half
the radius, and a sparse circle. After correctly clustering this
data set using the Fuzzy C Spherical Shells algorithm [24]
with C = 4, the values of the individual cluster validities
hypervolume, shell density, and shell thickness of each cluster
were computed. These are listed in Table I. As can be seen,
the shell density varies very much depending on the partiality,
size, and sparseness of the circle. Variation due to sparseness
is not very important in the type of applications we consider,
since the boundaries of objects can be assumed to have
approximately the same sparseness in a given image. Objects
in range images also have approximately the same sparseness.
Although the variation in shell density due to size can be
overcome by normalizing the value by the radius, variation
due to partiality will still exist. Moreover, normalization in
the case of other types of curves is not so straightforward. On
the other hand, hypervolume and average shell thickness are
quite good in this example.

The situation is different when there are spurious clusters in
the final partition. These validities can be quite misleading. As
an example, Table I1 lists the validity measures average shell
thickness, shell hypervolume, and shell density for the fuzzy
partition corresponding to the result shown in Fig. 2(c). In this
case, the average shell thickness, shell hypervolume and shell
density for the spurious cluster are better than those for the
two good circular clusters, giving the wrong indication that the
spurious cluster is better than the good clusters. This is because

shell thickness shell hypervolume shell density total membershie

0.010 0.0039 56256.7 222

0.010 0.0042 52325.2 211

0.012 0.0059 37843.0 214

0.064 0.0316 1834.1 58

0.088 0.0439 1321.9 58

0.026 0.0098 7467.1 71

Fig. 3. A synthetic image with a large circle, a semi-circle, and a small circle.

111. THE SURFACE DENSITY CRITERION

A . Definitions

The validity measures defined in the previous section do not
take into account the fact that shell clusters lie in subspaces of
feature space. A more appropriate measure of validity for such

48 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

subspace clusters needs to relate to the density of the cluster
as viewed in the subspace. We now develop an alternative
validity measure specifically meant for shell clusters.

The proposed validity measure is related to the shell density
measure introduced in Section 11-A. Instead of measuring the
number of points per unit shell volume, however, we measure
the number of points per unit curve length or surface area.
Using curve length or surface area takes into account the fact
that shell clusters are subspace clusters. Computing the arc
length or surface area of a shell cluster is quite trivial if the
points in the cluster form a connected chain. We cannot assume
connectivity, however, since the shell may be sparse, and since
the points belonging to the shell may be scattered around the
ideal prototype. Therefore, one has to resort to a method that
can yield a good estimate rather than the exact value of the
arc length or the surface area spanned by the cluster. As an
estimate of the arc length spanned by a possibly incomplete
shell cluster, one may use the circumference (surface area) of
a complete circle (sphere) which is in some sense equivalent
to the possibly incomplete shell cluster. We need to adopt a
definition of equivalence that yields a value of circumference
(surface area) of the complete circle (sphere) that is as close
to the exact arc length (surface area) of the shell cluster
as possible. We will henceforth refer to the radius of the
equivalent circle (sphere) as the effective radius. Obviously,
the definition of equivalence must involve the “span” of the
shell cluster under consideration. Since the covariance matrix
C (not the shell covariance matrix C S) of a cluster measures
the “span” of the cluster, C is an obvious choice to be used
in the definition of equivalence. The information contained in
C needs to be converted to a scalar.

For a complete circle with radius r , the exact arc length L
is 27rr, and the covariance matrix is given by

c = [; r2 ;I.
Hence, Tr C = r2 . This suggests that the effective radius Teff

should be defined in n-dimension as to yield an exact
estimate of the arc length 27rre~ = 2 w . On the other hand, det
C = r4/4, which suggests using Teff = [n”det C]l/’”, where
n is the dimensionality of the data set. This definition has the
disadvantage of giving a zero effective radius for straight lines
for which det C = 0. Therefore, this is not a good choice.

In the two-dimensional case, the surface density Si of cluster
/3i is defined as the number of points per unit estimated arc
length, i.e.,

(9)

where Si is the “sum of central members” defined as

u;j sum over j such that 11Tij 1 1 < Tmax. S; = (10)
j

In the above equation, 11~;jll is the distance from the point
to the shell. In other words, we count only those points that
lie within a distance T,, from the shell. A good value for

T,,, is 6, where q~, is the bandwidth used in possibilistic
clustering (see Section VI11 of Part I of this paper). In (9), Teff

is the effective radius of shell cluster 0, given by

Teff, = J;rrC, (1 1)

where C , is the fuzzy covariance matrix of cluster ,LIZ given
in (1).

From the definition in (ll), it is easy to show that the
equivalent circle with radius Teff, has the same second moment
as the shell cluster under consideration. Therefore, a geometric
interpretation of the definition of equivalence is established. It
is to be noted that 2rrefft is an estimate of the exact arc length
of the cluster, since the latter cannot be computed easily for
shell clusters that are sparse, scattered or partial. It is obvious
that if the original cluster of radius r, is partial, then Teff, and
r, will not be the same.

In the three-dimensional case, we define the surface density
S, of a cluster ,f3, as follows

(12)
st 6, = -

4 7 4 T
where S, is given by (lo), and Teff, is given by (1 1). In this
case, 6, measures the number of points per unit surface area of
shell cluster ,Oz. The sum of the surface densities of all clusters
may be used as a global performance measure to evaluate an
overall C-shell-partition.

In the remaining part of this section, we derive the theoret-
ical values of the surface density validity measure for some
common shell types to study the discrepancies between the
desired and actual values of this measure.

B . Surface Density for Circles

Consider a circular arc of radius r shown in Fig. 4 sub-
tending an angle y. The covariance matrix of this’arc is given
by

= L J712 xxT dl - mm‘

L7 = J-,,,

(13)

where x = [r cos 8, r sin 6’1‘ is a point on the arc, dl is the
elemental arc length given by dl = r d6’

712
dl = ry

L7 -712

is the arc length, and m is the mean (centroid) of the data
points given by

Hence

sin
Y

1+-
Y2

Thus, the effective radius Teff is given by

49

type

Complete circle

Semicircle

Quarter circle
Line

KRISHNAPURAM et 01.: SHELL CLUSTERING ALGORITHMS-PART I1

theoretical compensation
surface density factor

1 .o 1 .o
0.65 1.54
0.57 1.74
0.55 1.81

TABLE 111
RATIOS OF EFFECTIVE RADII TO RADII AND SURFACE
DENSITY FOR SOME TYPICAL CIRCULAR CLUSTERS

Fig. 4. Segment of a circular shell.

Therefore, the theoretical value of surface density 6 (assuming
the arc is perfect and continuous) is

It can be seen from (14) that the surface density criterion
is independent of size (radius), and for a complete circle, it
reaches its upper bound of one. This sets an absolute value
for surface density against which to compare the validities of
individual clusters.

C. Surface Density for Lines
For a line of length L, the variance = Tr C is given by

L2
T r C = - - .

12

Hence Teff = L, meaning that the theoretical value of
2 v 5

surface density 6 is

(15)
L a a=---- - - = 0.55.

2TTeff 7r

Since we deal with mixtures of lines and quadrics in this paper,
we need to have a validity measure that works for both cases;
however, the theoretical value for a perfect line is rather low.
We now discuss this problem in more detail.

D. Compensation for Circular Arcs and Linear Segments
From the theoretical values of surface density for circles

and lines obtained in Sections 111-B and 111-C, we can construct
Table 111 which shows the values of surface density for various
values of y. In Table 111, lines are considered as circles with
an infinite radius. Hence T = 0 for lines. As can be seen
from Table 111, the values of surface density drop from the
ideal value of 1.0 for partial circles and lines. In this section
we will introduce compensation factors that can be used to
make surface density invariant to partiality.

can be used as a
measure of partiality for circular clusters. It is to be noted that
reff and r can be computed from the prototype parameters and
the covariance matrix of the cluster before the computation
of cluster validity. Our goal is to find a scaling factor fp to
compensate for partiality effects, which when multiplied by

It can be seen from Table 111 that

c,wter type Complete Half circle Quarter circle

1.0 0.65 0.57 0.55

TABLE IV
THEORETICAL VALUES OF SURFACE DENSITY AND COMPENSATION
FACTORS FOR SOME TYPICAL CIRCULAR CLUSTERS AND A LINE

the raw surface density value as given by (14) or (15), will
bring it back to the ideal value. This is easily accomplished
by choosing fp to be the reciprocal of the theoretical value of
the surface density for the particular partial shell cluster. Thus,
for the case of linear clusters (which can be identified from
their prototype parameters), (15) gives us a scaling factor fp
of 5. For the three types of circular arcs listed in Table IV,
the surface density should be scaled by the corresponding fp
given in the table. For other partial circles, we can obtain the
scaling factor as a function of by linearly interpolating
between the values listed in the table. This gives us the
following function for the scaling factor fp.

- 0.44) for

- 0.77) for

E [0, 0.441

E [0.44, 0.771

) for !?!? E [0.77, 1.01 .
(16)

Thus, the value of is first computed for every cluster, and
the raw surface density is then scaled by the factor given in
(16).

E. Effects of Digitization on the Sum of Central Members
Effect of Digitization on Line Length: We assume that the

images are always thinned before our clustering algorithms
are applied. In digital pictures, lines suffer from the effects
of digitization. To see the effect of digitization on the value
of the sum of central members Si in the numerator of (9),
consider the case of a 45 degrees line and a 150 degrees line,
as shown in Figs. 5(a) and 5(b). We can see that for a perfect
(8-connected) digital line, the number of pixels on the line is
not equal to the length of the line. Rather, it is equal to some
factor fo times the length. In other words, L = fo x number
of pixels, where fo is a factor greater than 1. In this particular

50 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1 , FEBRUARY 1995

' t

(a) (b)

(a) A 45 degrees digital line (b) A 150 degrees digital line. Fig. 6. Segment of an elliptic shell. Fig. 5 .

case, f D = fi for the 45 degrees line and f D = 5 for the
150 degrees line. It is only for horizontal and vertical lines
that the estimate is exact, i.e., f~ = 1. In general, the sum of
central members must be scaled by a factor fD to compensate
for digitization effects, where

1
max(lcos6'1, lsin6'l) f D =

and B is the angle that the line makes with the x-axis. Therefore
the final expression for the surface density of a 2-D linear
cluster is

(17)

Effect of Digitization on Arc Length: In digital pictures,
circular arcs are also distorted due to digitization. This will
cause the arc length, and hence the surface density Si to be
underestimated. We may assume that a circular arc can be
approximated by a large number of line segments. In this
case, every pixel on the arc should contribute to the sum of
central members not by one unit, but by a factor fD as in

s2 f P S. - - z - 27rreff, max()cos8;),)s in&)) '

F . Surface Density for Ellipses

Consider an elliptical arc of major diameter 2a, and minor
diameter 2b that extends from 6' = 6'1 to 6' = 6'2, as shown in
Fig. 6. The covariance matrix C of this elliptical segment is
given by (1 3) where

dl = d(rd6')2 + (d r) 2 = J r 2 + (d ~ / d O) ~ d0

T being the radial distance of the point x = [r cos 0, r sin 0IT
from the center. It is easily verified that

ab

db2 cos2 0 + a2 sin2 6'
r =

For the case of ellipses, the arc length Lol2 is given by

and the mean m = [m,, m,lT is given by

T cos eJ.2 + (dT/d6')2 dB (20)
1 62

m z = GLl
and

the case of lines. This factor depends on the orientation of
the tangent to the arc at a given pixel location. Hence, the
membership contribution of each point xj in cluster pi to the
sum of central members Si should be scaled by a digitization

my = $ L: r s in6 'dr2 + (d ~ / d B) ~ d0. (21)

Hence
factor given by

1
max(lcos 6';j 1 , Isin B i j I) f D =

where 6'ij is the angle that the tangent to the arc at point xj
makes with the z-axis. Taking this into account, the surface
density 6; for a circular cluster b; may be computed as

where

u;3

max(lcos B ; j 1, lsin 6';j I) ' s: =

sum over j such that 1) ~ ; j)) < T ~ ~ ~ .

Equation (18) reduces to (17) for the case of lines, since all
6';j are equal. Examples of compensated surface density values
are given in Section III-J.

1 62
Tr C = -

L@12

r 2 J r 2 + (d r / d B) 2 dd-(m:+m:). (22)

The integrals in (19)-(22) can be numerically computed to
obtain Tr C = (Teff)' and the surface density S can then
be computed as Lo12/27rretf. Values of the effective radius
Teff and surface density Si obtained by performing numerical
integrations for some values of a, b, 81, and 6'2 are listed in
Table V. It can be seen that surface density does not vary very
much for large variations in the partiality of the ellipse as well
as its elongatedness. As in the case of circles, it is possible to
compensate for the small variations; however, this will not
be discussed in this paper. In practice, the uncompensated
densities can be used with no serious problems.

G. Surface Density for Planes
For a plane with dimensions L x M

L~ + M~
12

r e p = Tr C = ~

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I1

unnormalized
Shell-type surface density

1 .oo Complete sphere
0 ~4 I IC, 0 se I ~ I C

0 14s d2.0 I e I ~ I C

o I#< M , o se I ~ I C

0 s4 I d 2 , o se I IC

Hemisphere 0.67

0.54 Partial sphere

Quarter sphere 0.50

51

normalized
surface density

1 .00

0.81

0.75

TABLE V
THEORETICAL VALUES OF EFFECTIVE RADIUS AND SURFACE

DENSITY FOR SOME TYPICAL ELLIITICAL CLUSTERS

Ellipse type

Complete

Half (symmetric with
respect to major axis)

Half (symmetric with
respect to minor axis)

Quarter (symmetric with
respect to major axis)

Qu;uter
(one quadrant)

major axis to
ninor axis ratio

2

5
10

2

5
10

2

5
10

2

5
10

2

5
10

effective
radius

1.50

3.04
5.90

0.98

1.69
3.03

1.33

3.01
5.85

0.58

0.94
1.58

0.68

1.51
2.93

surface
density

1.03

1.08
1.09

0.79

0.99
1.07

0.58

0.56
0.55

0.66

0.89

0.98

0.56

0.55
0.55

and the surface area is LM. Hence, the surface density

3LM
x (L 2 + M 2) '

s =

For the special case of a square plane (L = M) , we get
6 = & = 0.48.

H . Compensation for Planes

Since the theoretical value of surface density for planes is
3 / 2 x , we should compensate it by a factor fp = 2x13. In
addition, we have to account for the effect of foreshortening
which decreases the visible area of the plane and hence the
count of the number of central members for the plane. We can
expect a discrepancy whenever the foreshortened surface area
(as seen in the image) differs from the actual surface area of
the plane. This happens whenever the planar surface is not
parallel to the image plane. Thus, the compensated surface
density becomes

where 8; is the angle between the normal to the plane and the
viewing direction (z-axis). For a planar cluster with a surface
normal ni = [nil, ni2, ni3IT

ni3

Jn:l + n& + n:3 '
cos& =

TABLE VI
THEORETICAL VALUES OF SURFACE DENSITY FOR SOME TYPICAL
SPHERICAL SHELL CLUSTERS. HERE B Is THE AZIMUTH ANGLE

AND d. Is THE ELEVATION ANGLE OF THE SPHERICAL PATCH

I . Surface Density for Spheres and Ellipsoids
Expressions for the surface density of spherical and ellip-

soidal patches can also be derived. Appendix A gives the
details. In practice, the most we can see of a sphere in a
range image is half of its surface area. Therefore, we must
normalize the surface density for spherical patches by dividing
it by the value f N = 213 which is obtained for hemispheres.
Table VI lists unnormalized and normalized surface density
values for specific cases. As seen in Table VI, partiality does
have an effect on the values of surface density for spherical
shells. One can devise a scheme similar to that of the one for
circles to compensate for this variation, although this is not
required in most practical applications. We do need to account
for the effect of foreshortening in 3-D, however, which causes
the estimation of the sum of central members to be less than
the actual value. We may approximate a spherical surface at
each pixel location by a planar surface, and compensate for
foreshortening by scaling the contribution of the pixel by a
factor similar to the one used for planes. This leads to

where

where $ i j is the angle between the surface normal at xj =
[x j l , x j 2 , xj3IT and the viewing direction (z-axis) given by

Some theoretical values for surface density for ellipsoidal
patches found by numerical integration (using the expressions
derived in Appendix A) are listed in Table VII. It can be seen
that the surface density does not vary significantly for large
variations in the ratios of the diameters of the ellipsoid as well
as the partiality of the ellipsoid. Compensation for ellipsoidal
shells will not be discussed in this paper.

52

c
a

2

5

2

5

2

5

-

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

surface
density

0.83

0.86

0.72

0.84

0.57

0.58

TABLE VI1
VALUES OF SURFACE DENSITY FOR SOME TYPICAL ELLIPSOIDAL

SHELL CLUSTERS. HERE 0 Is THE AZIMLITH ANGLE AND 6
Is THE ELEVATION ANGLE OF THE ELLIPSOIDAL PATCH

Cluster

Large circle

Small circle

Large half circle

Sparse circle

b Shell-type I

uncompensated compensated
surface density surface density

0.9 1 1.01

0.93 1.04

0.60 1.00

0.29 0.32 I

1

2

1

2

1

2

Half ellipsoid
0 I# I d 2 , o se I 2~

I,

Partial ellipsoid
0 I#< d 4 . 0 I 6 I 2a

Partial ellipsoid

,,

0 I#< d2,O I 6 I a
I t

TABLE VIII
VALUES OF SURFACE DENSITY FOR THE CLUSTERS IN FIG. 3

J . Examples of Surface Density

The surface density values for the circular clusters in Fig. 3
and the elliptical and circular clusters in Fig. 2(c) are listed
in Tables VI11 and IX. It can be seen in Table VI11 that the
value of the compensated surface density as given by (18) is
approximately the same for the small and large circles. Also,
it is almost identical for the complete circle and for the half-
circle; however, surface density does vary with the sparseness
of the cluster. Since the sparse cluster has only about a third
of the points of the complete big circle, its surface density is
also roughly 1/3. As mentioned in Section 11-B, however, in
most computer vision applications, this does not pose a serious
problem. It can also be seen from Table IX that in the case
of Fig. 2(c), surface density is high and close to 1.0 for all
the good clusters, and low for the spurious cluster. Thus, it
would be easy to devise an unsupervised algorithm to find
the optimum number of clusters using this validity measure.
This algorithm would initially use a large number of clusters
and then progressively merge “good” compatible clusters and
eliminate “bad” (spurious) clusters. Here, we would like to
note that using the possibilistic versions (see Part I of this
paper) of our shell clustering algorithms yields high validities
for all three identical clusters, whereas fuzzy membership
values would have caused an underestimation of the sum
of central members of each cluster because the membership

TABLE IX
VALUES OF SURFACE DENSITY FOR THE CLUSTERS IN FIG. 2(c)

Cluster

Large ellipse 1

Large ellipse 2

Large ellipse 3

Circle 1

Circle 2

Spurious ellipse

uncompensated
surface density

1.14

1.10

1.11

0.96

0.93

0.38

values would have been about 1/3. Thus, in the fuzzy case, all
three identical clusters could be considered spurious.

In the next section, we will describe unsupervised algo-
rithms for boundary detection and surface approximation using
the validity measures discussed in this section. In developing
these algorithms, we used the possibilistic versions (PCQS and
PCPQS) rather than the fuzzy versions (FCQS and FCPQS)
of the shell clustering algorithms introduced in Part I of this
paper. The reason for this choice was to make the algorithms
more robust.

IV. THE UNSUPERVISED BOUNDARY DETECTION ALGORITHM
In this section, we describe an unsupervised clustering

algorithm which can be used to detect an unknown number
of second-degree boundary curves (including the degenerate
case of lines) and estimate their parameters. Our unsupervised
clustering algorithm works by progressively clustering the
data starting with an overspecified number C,,, of clusters.
Initially, the PCQS algorithm is run with C = C,,,, followed
by the Line Detection algorithm (see Part I of this paper). At
this stage, spurious clusters are eliminated, compatible clusters
are merged, good clusters are identified, and points with high
memberships in good clusters are temporarily removed from
the data set to reduce the complexity of the remaining data
set. This also reduces the computational burden. The PCQS
algorithm is invoked again with the remaining feature points.
This procedure is repeated until no more elimination, merging,
or removing occurs, or until C = 1. A more detailed discussion
of the steps is described next.

A . Elimination of Spurious Clusters
Cluster pi is considered spurious if the sum of the member-

ships of all feature points in that cluster is very low or if the
sum is low and the surface density is also low, i.e.,

N N

Euij < N v L , or X I L ; ~ < NL
j=1 j = 1

and Si < SL.

If the values of NVL, N L , and S L are too large, many clusters
will be eliminated and there will not be enough clusters left
to obtain the correct final partition. If they are too small, the
unsupervised algorithm may take a long time to converge. In

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART 11 53

our experience, a good choice for NVL is about 2% of the
total number of data points and for NL it is about 4% of the
total number of points. A good value for SL in our application
was about 0.15, although any value below 0.4 seems to work
quite well.

B. Merging Compatible Clusters

One way to determine if two clusters are compatible is to
estimate the error of fit and the validity for the merged cluster.
To do this, all points having a membership greater than an a-
cut in either one of the two clusters are collected. Let this data
set be denoted by Xij) . A value of about 0.25 works best for
a in practice. Then the PCQS algorithm is run with C = 1
on this data set. If the fit and surface density for the resulting
cluster are good, the two clusters are merged. In other words,
the condition for merging is

Ti < TL and 6; > S H

where Ti and 6; are the average shell thickness and the surface
density of the cluster formed by Xi j . Suitable values for TL
and SH for this application are about 2.0 and 0.7.

The merging procedure described above is only valid for
clusters with second-degree prototypes. Two linear clusters pi
and pj are considered compatible if they satisfy the conditions
used in the Compatible Cluster Merging (CCM) algorithm [23]
(see next section). Combinations of linear and second-degree
clusters are not considered in the merging step.

For the special case of data sets with linear and circular
clusters, the merging process can be simplified. Note that
hyperspheres are described by pTq = [Pi l , p i2 , . . . , p;(,+l) ,

circular shell clusters pi and Pj are considered compatible if
they satisfy the following conditions

~ i (~ + z)] [(x: + X; + +. . . + x:), X I , . . . , ~ n , lIT = 0. TWO

where ci and cj are the centers, and ri and rj are the radii
of the two clusters under consideration. These values can be
computed from the parameter vectors pi and pj. Suitable
values for ~1 and ~2 are about 1.0. A cluster is determined
to be linear/planar if its prototype pi satisfies the following
condition

where EL is a suitable threshold. Typically E L = 0.0001. In
this case, the Possibilistic C Plano-Spherical Shells algorithm
(Section VI, Part I) is used instead of the PCQS algorithm.

C. Identification of Good Clusters and
Removal of Feature Points

Cluster Pi is characterized as good if

where S V H is a very high threshold for surface density, S H
is the same value that was used for merging, and VL is a
low value for the fuzzy hypervolume. It is to be noted that

the second condition is designed to handle cases in which the
surface density has borderline values. Suitable values for SVH
and VL are about 0.85 and 0.5 in our application. Points are
temporarily removed from the data set if their membership in
one of the good clusters is greater than U H = 0.5.

In addition to the above steps, we need to identify noise
points and temporarily remove them from the data set . Noise
points are identified as those which have low memberships in
all clusters, i.e., we remove feature point Xk if

U i k < U L for 1 5 i 5 C.

Noise points have to be removed at the end of each run the
PCQS algorithm, because as the number of clusters decreases
and points assigned to good clusters are removed, the number
of noise points relative to the good points becomes too high,
making it difficult to detect the few good clusters that are left.
A good choice for U L is about 0.1. Note that the condition
for noise point removal can be used only when possibilistic
memberships are used, and not when fuzzy memberships are
used. In the case of fuzzy memberships the above condition
can be true even for good points if they are shared among
many clusters. A similar comment applies to the removal of
good points.

The threshold values mentioned in this section are meant
only as a guideline, and the actual choice depends on the
application. However, in our experience, the exact choice of
thresholds is not crucial for a given application. A range of
values produce the same final result, although the order in
which particular clusters are eliminated, merged, or removed
in the intermediate stages may vary.

THE UNSUPERVISED BOUNDARY DETECTION
ALGORITHM

Set C = Cmax; Fix m, m E [l, CO);

REPEAT
Perform clustering using the PCQS algorithm;
Run the Line Detection Algorithm;
Eliminate spurious clusters and update C ,
Merge compatible prototypes and update C;
Detect good clusters, save their prototypes in a list,

remove points with high memberships in them and
update C;

Remove noise points;
UNTIL (No elimination or merger or removal
takes place):
Replace all the removed feature points back into the
data set;
Append remaining clusters’ prototypes from the
last iterationin the above repeat loop to the list of removed
clusters’ prototypes and? update C;
REPEAT

Perform the PCQS algorithm and the Line Detection
Algorithm using the prototype list as initialization;

Merge compatible prototypes and update C accordingly;
Eliminate tiny clusters and update C accordingly;

UNTIL (No more merging or elimination takes place);

54 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

. & j I hn : hn

The unsupervised boundary detection algorithm is summa-
rized below. The first repeat loop typically requires three
passes and the second one or two passes. The passes become
progressively faster because the number of clusters is reduced
and the points belonging to the good clusters are removed in
each pass. The second repeat loop is used to fine-tune the
results. In this loop, all clusters with a sum of memberships
less than NL are considered tiny.

and

[I C ; - cjll I (&(a+ &). (27)

In (26), t i j is the unit vector in the direction of ci - c j . In
our experience, condition (27) does not work well in certain
cases. Therefore, we modified this condition to

5 C2, C2 close to zero, (26)

V. THE UNSUPERVISED QUADRIC
SURFACE FITTING ALGOFUTHM

The unsupervised algorithm presented in the previous sec- (28)
tion does not perform as well in 3-D. One reason is that the
solution space is more complex, making convergence to local
minima more probable. Another problem that arises when the
algorithm in Section IV is directly applied to 3-D is that most
quadric surfaces such as cones, cylinders, and planes have an
infinite extent, i.e., they are not bounded surfaces. Therefore,
if a cluster having the prototype of one of these surfaces is
identified as good and the points assigned to it are removed,
many other points which belong to other clusters may be
removed because they lie on the extension of this good cluster.
This may cause them to become partial and disconnected, and
hence they become more difficult to detect. Another difference
in the 3-D case is that, since computing the perpendicular
distance is expensive, the PCPQS algorithm needs to be
used instead of the PCQS algorithm. For these reasons, we
developed an alternative unsupervised algorithm for the 3-D
case. This algorithm is a generalization of the CCM algorithm
[21]. The CCM algorithm is first briefly summarized in Section
V-A, then its generalization is discussed in Section V-B.

A. The CCM Algorithm
The CCM algorithm produces a linear or planar approx-

imation of a data set. Initially, the Gustafson-Kessel (G-K)
algorithm (see [21] for details) is run with the number of
clusters C set to C,, which is higher than the maximum
number of clusters that may be expected for the particular
problem. After the algorithm converges, the resulting clusters
are first bunched into compatible groups such that the com-
patibility conditions (to be discussed below) are satisfied for
every pair of clusters in each group. The clusters in each group
are merged, the centers and covariance matrices for the new
clusters are calculated, and the G-K algorithm is reinitiated
with the new values. This process is repeated until no more
mergers can take place.

The compatibility conditions are based on the eigenvalues
and eigenvectors of the covariance matrices of the clusters.
Let the centers of two clusters pi and pj be ci and cj; the
eigenvalues of the covariance matrices of the two clusters
be { A i l , . . . , A i n } and { X j l , . . . , Ajn}; and the eigenvectors
be {&, . . . , din} and {q5jl,. . . , 4 j n } . It is assumed that the
eigenvalues and vectors are arranged in descending order. The
compatibility conditions are given below

(25) . 4jn I 2 C1, C1 close to 1

In other words, rather than just using the largest eigenvalues
of the two clusters, we use a weighted combination of all
eigenvalues where the weights are equal to the projections of
& j , in the directions of the respective eigenvectors. It is easy
to see that in the 2-D case, when conditions (25) and (26) are
satisfied, condition (28) reduces to (27). Good choices for the
constants C1, C2 and Cs are 0.95, 0.05 and A, respectively,
[231.

B. The Quadric Compatible Cluster
Merging (QCCM) Algorithm

The quadric compatible cluster merging (QCCM) algorithm
starts with the initial planar approximation achieved by the
CCM algorithm. Then the points belonging to each pair of
close clusters (i.e. the points satisfying condition (28)) are used
as the input data set to the PCPQS algorithm with C = 1. If the
fit of the resulting quadric cluster is good, then the two clusters
are merged. The goodness of the fit can be verified using the
shell thickness measure in (7). Since the exact distance from
a feature point to a surface is difficult to compute in the 3-D
case, we use the approximate distance while computing this
measure. The QCCM algorithm is summarized below.

THE QUADRIC COMPATIBLE CLUSTER MERGING
ALGORITHM

merge = TRUE
WHILE (merge = TRUE) DO

merge = FALSE;
FOR each pair of clusters pi and pj DO

IF clusters pi and pj satisfy condition (28) THEN
Let X;j be the set of all feature points having a

membership greater than an a-cut in cluster
pi or cluster pj;

Run the PCPQS algorithm on Xi j with C = 1;
Estimate error offit Ti using (8);

uik = max(uik,ujk) for all k ;
Eliminate cluster pj and replace the

IF (Ti < TL) THEN

parameters of cluster p; with the parameters
of the combined cluster;

C = C - 1; merge = TRUE;
END IF;

END IF;
END FOR;

END WHILE.

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I1 55

A good value for TL in our applications was about 0.5.
When finding the fit, we use the reweight procedure (see
Section VI1 of Part I of this paper) for better accuracy. In other
words, we estimate the fit with and without the reweight and
accept the better fit. When the PCPQS algorithm is used inside
the QCCM algorithm with C = 1, the parameter vector of
cluster ,& is the solution of a generalized eigenvector problem.
As mentioned in Section VI of Part I of this paper, we use
a solution that corresponds to an “acceptable” surface type.
However, this time we do not include planes and pairs of
planes in the list of acceptable types since we assume that we
have already obtained the best possible planar approximation
by using the CCM algorithm. Hence, no more two planes can
be merged into a single plane.

C . The Unsupervised Quadric Sugace Fitting Algorithm

summarized below.
THE UNSUPERVISED SURFACE FI’ITING ALGORITHM

The Unsupervised Quadric Surface Fitting algorithm is

C = Cmax;
Sample the data set i f required
Perform the CCM algorithm;
Perform the QCCM algorithm;
Run the PCPQS algorithm with all data ponts, using the

prototypes obtained at the end of the previous step
as initialization, using a distance measure that is a
combination of Euclidean and approximate distances.

The Unsupervised Quadric Surface Fitting algorithm con-
sists of the following steps. The range image is first sampled so
that the number of points to be processed is reduced. Initially,
the number of clusters C is set to C,,, which is two or three
times the maximum number of clusters that may be expected
for the particular problem. Then a planar approximation of the
data is obtained by running the CCM algorithm described in
Section V-A. This results in a smaller value for the number
of clusters C . Then the QCCM algorithm is invoked, and
all possible neighboring planes satisfying condition (28) are
merged to produce quadric surface fits. This gives us the final
number of clusters C. The results obtained at this point are
fine-tuned further by running the PCPQS algorithm with the
final value of C, using the prototype parameters obtained at the
end of the QCCM algorithm for initialization. In this phase,
all feature points are used, and a modified distance, which is
a combination of the Euclidean distance and the approximate
distance is used. The modified distance is required because in
the 3-D case many quadric surfaces are not bounded surfaces
(see Section VI of Part I of this paper).

VI. EXPERIMENTAL RESULTS
In this section we illustrate the effectiveness of the proposed

unsupervised algorithms by examples involving several real
and synthetic images. Due to space limitation, only a limited
number of examples are presented.

A . Examples of Boundary Detection

Parts (a) of Figs. 7-9 show three 200 x 200 images of
objects whose boundaries can be described by linear and

Fig. 7. (a) Original noisy image containing mechanical parts. (b) Edge image
with jagged and noisy edges. (c) Prototypes found by the unsupervised
boundary detection algorithm superimposed on the original image. (d) Cleaned
edge image.

second-degree curves. Uniformly distributed noise with an
interval of 30 was added to the image intensity values. The
object edges were then obtained by applying the Sobel operator
and thresholding. The edge images were then thinned [20].
The thinning procedure is important because it makes all edges
one-pixel thick. This ensures that the surface density values are
always around the theoretically predicted range. The thinning
process also reduces the number of pixels to be processed.
Parts (b) of Figs. 7-9 show the thinned images which are used
as inputs to the Unsupervised Boundary Detection algorithm. It
can be seen that the boundaries are not always clean and there
are many noise points. The resulting input images typically
had about 2000 points. For all the images, the same values
for the various thresholds were used. It was also observed that
the unsupervised boundary detection algorithm was not very
sensitive to the choice of these values.

The Unsupervised Boundary Detection algorithm was al-
ways applied with the initial number of clusters Cma, =25.
In the first stage of the PCQS algorithm, the initial values of
the bandwidths vi were estimated to be the shell thickness
values computed after the FCQS algorithm converged. In the
second stage, we fixed vi to 2.0 and ran the algorithm for five
more iterations. While computing surface densities the value
of rmax used was fi = a.

Parts (c) of Figs. 7-9 show the final prototypes superim-
posed on the images. The prototypes are shown three-pixels
thick for emphasis. As can be seen, the results are good in all
cases. The “cleaned edge images” in part (d) of Figs. 7-9 were
obtained by plotting the prototypes only in those regions where
there were at least two edge pixels within a 3 x3 neighborhood.

Fig. 10 shows an example of the special case of linear and
circular boundaries. The image of a color filter is shown in

56

Fig. 8. (a) Original noisy image containing a tube. and four rings. (b) Edge
image with jagged and noisy edges. (c) Prototypes found by the unsupervised
boundary detection algorithm superimposed on the original image. (d) Cleaned
edge image.

Fig. 9. (a) Original noisy image containing a box with holes. (b) Edge
image with jagged and noisy edges. (c) Prototypes found by the unsupervised
boundary detection algorithm superimposed on the original image. (d) Cleaned
edge image.

Fig. 10(a). The thinned edge image is shown in Fig. 10(b)
where it can be seen that the edges are quite noisy. Fig. 1O(c)
shows the correct prototypes found by an unsupervised version
of the Possibilistic C Plano-Spherical Shells algorithm.

(C)

Fig. 10. (a) Original image of a color filter. (b) Thinned edges of the image
in (a). (c) Prototypes obtained from the unsupervised boundary detection
algorithm superimposed on the original image.

The CPU time required to run the 2-D unsupervised algo-
rithm on a Sun Sparc 1 workstation was between 30 to 60

KRISHNAPURAM er al.: SHELL CLUSTERING ALGORITHMS-PART I1 57

Fig. 1 1 .
obtained by the unsupervised surface fitting algorithm.

(a) Original range image of a chair. (b) Surface approximation

min. (No attempt was made to optimize the code.) This is rea-
sonable, considering the number of pixels to be processed and
complexity of the problem. Since shell clustering algorithms
are inherently parallel in nature, the CPU requirements can be
considerably reduced in a parallel implementation.

B. Examples of Surface Fitting

The examples used in this section consist of some real
and some synthetic range images. A sampling rate of three
in the x and y directions was used to reduce computations.
This also makes the data sparse, illustrating the fact that the
algorithms work for sparse data. The number of feature points
after sampling ranged from 2000 to 4000. In all the examples
shown in this section, in the CCM algorithm the G-K algorithm
was applied with m =1.5 and the initial number of clusters
C,,, was 15.

Fig. Il(a) shows a real 252x 263 range image of a chair
obtained from the University of Southem Califomia. The result
of the surface fitting algorithm is displayed in Fig. ll(b)
which consists of the correct planar surfaces. Each surface
is displayed with a different gray value. Since this image
contains only planes, the QCCM algorithm does not merge any
planes (because pairs of planes are considered “unacceptable”),
and the result of the unsupervised surface fitting algorithm is
identical to the result of the CCM algorithm. This example
illustrates the fact that the unsupervised surface fitting algo-
rithm can be used without any problems even when there are
no quadric surfaces in the image.

Fig. 12(a) shows a 200 x 200 synthetic range image con-
sisting of two planes, a right circular cone, and an ellipsoid.
Fig. 12(b) displays the planar approximation for the above
mentioned image obtained by using the CCM algorithm. The
final results of the unsupervised surface fitting algorithm
consisting of the correctly identified surfaces are shown in
Fig. 12(c). Fig. 13 shows similar results on a 200 x 200
synthetic range image of a lamp consisting of a cone, a
cylinder, and a plane.

The CPU time requirements to run the 3-D unsupervised
algorithm on a Sun Sparc 1 workstation were very similar
to the 2-D case. This is not surprising because the PCPQS
algorithm is run with a known number of clusters (determined
in the previous stages) with excellent initialization. Much
of the time is in fact spent on obtaining the initial planar

approximation. As in the 2-D case, the CPU time can be
reduced considerably in a parallel implementation.

VII. SUMMARY AND CONCLUSION

Although many techniques have been proposed in the lit-
erature for the tasks of boundary description and surface
approximation, in the case of jagged or scattered edges and
noisy or sparse range data, these tasks still remain difficult.
This is because region growing techniques cannot be applied
when the data is sparse, and features such as gradients and
curvatures cannot be computed reliably. In this paper, we have
proposed a solution to this problem by combining the ability of
shell clustering to deal with scattered and sparse data with the
ability of the possibilistic approach to achieve noise immunity.
A major disadvantage of clustering methods is that the number
of clusters needs to be determined. The proposed approach
overcomes this problem by using progressive clustering. The
use of cluster elimination and merging avoids the tedious and
unreliable altemative of performing clustering for a range of
C values.

In order for progressive clustering to work effectively, one
needs a set of reliable validity measures. The surface density
criterion introduced in this paper to assess the “goodness” of
an individual linear or shell cluster is a good supplement to
the existing validity measures such as shell thickness, shell
density and shell volume. It is especially suitable for the type
of computer vision applications considered in this paper. Shell
thickness and shell volume cannot always distinguish between
good clusters and spurious clusters, and shell density varies
very much depending on size and partiality. These validity
measures also have about an order of magnitude variation even
for good clusters. Therefore, in our experience, by themselves
they are not sufficient for the proposed applications. We have
shown through derivations that surface density is relatively
invariant to size and partiality, and its range can be predicted.
This makes it an attractive candidate for use in progressive
clustering algorithms. When used in combination with the
existing measures, surface density is effective in unsupervised
algorithms. We also believe that this validity measure will
be quite good for even more complex shapes, as long as the
shapes are convex. Some improvements are still possible. For
example, our method of estimating the effective radius by
using the covariance matrix, though simple to implement, may
not be the best way. Moreover, the surface density measure is
still not invariant to sparseness. The unsupervised algorithms
proposed in this paper to describe boundaries and surfaces
in terms of parameterized algebraic forms are particularly
suitable for situations in which the data is noisy, scattered
or sparse.

The proposed unsupervised boundary detection and surface
approximation algorithms can be used in a variety of ap-
plications, including object recognition, pose estimation and
character recognition. These algorithms can be generalized
easily to deal with more complex shells such as those repre-
sented by implicit algebraic curves (surfaces) of higher order
[20], [30] and superquadrics [29], [33]. We are currently
exploring this issue.

58 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1 , FEBRUARY 1995

APPENDIX A

A . Derivation of Surface Density for Spherical
and Ellipsoidal Surface Patches

Consider a spherical shell patch as shown in Fig. 14. Let
the radius of the sphere be r. In terms of the parameters 4 and
8, a point x = [x, y, 251’ on the shell satisfies the following
equations

x = [i] = [rs in+sin8] . (AI)

Let us suppose that the patch extends from $1 to 4 2 in 4,
and from 81 to 82 in 8. In this case, the covariance matrix
is given by

I- sin 4 cos 8

r cos 4

where dA = r2 sin 4 dqbd8, is the elemental area of the patch,
and

ez 42 m = i l l 1 1 x d A (A31

A = 1: i42 dA.

is the centroid of the patch. The denominator of the first term
in (A2) represents the surface area A of the shell patch, i.e.,

(A4)
1

In the case of spherical patches, it is easily verified that

A = r2(& - Bl)(cos41 - COS^^). (‘45)

Hence, we may write

r2 dA - mTm = r2 - mTm. (A6)

For spherical shells, m = [m,, my, m,IT is given by

sin 82 - sin 81 m, =

sin 242 - sin 2qhl
2 x ((4 2 - 41) -

sin 242 - sin 241
2 x ((4 2 - 41) -

and

649)) cos 241 - cos 242 m, = r (
4 cos41 - cos+,

The theoretical values of surface density for various types of
spherical shells can be found by using (12), (A5)-(A9).

Fig. 12. (a) Original range image of a cone, two crossing planes and an
ellipsoid. (b) Surface approximation obtained by the CCM algorithm. (c)
Surface approximation obtained by the unsupervised surface fitting algorithm.

Now consider an ellipsoidal shell patch with axes lengths
= 2a, 2b and 2c in the x, y and z directions, respectively, as

KRISHNAPURAM er al.: SHELL CLUSTERING ALGORITHMS-PART I1 59

(C)

Fig. 13. (a) Original range image of a lamp. (b) Surface approximation
obtained by the CCM algorithm. (c) Surface approximation obtained by the
unsupervised surface fitting algorithm.

shown in Fig. 15. In terms of the parameters 4 and 8, a point
x = [x, y, .IT on the shell satisfies (Al), where T is now the

c

Fig. 14. Segment of a spherical shell.

Fig. 15. Segment of an ellipsoidal shell.

radial length from the center of the ellipsoid to point x given
by

T = d m
1

Let us suppose that the patch extends from $1 to 42 in 4,
and from 81 to B2 in 8. In this case, the covariance matrix is
still given by (A2), but dA is now the elemental area of the
ellipsoidal patch given by

and m = [mx,my,m,]T is the centroid of the ellipsoidal
patch given by (A3). Hence

Expressions for A, mx, my and m,, can be found by using
(Al), (A3), (A4), (A10) and (Al l) . The surface density can
be then computed using (12) and (A12).

60 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their valuable comments, which improved the presentation and
contents of this paper considerably.

REFERENCES

[I] E. Backer and A. K. Jain, “A clustering performance measure based on
fuzzy set decomposition,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 3, no. 1 , pp. 6674, 1981.

[2] P. J. Besl and R. C. Jain, “Segmentation through variable-order surface
fitting,” IEEE Trans. Pattern Anal. Machine Intell., vol. IO, no. 2, pp.
167-192, Mar. 1988.

[3] J. C. Bezdek, “Cluster validity with fuzzy sets,” .I. Cybernetics, vol. 3,
pp. 58-73, 1974.

[4] - , Pattern Recognition with Fuzzy Objective Function Algorithms.
New York: Plenum, 1981.

[5] R. M. Bolle and B. Vemuri, “On three-dimensional surface reconstruc-
tion methods,” IEEE Trans. Pattern Anal. Machine Infell., vol. 13, no.

[6] D. S. Chen, “A data driven intermediate level feature extraction algo-
rithm,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 7, Jul.
1989.

[7] R. N. Davt, “New measures for evaluating fuzzy partitions induced
through c-shells clustering,” in Proc. SPIE Con$ Intell. Robot Computer
Vision X SPIE, vol. 1607, Boston, Nov. 1991, pp. 406-414.

[8] R. N. Dave and K. J. Patel, “Progressive fuzzy clustering algorithms for
characteristic shape recognition,” in Proc. N . Am. Fuzzy lnf. Process.
Soc. Workshop, Toronto, 1990, pp. 121-124.

[9] D. Dimitrescu, “Hierarchical pattem classification,” Fuzzy Sets and Syst.,
vol. 28, pp. 145-162, 1988.

[IO] R. Dubes and A. K. Jain, “Validity studies in clustering methodologies,”
Pattern Recognition, vol. 11, no. 4, pp. 235-254, 1976.

[l I] R. 0. Duda and P. E. Hart, Pattern Classijication and Scene Analysis.
New York Wiley, 1973.

[12] T. J. Fan, G. Medioni, and R. Nevatia, “Recognizing 3-D objects using
surface description,” IEEE Trans. PAMI, vol. 11, no. 11, pp. 114@1157,
1989.

[I31 0. D. Faugeras and M. Hebert, “The representation, recognition, and
positioning of 3D shapes from range data,” in Techniques f o r 3 0
Machine Perception,A. Rosenfeld, Ed. Amsterdam, The Netherlands:
Elsevier, 1986, pp. 113-148.

[I41 I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEEE
Trans. PAMI, vol. 11, no. 7, pp. 773-781, July 1989.

[I51 R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, vol. I,
chapter 11. Reading, MA: Addison-Wesley, 1992.

[16] R. Hoffman and A. K. Jain, “Segmentation and classification of range
images,” IEEE Trans. PAMI, vol. PAMI-9, no. 5, pp. 608-620, 1987.

[I71 T. L. Huntsberger, C. L. Jacobs, and R. L. Cannon, “Iterative fuzzy
image segmentation,” Pattern Recognition, vol. 18, no. 2, pp. 131-138,
1985.

[I81 A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice-Hall.

[19] J.-M. Jolion, P. Meer, and S. Bataouche, “Robust clustering with
appplications in computer vision,” IEEE Trans. Paftern Anal. Machine
Infell., vol. 13, no. 8, pp. 791-801, Aug. 1991.

[20] D. Karen, D. Cooper, and J. Subrahmonia, “Describing complicated
objects by implicit polynomials,” IEEE Trans. PAMI, vol. 16, no. 1, pp.

I , pp. 1-13, Jan. 1991.

38-53, Jan. 1994.

[21] D. J. Kriegman and J. Ponce, “On recognizing and positioning curved 3D
objects from range image contours,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 12, no. 12, pp. 1127-1137, Dec. 1990.

[22] R. Krishnapuram and L. Chen, “Implementation of parallel thinning
algorithms using iterative neural networks,” vol. 4, no. 1, pp. 142-147,
Jan. 1993.

[23] R. Krishnapuram and C.-P. Freg, “Fitting an unknown number of lines
and planes to image data through compatible cluster merging,” Pattern
Recognition, vol. 25, no. 4, pp. 385400, 1992.

[24] R. Krishnapuram, H. Frigui, and 0. Nasraoui, “Quadratic shell clus-
tering algorithms and the detection of second-degree curves,’’ Pattern
Recognition Lett., vol. 14, no. 7, pp. 545-552, Jul. 1993.

[25] R. Krishnapuram and J. M. Keller, “A possibilistic approach to cluster-
ing,” IEEE Trans. Fuzzy Sysf., vol. I, no. 2, pp. 98-1 10, May 1993.

[26] R. Krishnapuram, 0. Nasraoui, and H. Frigui, “The fuzzy C spherical
shells algorithms: A new approach,” IEEE Trans. Neural Nefworks, vol.
3, no. 5, pp. 663-671, Sept. 1992.

[27] D. G. Lowe, “Fitting parametrized three-dimensional models to images,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 5, pp. 441450,
May 1991.

[28] B. Sabata, F. Arman, and J. K. Aggarwal, “Segmentation of 3-D
range images using pyramidal data structures,” in Proc. Third Inr. Cor$
Comput. Vision, Osaka, Dec. 1990, pp. 662-666.

[29] F. Solina and R. Bajcsy, “Recovery of parametric models from range
images: The case of superquadrics with global deformations,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 12, no. 2, Feb. 1990, pp.
131-147.

[30] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D. J. Kriegman,
“Parametrized functions of polynomials for bounded algebraic curve
and surface fitting,” IEEE Trans. PAMI, vol. 16, no. 3, pp. 287-303,
Mar. 1994.

[31] R. L. Thomdike, “Who belongs in the family,” Psychometrika, vol. 18,
pp. 267-276, 1953.

[32] M. A. Wani and B. G. Batchelor, “Edge-region-based segmentation of
range images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no.
4, pp. 314-319, Apr. 1994.

[33] P. Whaite and F. P. Feme, “From uncertainty to visual exploration,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 10, pp.
1038-1049, Oct. 1990.

[34] M. P. Windham, “Cluster validity for fuzzy clustering algorithms,” Fuzzy
Sets and Syst., vol. 5, pp. 177-185, 1981.

[35] N. Yokoya and M. D. Levine, “Range image segmentation based on
differential geometry: A hybride approach,” IEEE Trans. Pattern Anal.
Machine Infell., vol. 11, pp. 643-649, June 1989.

Raghu Krishnapuram For a photograph and biography see this issue, page
43.

Hichem Frigui For a photograph and biography see this issue, page 43

Olfa Nasraoui For a photograph and biography see this issue, page 43

