
29 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

Fuzzy and Possibilistic Shell Clustering
Algorithms and Their Application to Boundary
Detection and Surface Approximation-Part I

Raghu Krishnapuram, Member, IEEE, Hichem Frigui, and Olfa Nasraoui

Abstruct- Traditionally, prototype-based fuzzy clustering al-
gorithms such as the Fuzzy C Means (FCM) algorithm have
been used to find “compact” or “filled” clusters. Recently, there
have been attempts to generalize such algorithms to the case
of hollow or “shell-like” clusters, i.e., clusters that lie in sub-
spaces of feature space. The shell clustering approach provides
a powerful means to solve the hitherto unsolved problem of
simultaneously fitting multiple curveslsurfaces to unsegmented,
scattered and sparse data. In this paper, we present several fuzzy
and possibilistic algorithms to detect linear and quadric shell
clusters. We also introduce generalizations of these algorithms in
which the prototypes represent sets of higher-order polynomial
functions. The suggested algorithms provide a good trade-off
between computational complexity and performance. Since the
objective function used in these algorithms is the sum of squared
distances, the clustering is sensitive to noise and outliers. We show
that by using a possibilistic approach to clustering, one can make
the proposed algorithms robust.

I. INTRODUCTION

LUSTERING methods have been used extensively in C pattern recognition and computer vision [27]. Objective
function based clustering methods are one particular class of
clustering methods in which a criterion function is iteratively
minimized until a global or local minimum is reached. Ob-
jective function based clustering can be either hard (crisp)
or fuzzy, depending on whether each feature vector belongs
exclusively to one cluster or to all clusters to different degrees.
In general, the performance of fuzzy algorithms is superior to
that of the corresponding hard versions, and they have a lower
tendency to get stuck in local minima [4].

In objective function based clustering algorithms, each
cluster is usually represented by a prototype, and the sum of
distances from the feature points to the prototypes is used
as the objective function. This method has been traditionally
used to detect “compact” or “filled” clusters in feature spaces,
whose prototypes are typically represented by cluster centers
and cluster covariance matrices. The Fuzzy C Means (FCM)
algorithm [4] and its derivatives [12], [20], [23] may be used to
find clusters that resemble filled hyper spheres or filled hyper
ellipsoids. Lately this approach has been extended to the case
of hollow or shell-like clusters by using shells (manifolds) for
prototypes and measuring the distances to the shells rather

Manuscript received February 3, 1993; revised April 25, 1994. This work
was supported in part by the Alexander von Humboldt Foundation, Germany.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Missouri-Columbia, Columbia, MO 6521 1 USA.

IEEE Log Number 9406652.

than to the cluster centers. Coray seems to have been the
first to suggest the use of this idea to find circular clusters
[lo]. More recently, Dave’s Fuzzy C Shells (FCS) algorithm
[13] and the Adaptive Fuzzy C-Shells (AFCS) algorithm [16]
have proven to be successful in detecting circular and elliptical
shapes. These algorithms are computationally rather intensive
since one needs to solve coupled nonlinear equations to update
the shell parameters in every iteration [5]. They also assume
that the number of clusters is known. A computationally
simpler Fuzzy C Spherical Shells algorithm for clustering
hyperspherical shells and an unsupervised version to be used
when the number of clusters is unknown have also been
introduced [361. Extensions to more general quadric shapes
have also been proposed [16], [31], [32]. One problem with
the proposed extensions is that they use a highly nonlinear
algebraic distance, which results in unsatisfactory performance
when the data are scattered [16], [32]. Finally, none of the
above shell clustering algorithms can deal with situations in
which the clusters include lines/planes and there is much noise.
In this paper, we address these drawbacks in more detail and
present new fuzzy and possibilistic algorithms to overcome
these drawbacks.

The algorithms proposed in this paper can be used for
simultaneously fitting a given number of parameterized
curves/surfaces to an unsegmented data set. They are
particularly useful for boundary detection and surface
approximation in computer vision, especially when the
edges are jagged or when the range data is sparse and
noisy. In Section X, we qualitatively compare the shell
clustering approach with the more traditional generalized
Hough transform approach for boundary detection. In Part I1 of
this paper, we discuss problems associated with conventional
boundary detection and range image segmentation methods
in more detail and present unsupervised shell clustering
algorithms that use a new cluster validity measure to overcome
these problems.

In Section 11, we briefly describe prototype-based fuzzy
clustering. In Sections 111-VII, we introduce several fuzzy
shell clustering algorithms. Although the algorithms proposed
in these sections are specifically designed to seek clusters
that can be described by segments of second-degree curves,
(or by segments of shells of hyperquadrics), they can be
generalized easily to deal with shells of more complex types.
In Section VIII, we present one such generalization in which
the prototypes correspond to sets of higher-order polynomial

1063-6706/95$04.00 0 1995 IEEE

~

30 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

functions. In Section IX, we describe a possibilistic approach
to clustering, which has the advantage that the partition and
the prototype estimates are much less sensitive to noise when
compared with the fuzzy approach.

11. PROTOTYPE-BASED FUZZY CLUSTERING
Let X = {xj I j = 1 . . . N} be a set of feature vectors

in an n-dimensional feature space with coordinate-axis labels
[zl,zz, ... ,z,], where xj = [zjl,zjz, .. . , 2 j n l T . Let B =
(PI, . . . , pc) represent a C-tuple of prototypes each of which
characterizes one of the C clusters. Each pi consists of a set of
parameters. In the following, we use to denote both cluster
i and its prototype. Let uij represent the grade of membership
of feature point xj in cluster Pi. The C x N matrix U = [uij]
is called a constrained fuzzy C-partition matrix if it satisfies
the following conditions [4], [25]

N

u;j E [0,1] for all i , 0 < uij < N for all i , j and
j=1

C E U ' . 2 3 - - 1 for all j. (1)

The problem of fuzzily partitioning the feature vectors into C
clusters can be formulated as the minimization of an objective
function J (B , U; X) of the form

i=l

C N

In the above equation, m E [l, m) is a weighting exponent
called the fuzzifier, and d2 (xj, Pi) represents the distance from
a feature point xj to the prototype Pi. Minimization of the
objective function with respect to U subject to the constraints
in (1) gives us [4]

where Ij = {i I 1 5 i 5 C, d2(xj, Pi) = 0) . Minimization of
J (B , U; X) with respect to B varies according to the choice
of the prototypes and the distance measure. For example, in
the FCM algorithm, the clusters are usually assumed to be
compact and spherical in shape, and each of the prototypes
is described by the cluster center ci. If the distance measure
is Euclidean or an inner product induced norm metric, these
centers may be updated in each iteration using [4]

(4)

where
N

Ni = C(U;~)". (5)
j=1

In the Gustafson-Kessel (G-K) algorithm, the prototypes con-
sist of the cluster centers c; and the covariance matrices C;

[23]. It uses the distance measure d2(xj, ci) = ICill/n(~j -

c;)~C;'(X~ - ci). The centers are updated as above, and the
covariance matrices are updated by

The G-K algorithm and the unsupervised fuzzy parti-
tion-optimum number of clusters algorithm due to Gath and
Geva [20], assume that the clusters are compact ellipsoids and
allow each cluster to have a different size and orientation. They
can also be used to detect linear clusters in 2-D and planar
clusters in 3-D, since these are extreme cases of ellipsoids
W l .

The general form of prototype-based clustering algorithms
is given below.

PROTOTYPE-BASED FUZZY CLUSTERING
Fix the number of clusters C;& m, m E [l, CO);

Initialize the fuzzy C-partition U;
REPEAT

Update the parameters of each cluster prototype;
Update the partition matrix U by using (3);

UNTIL(llAUII < E) ;

The hard (crisp) versions of these algorithms are easily
obtained by changing the updating rule for the memberships
so that they are always binary. In other words, one uses

1 if d2(xj,pi) < d2(xj,pk) for all IC
U" -

2.l - { 0 otherwise.

Ties are broken arbitrarily. In practice, the hard versions do
not perform as well as their fuzzy counterparts. Due to space
limitation, we do not deal with the hard algorithms in this
paper.

111. THE FUZZY C QUADRIC SHELLS (FCQS) ALGORITHM

This algorithm [31], [32] assumes that each cluster resem-
bles a hyperquadric surface, and the prototypes pi consist of
parameter vectors p; which define the equations of the hyper-
quadric surfaces. The general equation for such a hyperquadric
surface is

where
T Pi =

qT =

pTq = 0 (7)

2,-12n, z1,z2,. . . , G I , 13

and s = + n + 1 = T + n + 1. We may define the
algebraic (or residual) distance from a point xj to a prototype
Pi as

d2(xj,p;) = d&j = P'qjqTp; = p'Mjp; (9)

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I 31

where

To obtain a fuzzy C-partition of the data, we may minimize the
objective function in (2) with d& as the underlying distance
measure. Since the objective function is homogeneous with
respect to pi, however, we need to constrain the problem to
avoid the trivial solution. Some of the possibilities are

Constraints i) [41] and ii) [21] do not make the distance
measure invariant to translation and rotation of the data. They
do allow the solution to be linear or planar. Constraint iii)
was used by Chen [9] and Krishnapuram et al. [36] for
circles and by Dave and Bhaswan [16] for quadric curves.
It precludes linear solutions and can lead to instabilities or
poor performance when the data points are approximately
linear (planar) as in the case of partial circles (spheres) with
very large radii [42]. Moreover, in the case of noncircular
(nonspherical) quadrics, this constraint makes the distance
measure rotation-variant, which is undesirable. Constraint iv)
[2], [6], [l 11 has the problem that no conic that passes through
the origin satisfies it. The last constraint was imposed by
Bookstein [7], [45] and has the advantage that the resulting
distance measure is invariant to rigid transformations of the
prototype. It does not allow, however, the solution to be
linear or planar. F'ratt showed that this is a great disadvantage
and proposed a new quadratic constraint for the case of
circles [42]. Taubin [46] generalized this idea for fitting
an implicit polynomial curve to a data set. This constraint
will be discussed in Section VI. Bookstein's Constraint, i.e.,
Constraint v) above, is in our experience the best compromise
between computational complexity and performance. Agin [13
also discusses some of these issues.

If we define

then constraint v) in (10) simplifies to 110;11~=1. It is easily
verified [19], [31] that the solution is

ai = eigenvector of (Fi - G'H;'Gi)associated

bi = -HTIG- z zai
with the smallest eigenvalue, and (1 1)

Fig. 1.
prototypes found by the FCQS algorithm superimposed on the dataset.

(a) A data set consisting of two ellipses and a circle. (b) The

It is to be noted that HY1 exists as long as there are at least
n + 1 noncollinear feature points in the data set. Thus, in the
FCQS algorithm, the parameters are updated using (1 l), and
the memberships are updated using (3) except that d2(x,, 0;)
is replaced by d&.

Shell clustering algorithms are quite sensitive to how one
initializes the C-partition. In our experience, a few (typically
10) iterations of the FCM algorithm followed by a few
(typically 10) iterations of the G-K algorithm and a few
(typically five) iterations of the Fuzzy C Spherical Shells
algorithm [36] provides a good initialization for the FCQS
algorithm. While using the FCM algorithm for initialization, a
value of 3.0 for the fuzzifier m seems to give good results. This
is because the FCM is not really meant for shell clusters and
a higher value of m gives a fuzzier partition, which is more
desirable for initialization purposes. In all other algorithms, a
value of 2.0 for m works best in practice.

Fig. 1 shows a typical example of the results obtained by
the FCQS algorithm with a synthetic data set containing about
200 points. Fig. l(a) shows the 200 x 200 image of the original
data set. A uniformly distributed noise with an interval of 3.0
was added to the z and y locations of the data points so that the
points do not lie on ideal curves. Fig. l(b) shows the resulting
prototype curves superimposed on the original data set. The
number of clusters was assumed to be known. The algorithm
typically converges in about 20 iterations and the CPU time
on a Sun Sparc 1 workstation is less than 10 s.

Since the FCQS algorithm uses the algebraic distance given
by (9) which is highly nonlinear in nature, the membership
assignments are not very meaningful. Moreover, when there
are curves (surfaces) of highly-varying sizes, the algebraic

32 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

'I c = (0.2)

x T A i x + xTb; + ci = 0. Then the distance d g i j can be
obtained by minimizing llxj - z1I2 subject to

zTA;z + Z T b i + C; = 0 (12)

where z is a point on the quadric pi. By using a Lagrange
multiplier A, the solution is found to be

Fig. 2. An example to illustrate the sensitivity of the algebraic distance to
the size of the curve as well as location of the feature point with respect to the
curve. Points A , B, and C are all geometrically equidistant from the bigger
ellipse, and point A is equidistant from both ellipses. However, the algebraic
distance does not reflect this.

distance is biased towards smaller curves (surfaces), and for
a particular curve (surface) it is biased towards points inside
the curve (surface) as opposed to points outside. Thus, the
distance measure gives rather eccentric and highly curved
fits if the data is scattered as the prototypes try to enclose
more points inside the curve. The distance also is sensitive to
the placement of the feature point with respect to the curve.
Consider for example, two ellipses El and E2 as shown in
Fig. 2. Ellipse El is centered at (0,O) and its major and minor
semi-axes have the values 2 and 1. Ellipse E2 is centered at
(5, 0) and its major and minor semi-axes have the values 1
and 1/2. Consider points A = (3,0), B = (1,O) and C =
(0 , 2) . Note that all three points are equidistant from El in the
Euclidean sense, and point A is equidistant from both El and
Ez. Keeping in mind constraint iv) in (lo), we can write the
expressions for the algebraic distances of a point x = (z, y)
from El and E2 as d2(x,E1) = (16/17){x2/4 + y2 - 1}2
and d2(x,E2) = (1/17){(x - 5)2 + 4y2 - 1}2. Thus, we
see that d2(A, El) = 25/17, d 2 (B , El) = 9/17, d2(C, E l) =
144/17, and d2(A, E2) = 9/17. This clearly illustrates the bias
of this distance measure as discussed above. Another problem
with the nonlinear distance is that it makes the fit of each
curve rather sensitive to the presence of other curves, which
sometimes leads to unstable hyperbolic fits. An example is
shown in the next section.

Here we would like to note that although the distance used
in the AFCS algorithm [161 for elliptical clusters is not biased
towards points inside the curve, it is still sensitive to the
size of the curve as well as the placement of the feature
point with respect to the curve. For example, the expressions
for the AFCS distance of a point x = (qy) from El and
E2 can be written as d 2 (x , E 1) = {[x2/4 + y2]1/2 - l}z
and d2(x,E2) = {[(x - 5)' + 4y2]1/2 - 1}2. Thus, we see

d2(A, E2) = 1. In the next sections we introduce modifications
to the basic FCQS algorithm to mitigate this problem, keeping
in mind that one needs to keep the computational complexity
as low as possible.

that d (A, El) = 1/4, d (B,El) = 1/4,d2(C,E1) = 1 and

Iv. MODIFICATIONS TO THE FUZZY
C QUADRIC SHELLS ALGORITHM

One possible way to alleviate the problem due to the
nongeometric nature of d& is to use the geometric (per-
pendicular) distance denoted by d& between the point x;
and the shell pi. To compute dCij we first rewrite (7) as

(13)
1

z = -(I 2 - XA;)-l(Xb; + 2xj) .

Substituting (13) in (12) yields a quartic (fourth-degree) equa-
tion in X in the 2-D case (see Appendix A for details), and
has at most four real roots A k , k = 1, . . . ,4. The four roots
can be computed using the standard closed-form solution. For
higher dimensions, the equation is of sixth degree or higher,
and iterative root finding techniques need to be used. For each
real root X I , so computed, we calculate the corresponding z
vector z k using (13). Then, we compute dCzJ using

d$zJ = minllx, - z k 1 I 2 . (14)

Minimization of the objective function in (2) with respect
to pz when dCZ, is used as the underlying distance measure
can be achieved only by using iterative techniques such as
the Levenberg-Marquardt algorithm [39], [46]. To overcome
this problem, we may assume that we can obtain approxi-
mately the same values for pz by using (l l) , which will
be true if all the feature points lie reasonably close to the
hyperquadric shells. This leads to a modified FCQS algorithm,
in which the memberships are computed using d$zJ , but
the parameters are updated using d&. An alternative is to
use the Levenberg-Marquardt algorithm after initializing it
with the solution obtained by (11) in each iteration. This
is implementationally and computationally more complex,
however, and is recommended only for small data sets. We
have observed that this can increase the CPU time by an
order of magnitude, although the overall number of iterations
required for the FCQS algorithm to converge is somewhat
lower. Moreover, our simulations indicate that the performance
of the modified FCQS algorithm is adequate for most computer
vision applications. The initialization procedure recommended
for the FCQS algorithm can also be used for the modified
version with good results.

Fig. 3(a) shows a data set with three curves for which the
original version of the FCQS algorithm fails. It can be seen
that due to the presence of other curves, the fit for the circle
becomes distorted, resulting in a hyperbola. Fig. 3(b) shows
the result of the modified FCQS algorithm, illustrating the
advantage of the more meaningful membership assignments
in the modified version. It is to be noted that in the modified
algorithm, although the memberships are based on geometric
distances, the parameters are still estimated by minimizing the
algebraic distance. This may give poor fits when the data
is highly scattered. An example of this behavior is shown
in Section VI. Another problem with the modified FCQS
algorithm is that d;,, has a closed-form solution only in the
2-D case. In higher dimensions, solving for dCZJ is not trivial.

Henceforth we will simply use the acronym FCQS to denote
the modified version.

k

33 KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I

I I 1 I

(a) (b)

Fig. 3. An example illustrating the advantage of the modified FCQS algo-
rithm over the FCQS algorithm on a data set containing a circle, a parabola,
and an ellipse. Prototypes of clusters found by (a) the FCQS algorithm and (b)
the modified FCQS algorithm. The modified algorithm avoids the hyperbolic
fit.

‘I
(a) (b)

Fig. 4. Examples illustrating the tendency of the FCQS algorithm to fit
pathological prototypes to scattered linear data. (a) A “flat” hyperbolic fit
for two parallel lines. (b) An extremely elongated elliptical fit for two parallel
lines.

V. LINE DETECTION USING THE FCQS ALGORITHM
The FCQS algorithm can be used to find linear clusters, even

though the constraint forces all prototypes to be of second
degree. This is because in practice this algorithm fits a pair
of coincident lines for a single line, a hyperbola for two
intersecting lines, and a very “flat” hyperbola (see Fig. 4(a)),
or an elongated ellipse (see Fig. 4(b)), or a pair of lines for
two parallel lines. Hyperbolas and extremely elongated ellipses
occur rarely in practice. When the data set contains many linear
clusters, the FCQS algorithm characterizes them variously as
hyperbolas, extremely elongated ellipses, etc. In this case, we
can group all the points belonging to such pathological clusters
into a data set and then run a line finding algorithm such as the
G-K algorithm (see [30]) on this data set with an appropriate
initialization. The parameters of the lines can be determined
from the centers and the covariance matrices of the clusters.
The line detection algorithm summarized below may be used
after the FCQS algorithm converges.

Add all points assigned to cluster

Initialize the new linear prototype as the one of the two

to the data set x;
C = C + l ;

coincident lines;
END IF;
IF

a pair of parallel lines THEN

is a nonflat hyperbola OR a pair of intersecting
lines OR

Add all points assigned to cluster Pi to the data set x;
C = C + 2 ;

Initialize the new linear prototypes as the asymptotes of
the hyperbola or as the individual lines making up
the pair of lines;

END IF;
IF Pi is an ellipse with a very large major axis to minor

Add all points assigned to cluster 0; to the data set x;
Initialize the new linear prototypes as the two tangents

axis ratio THEN

c=c+2;
to the ellipse at the two ends of the minor axis;

END IF;
IF P; is a hyperbola with a very large conjugate axis to

Add all points assigned to cluster Pi to the data set

Initialize the new linear prototypes as the two tangents

transverse axis ratio THEN

x; c = c + 2;

to the hyperbola at its two vertices;
END IF;

END FOR;
Run the G-K algorithm on the data set x with C clusters

using the initialization for the prototype of each cluster.

Appendix B summarizes the various conditions that one
needs to check to determine the nature of the second degree
curve. The initialization procedures for the various cases in the
line detection algorithm are described in Appendix C. Since
the initialization is excellent, the G-K algorithm converges in a
couple of iterations. The above algorithm successfully handles
the pathological cases shown in Fig. 4.

VI. THE FUZZY C PLANO-QUADRIC
SHELLS (FCPQS) ALGORITHM

When the exact distance is too complex to compute, one
could use what is known as the “approximate distance” (first-
order approximation of the exact distance) given by [24],
[461

d&3
d2(X,, Pz) = = ___

IVdQv l 2
. (15) - - PTMJP%

PTID(q,)D(q,)TIPz

THE LINE DETECTION ALGORITHM where VdQij is the gradient of the functional pTq in (7)
evaluated at xj and the matrix D(qj) is the Jacobian of q
in (8) evaluated at xj [46]. In other words, the approximate
distance is simply the algebraic distance divided by the gradi-
ent magnitude. The objective function to be minimized in this

Set x, the set of all data points in linear clusters to 8;
Set number of lines C to 0;
FOR each cluster pi DO

IF is a pair of coincident lines THEN

34

>andA3=

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

-1 0 e . .

0 1 ...
0 0 ...
.
.
.
0 0 . * .

A suitable constraint needs to be chosen while minimizing
(16) with respect to pi. One may use the constraint proposed
by Taubin [46] given by

j=1

This constraint has the advantage that it takes the data points
into account and allows the degenerate case of lines and planes.
It is meant for fitting a single curve to a given set of data
points. Hence, we need to generalize it to the fuzzy case and
to fit C curves simultaneously. This is achieved by changing
the constraint to [33]

PT C(ui j)"[~(e)D(qj)Tl Pi = Ni

(18)
(19)

[' j=1 1
for i = l , . . . ,C , or

p'Dip; = N; f o r i = l , . . . , C

where Ni is as in (3, and
N

Di = Cbij)" [D(qj)D(qj)T]. (20)
j = 1

Minimization of (16) with respect to pi subject to (19)
yields a complicated equation which cannot be solved for
pi explicitly. To avoid an iterative solution, we make the
following assumptions:
i) All data points are reasonably close to some cluster, i.e.,

the u;j are close to being hard. This assumption is valid
when the data is not very scattered. (It is reasonable for
the noisy case if we use possibilistic memberships, as will
be discussed in Section IX.)

ii) The magnitude of the gradient at all points xj that have
a high membership in pi is approximately constant, i.e.,
lVdQij12 = pTD(qj)D(qj)Tpi M 1.

We now discuss the second assumption for the special case of
hyperspheres. Hyperspheres are described by

PTq = bilrPi2,. . . ,Pi(n+l),Pi(n+2)1
x [(x? + xf + xi + . . . + x?), 21,. . . , xn, 1]*

= 0. (21)

Here pi represents a prototype parameter vector. Let xj =
[x l j , . . . ,xnjlT denote a feature point, and let qj = [(xTj +
xij + xij + . . . + xi j) , xlj, . . . , xnj , 1IT. Then we have

IVdQij12 = (2Pilxjl + Pi2)' + ' . ' + (2Pilxjn + Pi(n+l))
2

= 4Pii (piiX?l + . . * -k pii& + pi2Xji + . . .
+ P i (n + I) X j n) + (Pa + . . + P&+l)).

If a feature vector xj lies on the prototype of cluster pi, then
it must satisfy (21) and the above expression becomes

IVdQij12 = PTD(e)D(e)TPi
= -4l1ilpi(~+z) + (& + . . . + p:(,+,)) = constant

When the memberships are almost hard, however, substituting
the above result in (18), we get N;K M Ni, or K M 1.
Thus, assumption ii) is valid for circles (spheres) when qj
corresponds to a point on the curve (surface). It is obviously
valid for the case of planes regardless of the location of xj
since pi1 = 0. It can also be shown that the assumption is
valid for cylinders and rectangular hyperboloids. For other
quadric shapes, this assumption does not hold. This issue will
be discussed further in Section VII.

If pTD(%)D(e)Tp; M 1, we may ignore the denominator
in (16). The simplified objective function is given by

= K.

C N

J A (B , U; x) = x('&j)mpTMjPi
i=l j=1

C

= pTEip;
i=l

where
N

E; = C(u;j)"Mj.
j=1

The above objective function is essentially the same as the
one used in the FCQS algorithm, however, the constraint used
is different. Minimization of the simplified objective function
subject to the constraint in (19) leads to

E;pi = AiDipi.

It is easily verified that

D(qj)= A:! , where AI= El
xj2 xj1 * . . 0
xj3 0 . . * 0
0 0 . . . 0

. ...

. . . .

. . . .

2Xjl 0 . ' . 0
0 2xj2 . - . 0

0 0 0 ...
.
.

Since the last row of D(qj) is always equal to [O O . . . O] , D;
is singular, and the above generalized eigenvector problem
cannot be converted to regular eigenvector problem, however,
we may solve it using the QZ algorithm [46]. Care must be
exercised while solving (22), because the matrices D; and E;
are highly unbalanced. Several methods for balancing matrices

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I 35

are available in the literature. Thus, (22) gives us the prototype
update equation for the FCPQS algorithm. The membership
update equation in the FCPQS algorithm is identical to (3),
except that d2(x,, pi) is replaced by d i i j . In the special case
of hyperspherical prototypes, this algorithm may be called the
Fuzzy C Plano-Spherical Shells algorithm.

The FCPQS algorithm requires solving a six-dimensional
generalized eigenvector problem (in the 2-D case) as opposed
to a three-dimensional regular eigenvector problem. In addition
to its computational complexity, we noticed that the FCPQS
algorithm in general requires more iterations to converge
than the FCQS algorithm. When the data set contains only
one noiseless linear (planar) cluster among other nonlinear
(nonplanar) clusters, the FCPQS algorithm does detect and
characterize the linear (planar) cluster correctly. On the other
hand, if the linear (planar) cluster is scattered or noisy, or if
multiple linear (planar) clusters are present, the lines (planes)
may be “overfitted” by a quadric curve (or surface). (One
can always obtain a lower error of fit by fitting an extremely
elongated ellipse to a scattered line.) The FCPQS algorithm
also sometimes combines a pair of linear clusters into a single
quadric cluster, a result similar to that of the FCQS algorithm.
In such cases, the line detection procedure described in the
previous section needs to be applied. Thus, in the 2-D case,
this algorithm does not seem to have any advantage over the
FCQS algorithm.

The real advantage of the FCPQS algorithm over the FCQS
algorithm is in higher dimensions. It may be recalled (from
Section IV) that the exact distance to a quadric has no
closed-form solution in higher dimensions. Thus, (the modified
version of) the FCQS algorithm is quite impractical. The
performance of the FCPQS algorithm, however, is quite good,
and its computational complexity is reasonably low. (See [46]
for a discussion on the computational complexity of the QZ
algorithm.) This is the primary reason we chose this algorithm
to develop an unsupervised algorithm for surface fitting. This
algorithm will be explained in Part I1 of this paper.

In the 3-D case, we noticed that the smallest eigenvalue
solution of (22) may sometimes correspond to an “overfit-
ted” prototype or to a surface prototype that almost never
occurs in real images. Examples are hyperboloids of two
sheets, hyperbolic cylinders, and imaginary quadric surfaces.
Therefore, we accept the smallest eigenvalue solution of (22)
only if it represents the parameter vector of an “acceptable”
surface type, otherwise we keep checking the next eigenvectors
(assuming that they are organized in ascending order of the
eigenvalues) until we find the first one that represents an
“acceptable” surface prototype. By an “acceptable” surface
prototype, we mean the following: real ellipsoids, hyperboloids
of one sheet, real quadric cones, elliptic paraboloids, real
elliptic cylinders, parabolic cylinders, and (pairs of) planes.
The different types of quadric surfaces and their identification
conditions are listed in Appendix B.

In the 3-D case, many quadric surfaces such as cones,
cylinders, and planes are not bounded surfaces, and have an
infinite extent. Therefore, a given cluster having the prototype
of one of these unbounded surface types will attract many
other points belonging to other clusters if the points lie on the

(a) @)

Fig. 5. (a) Result of the Fuzzy C Spherical Shells algorithm on a data set
containing a line and a circle. The prototypes are shown superimposed on the
data set. The constraint used in this algorithm does not allow the degenerate
case of lines. (b) Result of the Fuzzy C Plano-Spherical Shell algorithm.

(infinite) extension of the given cluster. To avoid this problem,
one may use a heuristically modified distance which is a
convex combination of the approximate distance to the shell
dAz and the Euclidean distance d ~ z . This modified distance
d ~ z can be formulated as

d M 2 = (1 - E) d ~ z -k E d p

where E is chosen such that the second term becomes compara-
ble to the first term only for large dEz .The value of E was of the
order of in our application. The objective function can be
easily reformulated using the modified distance. The Euclidean
distance dE2 is measured from the statistical center (mean) of
the cluster, and the center is updated in every iteration using
(4). We recommend using the modified distance only as a
method to refine the results obtained by the FCPQS algorithm.
Thus, this distance may be used for a couple of iterations after
the FCPQS algorithm converges.

Figs. 5(a) and 5(b) show the results of the Fuzzy C Spher-
ical Shells algorithm [36] and the Fuzzy C Plano-Spherical
Shells algorithm, respectively, on a data set consisting of a
circle and a line. The prototypes obtained are superimposed
on the original data. Unlike the Fuzzy C Spherical Shells
algorithm, the Fuzzy C Plano-Spherical Shells algorithm with
the constraint in (19) is able to characterize both the line and
the circle correctly. Figs. 6(a) and 6(b) show the fit obtained
by the FCQS and FCPQS algorithms for a scattered ellipse.
(It is to be noted that the modification to the FCQS algorithm
presented in Section IV has no effect if there is only one
cluster in the data set, since all memberships are equal to
1.0.) It can be seen that the FCPQS fit is much better, even
though the assumptions made in arriving at (22) are not valid
for an ellipse. The sum squared error (measured using dpz
for the two cases are 301.2 and 254.7, respectively. In the
2-D case, we observed that the FCPQS algorithm takes 20%
to 30% more iterations to converge compared to the FCQS
algorithm. The CPU requirements per iteration are about 10%
to 20% higher. In higher dimensions, the difference will be
considerably higher.

VII. A WEIGHTING PROCEDURE TO IMPROVE FITS

As discussed in the previous section, the assumption that
1Vd~;jl’ x constant for all xj having a high membership in

36 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

Fig. 6. An example illustrating the advantage of the FCPQS algorithm over
the FCQS algorithm for scattered data. (a) Prototype found by the FCQS
algorithm for a scattered ellipse. (b) Prototype found by the FCPQS algorithm
for the same scattered ellipse.

p; is always true for linear (planar) prototypes regardless of the
location of the feature point xj with respect to the prototype.
Otherwise, this assumption is correct only for certain types of
shells (such as circles and rectangular hyperbolas in 2-D, or
spheres and cylinders in 3-D), even then only if all the feature
points lie close to one of the shells. Thus, this assumption is
invalid for ellipses and parabolas in 2-D, and ellipsoids and
many other quadric shapes in 3-D. Therefore, the fit will be
biased towards points where the gradient magnitude I V d ~ i j I
is high. One solution is to weight the distance measure to
improve the fit [42], [46]. We achieve this by minimizing the
weighted objective function given by

C N

subjected to

where
N

j=1

Since the purpose of introducing the weights wij is to reduce
the bias due to the omission of the denominator in (16), ideally
these weights should be chosen as

With this choice of wij, however, the objective function in
(23) becomes identical to the one in (16), which cannot be
minimized easily. To simplify the problem, we may treat the
w;j as constants which are updated in every iteration according
to (24) using the parameter values pi from the previous
iteration. Using this heuristic, the parameters can be obtained
by solving

(Ew)ip; = Xi(Dw)ipi, where
N

j=1

Since this reweight procedure is heuristic, it is not guar-
anteed that the fit obtained after reweighting will always be

Fig. 7. Effect of the reweight procedure on the FCQS algorithm. The
prototype for two intersecting lines found by the FCQS algorithm (a) without
reweight and (b) with reweight.

better than the original fit. Therefore, in each iteration, we
compute the parameter vector pi both with and without the
weights and accept the parameter vector pi resulting from the
reweight procedure only when the error of fit decreases. The
sum of geometric or approximate distances for each individual
cluster may be used as a measure of the error of fit.

The reweight procedure can also be adopted for the FCQS
algorithm with the same choice of weights with good results.
Following the same steps that were used above, it can be
shown that the solution with the reweight procedure for the
FCQS algorithm (subject to Bookstein's constraint) is given
by the following equations instead of (1 1).

a; = eigenvector of ((Fw); - (Gw)T(Hw);~(Gw);)
associated with the smallest eigenvalue, and

b; = -(Hw);'(Gw)i ai

where
N

(Fw); = C (U i j) " W i j R j ,
j=1
N

(Gw 1; = C(~ij)"wijSj
j=1

and
N

(Hw); = C (~ ; j) ~ w ; j T j .
j=1

The FCQS algorithm with the reweight procedure produced
the same fit for the scattered ellipse of Fig. 6 as the one
produced by the FCPQS algorithm. Fig. 7(a) shows the results
of the FCQS algorithm on a data set with two intersecting lines.
In this figure, the fit is poor around the intersection, because
the gradient magnitude is zero at the point of intersection.
Fig. 7(b) shows the result of the FCQS algorithm with the
reweight procedure. An obvious improvement in the fit can
be seen.

In the case of the FCPQS algorithm, the use of the reweight
procedure does not have much effect in 2-D, however, its effect
can be significant in 3-D. Therefore, we recommend the use
of the FCPQS algorithm with reweight in the 3-D case.

KRISHNAPURAM et al.: SHELL CLUSTERING ALGORITHMS-PART I 37

VIII. GENERALIZATION TO PROTOTYPES REPRESENTED
BY SETS OF HIGHER-ORDER POLYNOMIAL FUNCTIONS

where I k is a k x k identity matrix, and
N

Consider the set of zeros of f (x) defined by D; = C (~ i j) " [D (~ j) O (x j) "] .
j = 1

D(xj) is the Jacobian matrix D(x) evaluated at x, given by
fl(X)=O;fZ(X) = o ; " ' , f k (x) = o . (25)

Here X" = [XI , 2 2 , . . . , x,] is an n-dimensional coordinate 8Fl (X ,) a F h (X 3)

D(Xj) = a? 1 . [- : : : 8%
aFh (X j

vector, as before. It is to be noted that f (x) is a vector con-
sisting of k functions, all of which have to be simultaneously
satisfied. Thus, if n = 2 and k = 1, we have a planar curve,
if n = 3 and IC = 1, we have a 3-D surface, and if n = 3
and k = 2, we have a space curve. For example, a circle of
radius 1 on the xy-plane in 3-D is defined by the equations
x2 + y2 - 1 = 0, and z = 0. Let

F(x) = [Fl(x),Fz(x),...,Fh(X)lT

be a vector of h polynomials. Each of the F,(x) is a
polynomial of degree p or less in each of the coordinate
axis labels x1,x2,..' ,x,. For example, when n = 2
and k = 1, and p = 2, F(x) can be chosen to be

as in (8), in which case each element of F(x) is a monomial.
For a suitable choice of F(x) , we can write (25) as

qT = [z:, zF,. . . , x i , 2 1 ~ 2 , . . . , x,-~x,, ~ 1 , ~ 2 , . . . , z,, 11

f(x) = P F (x) = 0

where P is a k x h matrix of parameters consisting of
the coefficients of the functions f2(x). Thus P represents
the prototype parameters, where each prototype is a set of
functions f(x) . We can construct an objective function based
on C such prototypes as

C N

JP , U; X) = ~(U2J)"IIP2F(x,)112 (26)
z = 1 ,=1

where II = (PI, . . . , Pc) represent a C-tuple of prototypes.
Here I(PzF(x,)l12 represents the algebraic distance from x, to
prototype P , . The above objective function can be written as

C N

JP , U; X) = ~(2LZ,)"Tr[P2F(x,)FT(X,)PT1

= C(U2,)mTr[PzM,PTI

2=1 ,=1

C N

2 = 1 3 = 1

C

= Tr[PiE;PT]
i=l

where
N

Mj = F (x j) F " (~ j) , and Ei = E (u i j) " M j .
j=1

The above objective function can be minimized subject to the
constraint

r N 1

It can be shown [46] that the solution to the minimization of
(26) subject to (27) is given by the eigenvectors corresponding
to the least IC eigenvalues of the generalized eigenvector
problem given below.

piEi = XipiDi.

Each of the eigenvector solutions pi gives us one row of
Pi. As in the case of the FCPQS algorithm, the use of
the constraint in (27) gives us fits that correspond to the
approximate distance, even though the objective function uses
the algebraic distance, especially when reweighting is used.

It is to be noted that in this general case, each prototype
is represented by a set of higher-order polynomials. In this
sense, the above algorithm is also a generalization of the Fuzzy
C Regression Models (FCRM) introduced by Hathaway and
Bezkek recently [25]. The FCRM considers two-dimensional
prototypes of the form y = f (z) , where f (x) is a polynomial.
In other words, y is explicitly considered as a dependent
variable, and higher powers of y do not appear in this model.
The FCRM uses the algebraic distance, and the implicit
constraint that the coefficient of y is one.

Ix. POSSIBILISTIC MEMBERSHES FOR ROBUST CLUSTERING

Fuzzy clustering algorithms do not always estimate the
prototype parameters of the clusters accurately. The main
source of this problem is the probabilistic constraint used
in fuzzy clustering, which states that the memberships of a
data point across all clusters must sum to one. [See (l)]. This
problem has been discussed in detail in [34]. Here we present
two simple examples to illustrate its drawbacks as related to
shell clustering. Fig. 8(a) shows a situation where there are two
linear clusters. Fuzzy clustering would produce very different
(asymmetric) memberships in cluster 1 for points A and B,
even though they are equidistant from the prototype. Similarly,
point A and point C may have equal membership values in
cluster 1, even though point C is far less typical of cluster 1
than point A. The resulting fit for the left cluster would thus
be skewed. Fig. 8(b) presents a situation with two intersecting
circular shell clusters. In this case, intuitively, one point A
might be considered a "good" member of both clusters, where
as point B might be considered a "poor" member, and point C
an outlier. Here again, the constraint in (1) would force points
A, B, and C have memberships of 0.5 in both clusters. The
membership values cannot distinguish between a moderately
a typical member and an extremely atypical member, because
the membership of a point in a class is a relative number. In
otherwords, the memberships that result from the constraint in
(1) denote degrees of sharing rather than degrees of typicality.

38 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

'C One can cast the clustering problem into the framework of
possibility theory [18], [49] by relaxing the constraint in (1)
and reformulating the objective function in (2) as [34]

C N

J" U; X) = C (' " i j) " d 2 (X j > P i)
i=l j=1

C N

+ vi C(1 - Q j) m (28)
i=l j=1 '

(a) (b) where are suitable positive numbers. The first term in
(28) requires that the distance from the feature vectors to
the prototypes be as low as possible, whereas the second
term forces u i j to be as large as possible, thus avoiding the
trivial Solution. It is easy to show [34] that U may be a

Fig. 8. Disadvantages of constrained fuzzy memberships. (a) A data set with
two linear clusters. Membership values in cluster 1 for points Aand B will
be different, even though they are equidistant from the prototype. Point A
and point B may have equal membership values in cluster 1, even though
point C is far less typical of cluster 1 than point A. (b) A data set with two
intersecting circular-shell clusters. The memberships of points A, B, and C
are all 0.5 in the two clusters, even though point B is less typical of the
clusters, and point c is an outlier.

global minimum of J,(B, U; X) only if the memberships
are updated by

(a) (b)

Fig. 9. The effect of noise points on shell clustering. Prototypes for two
noisy ellipses found by (a) the Hard C Quadric Shells algorithm and (b) the
Fuzzy C Quadric Shells algorithm.

Therefore, noise points, which are often quite distant from the
primary clusters, can drastically influence the estimates of the
class prototypes, and hence the final partition.

One established technique for reducing the effect of noise
on least-squares fits is to use weights that are inversely related
to the distance of the point to the prototype [24], [37], [48].
Although one may interpret memberships as weights, the
memberships generated by fuzzy clustering are not inversely
related to the distance, since they are relative numbers. Other
ways to deal with noise in clustering maybe found in [29],
[47]. DavC also discusses another effective way to deal with the
noise problem (although not the relative membership problem)
by introducing the concept of a noise cluster [14], [15].

If there is only one cluster in the data, there is no difference
between crisp and fuzzy clustering. Otherwise, the effect of
noise points on the final partition is more drastic in the crisp
case, because the membership of noise points tends to be
distributed among all classes in the fuzzy case. Since the sum
of the memberships of a point is constrained to be equal to
one, however, this difficulty still remains with a lesser degree
in the fuzzy case. Fig. 9 shows the effect of noise on a data
set containing two elliptic clusters. As can be seen, the result
of the fuzzy case (Fig. 9(b)) is poor but better than that of the
hardcase (Fig. 9(a)).

Thus, the updated value of uij depends only on the distance
of xj from pi, and not on the distance of xj from all other
prototypes, which is a desirable result. The prototypes are
updated in the same manner as in the corresponding fuzzy
algorithms.

It is best to initialize the possibilistic algorithms with
the corresponding fuzzy algorithms. Since the value of vi
determines the distance at which the membership value of a
point in a cluster becomes 0.5, it should relate to the overall
size and shape of cluster P;. When the nature of the clusters is
known, values for 71; may also be fixed apraori. For example,
in the case of shell clustering algorithms, the values for vi

may be set equal to the square of the expected thickness of
the shells. Another possibility is to use the fuzzy intra-cluster
distance to compute vi, i. e.,

Typically K is chosen to be one. Several other ways to
estimate the q; are given in [34].

Although the fits themselves are not very sensitive to the
exact values of vi, some of the shell cluster validity measures
(to be discussed in Part I1 of this paper) do depend on the
choice of q;. For this reason, the best approach is to compute
approximate values for the vi from the initial fuzzy partition
using (30), and after the possibilistic algorithm converges, run
a few more iterations of the algorithm with a fixed value of
7;. This will ensure that the validities of all the clusters are
measured on a uniform scale. The fixed value of is the
expected thickness of the shell clusters. A good value for q; in
boundary detection applications is about two. The possibilistic
shell clustering algorithm is summarized below.
THE POSSIBILISTIC SHELL CLUSTERING
ALGORITHM

Fix the number of clusters C ; fix m , m E [l, co);
Initialize C-partition U using the corresponding fuzzy
algorithm ;

KRISHNAPURAM er al.: SHELL CLUSTERING ALGORITHMS-PART 1 39

x

X
I

Fig. 10.
proach. Prototypes for two noisy ellipses found by the PCQS algorithm.

Advantage of unconstrained memberships in the possibilistic ap-

Estimate qi using (30);
REPEAT

Update the prototypes using U;
Compute U using (29);

UNTIL (IlAUll < &I);
{The remaining part of the algorithm is optional and is
to be used only when validity measures need to be
computed}
Fix the values of 77; to the expected thickness of the shells;
REPEAT

Update the prototypes using U;
Compute U using (29);

U”I’IL (IlAUll < ~ 2) ;
Possibilistic versions of the FCQS and FCPQS algorithms

can be derived very easily by merely changing the membership
updating equation from (3) to (29). We will hence forth refer
to these possibilistic versions as the Possibilistic C Quadric
Shells (PCQS), and the Possibilistic C Plano-Quadric Shells
(PCPQS) algorithms, respectively. Fig. 10 shows the result of
the PCQS algorithm on the noisy data set in Fig. 9 for which
both hard and fuzzy clustering failed. This result shows that
the possibilistic approach makes the clustering process robust.

X. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we presented several fuzzy and possibilistic
shell clustering algorithms. The FCQS algorithm uses a con-
straint on the second-degree terms and does not allow the
degenerate case of linear prototypes. This problem can be
overcome by using a procedure to extract linear clusters from
certain types of pathological clusters. Although the constraint
used in the FCPQS algorithm theoretically allows the detection
of linear clusters, in practice it often overfits second-degree
curves to linear segments. Also, this algorithm requires us
to solve a six-dimensional generalized eigenvector problem
(in the 2-D case), compared to the three-dimensional regular
eigenvector problem in the FCQS algorithm. Therefore, in our
experience, the (modified) FCQS algorithm and its possibilistic
version are the best choices for most applications in 2-D. The

reweight procedure presented in Section VI1 is particularly
important in the 3-D case, and since the computation of the
exact distance is too expensive, the FCPQS algorithm and its
possibilistic version are the only viable algorithms in this case.

The existing fuzzy clustering methods use relative member-
ships, which cannot always distinguish between good members
and poor members. On the other hand, if one takes the view
that the membership of a point in a class has nothing to do
with its membership in other classes, then one can achieve
membership distributions that correspond more closely to the
notion of typicality. The resulting possibilistic algorithms are
naturally more immune to noise. One disadvantage of the
possibilistic approach is that one needs to estimate the band-
widths rl;. In most practical applications of shell clustering,
the expected thickness of the shell clusters is known, and this
is not a major drawback. It is also to be remembered that the
possibilistic algorithms need a good initialization. Thus, the
fuzzy algorithms will always be useful.

Traditionally, the generalized Hough transform (GHT) [3],
[26], [38] has been used to detect shapes when the bound-
aries/surfaces are noisy or sparse. One disadvantage of the
GHT is that its computational complexity is O (N x Npl x
Np2 . . . x N p , - l) , where N is the total number of points in
the image to be processed, Np, is the number of quantization
levels of the i-th parameter, and s is the total number of
parameters. The memory requirement of the GHT is O(Npl x
Np2 . . . x N p ,) . Since the accuracy of the parameter values is
determined by the number of quantization levels, Np, cannot
be too small. (In contrast, the accuracy of the parameter values
in shell clustering is limited only by computer precision.) Some
researchers have used hierarchical resolutions to mitigate this
problem [43]. In the case of a general second-degree curve
in 2-D, we need five parameters to describe the curve. The
speed of the GHT can be improved only if we make certain
assumptions about the curve, (i.e., if the curve is circular,
elliptic etc.), and if the gradient information is available [8],
[16], [26], [38]. Also, in spite of recent advances [28], [MI,
if the edge points are somewhat scattered around the ideal
curve (or surface), then peak detection is very difficult in
multidimensional Hough space due to bin splitting. Moreover,
the detection of small segments is virtually impossible, since
small peaks in the GHT are lost in the bias. The GHT also
suffers from a high probability of spurious peaks [22]. Most
importantly, peaks in the GHT correspond to “majority fits”
and not “best fits.”

The computational complexity of all the algorithms pre-
sented in this paper is O (N C K) , where N is the number
of points, C is the number of clusters, and K is the number
of iterations. If we have a good initialization procedure, the
number of iterations K can be kept low. This compares very
favorably with the complexity of the GHT. The memory
requirements of these algorithms, which is O (N C) is very low
compared to those of the GHT. A more thorough comparison
with the GHT is possible only for specific types of curves.
An excellent comparison of the shell clustering approach
with GHT for the case of circles and ellipses may be found
in [16]. In [17] DavC and Fu also show how the GHT
with a crude discretization of parameter space can provide

40 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1 , FEBRUARY 1995

a good initialization for the shell clustering algorithms, thus
significantly reducing the computational burden. This is a

Since A: is a diagonal matrix, (I - X A:)-’ can be easily
inverted, and from (A3) we obtain

1. (A4)
fuzzy generalization of the method suggested by O’Gorman
and Clowes [40], who obtain a crude segmentation of the data

xp:, + 2x1, Xpi5 + 2x1,
2(1 - Xpll) 2(1 - Xp:2)

ZIT = [
set using the HT and then fit lines to obtain more accurate
results. This approach is particularly viable when the parameter
space is of low dimensionality.

general proof of convergence has been presented for any
of the shell clustering algorithms, although in practice these

Substituting (A4) into (A21 yields the following quartic equa-
tion in X

Finally, we would like to note that to our knowledge, no C4X4 + C3X3 + C2X2 + CIX1 + CO = 0 (A 3

where
algorithms always seem to converge. This is an important topic c4 = 4p:1p:2(4p! ! ! - p! (2 - p! !z)
that needs to be researched in the future. zlPz2Pz6 t2pz4 zlPz5

(73 = 8P:lP:2(P:: + P 1 3 + 8(P:;P:: + P:;P:24)

+ 16P:6(P:2, +Pig + 4P:lp:Z) exact distance from a point xj to the curve pi in the 2-D case.
We first note that in (12), A;, b; and c; are given by

C1 = -32p:1p:2(231 + 4 2) + 8(& + pi;)

. . Pir/2 pin J
APPENDIX B

SUMMARY OF SECOND DEGREE CURVE AND SURFACE TYPES

b; = I :
We first rotate the cluster prototype p; and the point xj so
that the matrix A; becomes diagonal. This does not change
the distance. The angle of rotation in the 2-D case is given by

and c; =pi,.

A. Two-Dimensional Case

in 21 and x2 given by

Pi(r+n)
The nature of the graph of the general quadratic equation

Equations (12) and (13) can now be written as

where xj’ and z’ denote the locations of points xj and z after
rotation. It is easily verified that

x 3 - . - R.x’. 2 3 and z = R;z’

where

-Sinai COSQ; 1

is described in Table I in terms of the values of

I”’ 5Pi5

B. Three-Dimensional Case

in x1,x2, and 23 given by
The nature of the graph of the general quadratic equation

2 2 2 Plxl + PZZ2 + p323 + P4Z122 + p5x123
+ P6z223 + p721 + p822 + P9x3 + pl0 = 0

is described in Table 11.

KRISHNAPURAM er al.: SHELL CLUSTERING ALGORITHMS-PART I

TABLE I
TWO-DIMENSIONAL QUADRATIC CURVE TYPES THREE-DIMENSION

In Table 11, the expressions for p3, p4, A, k l , k2 and k3 are

r PI ~ 4 / 2 ~ 5 / 2 i

b 7 / 2 ps/2 p9/2 pi0 J

IP1-x P4/2 P5/2 1
A = determinant of E, and

k l , k2 and k3 are the roots of p4/2 pz-x p6/2 = 0.

l P 5 P P6/2 p3-2 I
APPENDIX C

CONVERSION OF PATHOLOGICAL PROTOTYPES TO LINES
By checking the conditions satisfied by the parameters of

the prototype according to Table I, we may determine if the
cluster is a pathological case (i.e., if it is a hyperbola, a pair
of lines or an extremely elongated ellipse). If a cluster is a
pathological case, it is converted to lines. This is done using
the line detection algorithm in Section V. The initialization
is carried out by determining the equations of the line(s) that
might best describe the pathological clusters. Then each of the
points belonging to the pathological clusters is crisply assigned
to the line prototype to which it is closest. This provides a very
good initial partition for the G-K algorithm. The procedures
for identifying the line prototypes are described below.

A . Line Detectionfrom a Hyperbola or a
Pair of Intersecting Lines

Each hyperbola should be split into two lines using the
following procedure, provided it is not a very “flat” hyperbola.
The case of a very “flat” hyperbola will be discussed later.

TABLE I1
.L QUADRATII

Nonzero k‘s

same sign ?

YeS

yes

no

no

no

yes

yes

no

YeS

yes

no

no

yes

41

SURFACE TYPES

Quadric Surface

~

Real ellipsoid

Imaginary ellipsoid

Hyperboloid of one sheet

Hyperboloid of two sheets

Real quadric cone

Imaginary quadric cone

Elliptic paraboloid

Hyperbolic paraboloid

Real elliptic cylinder

Imaginary elliptic cylinder

Hyperbolic cylinder

Real intersecting planes

Imaginary intersecting planes

Parabolic cylinder

Real parallel planes

Imaginary parallel planes

Coincident planes

Before running the G-K algorithm, the linear prototypes are
initialized to be the asymptotes of the hyperbola. Finding the
equations of these asymptotes is quite simple if the matrix A;
is diagonalized as in Appendix A. After rotation, the equation
of each hyperbola becomes

where pbl, P : ~ , pb4 and pL5 are given by (A4) in Appendix A.
It is easy to show that the two asymptotes of the hyperbola
defined by the above equation are given by

xz - cilzl + cio = 0, and 2 2 + cilxl + cia = 0

where

p:4 P’il I Pli5 .
Ciz = -- --

2p’i, PI2 2Pb2 J
After the prototypes have been computed, they are rotated
back to their original space.

Sometimes, the FCQS algorithms will fit a pair of intersect-
ing lines instead of a hyperbola. When cluster pi is a pair of
intersecting lines, the above equations characterize the lines
themselves instead of the asymptotes of the hyperbola, thus
making the initialization even better.

42 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. I , FEBRUARY 1995

B . Line Detection from a Pair of Parallel Lines or a
Very Elongated Ellipse or a Very Flat Hyperbola

is a pair of parallel lines, after the prototype
is rotated, the two lines can be either parallel to the x1 axis
or to the x2 axis. If the lines are parallel to the x1 axis, then
p:, M p14 0, and the equations of the two lines are given by

If cluster

2 2 = and 2 2 =

where

On the other hand, If the lines are parallel to the 2 2 axis, then
p:, M p:, M 0, and the equations of the two lines are given by

XI = ci3 and XI = c;4

where
p! - Jp!2 - 4p!

> and c23 = 2 4 2 4 z l d 6

2P: 1

P64 + JP6i - 4PIIP66
2P6,

c;4 =

When the two lines are not exactly parallel, but form a small
angle between them, the FCQS algorithm will sometimes fit
one very elongated ellipse or a very flat hyperbola instead of
a pair of parallel lines. An ellipse can be categorized as very
elongated if

Major Axis Length
Minor Axis Length > CL (C1)

where
1

Major Axis Length = 2

1
Minor Axis Length = 2 ”

[& + - pt6] ’

and CL is chosen to be about 10. Similarly, we may also
assume that a hyperbola can be classified as very flat if

Conjugate Axis Length
Transverse Axis Length

If the transverse axis is parallel to the x1 axis, i.e., if

> CL.

then

Conjugate Axis Length = 2

and

Transverse Axis Length = 2,/-$ [2 + $ - p6.1 .
~ P ; Z

in this case, Condition (C2) reduces to

On the other hand, if the inequality in (C3) is reversed, then the
above expressions for conjugate and transverse axes lengths
are interchanged, and the negative sign inside the root appears
in the expression for the transverse axis length. In this case,
Condition (C2) reduces to

When one of the FCQS algorithm fits either a very elongated
ellipse or a very flat hyperbola, the equations for the lines will
be computed using the equations derived for parallel lines.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers for

their valuable comments, which improved the presentation and
contents of this paper considerably.

REFERENCES

[I] G. J. Agin, “Fitting ellipses and general second-order curves,” Dept. of
Comput. Sci., Camegie Mellon Univ., Res. Rep., Jul. 1987.

[2] A. Albano, “Representation of digitized contours in terms of conic arcs
and straight-line segments,” Computer Graphics Image Processing, vol.
3, pp. 23-33, 1974.

[3] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111-122, 1981.

[4] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York Plenum, 1981.

[5] J. C. Bezdek and R. H. Hathaway, “Numerical convergence and in-
terpretation of the fuzzy C-shells clustering algorithm,” IEEE Trans.
Neural Networks, vol. 3, no. 5, pp. 787-793, Sept. 1992.

[6] R. H. Biggerstaff, “Three variation in dental arch form estimated by a
quadratic equation,” J . Dental Res., vol. 51, p. 1509, 1972.

[7] F. L. Bookstein, “Fitting conic sections to scattered data,” Computer
Vision, Graphics, Image Processing, vol. 9, pp. 5 6 7 1 , 1979.

[8] D. Casasent and R. Krishnapuram, “Curved object location by Hough
transformations and inversions,” Pattern Recognition, vol. 20, no. 2, pp.
181-188, 1987.

191 D. S. Chen, “A data-driven intermediate level feature extraction al-
gorithm,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
PAMI-11, no. 7, pp. 749-758, July 1989.

[IO] C. Coray, “Clustering algorithms with prototype selection,” in Proc.
Hawaii Intern. Conf. Syst. Sri., Jan. 1981, pp. 945-955.

1111 D. B. Cooper and N. Yalabick, “On the computational cost of approxi-
mating and recognizing noise-perturbed straight lines and quadratic arcs
in the plane,” IEEE Trans. Comput., vol. 25, no. 10, pp. 102CL1032,
Oct. 1976.

[I21 R. N. Davt, “Use of the adaptive fuzzy clustering algorithm todetect
lines in digital images,” in Proc. SPIE Conf. Intell. Robots and Computer
Vision, SPIE vol. 1192, no. 2, pp. 60&611, 1989.

[131 -, “Fuzzy shell-clustering and application to circle detection in
digital images,” Int. J. Gen. Syst., vol. 16, pp. 343-355, 1990.

[141 -, “ Characterization and detection of noise in clustering,” Pattern
Recognition Lett., vol. 12, no. 11, pp. 657464, 1992.

[151 -, “Robust fuzzy clustering algorithms,” Proc. Second IEEE Conf.
Fuzzy Syst., San Francisco, Mar-Apr. 1993, pp. 1281-1286.

1161 R. N. Dave and K. Bhaswan, “Adaptive fuzzy C-shells clustering and
detection of ellipses,” IEEE Trans. Neural Networks, vol. 3. no. 5, pu. ..
643462, Sept. -1992.

1171 R. Davt and T. Fu. “Robust shape detection using fuzzv clustering: - - . . I

Practical applications,” to appear in Fuzzy Sets and Systems, Special
Issue on Pattern Recognition and Computer Vision, 1994.

[I81 D. Dubois and H. Prade, Possibility Theory: An Approach to Computer-
ized Processing of Uncertainty.

[I91 0. D. Faugeras and M. Hebert, “The representation, recognition, and
positioning of 3D shapes from range data,” in Techniques for 3 0

New York: Plenum, 1988.

KRISHNAPURAM er al.: SHELL CLUSTERING ALGORITHMS-PART I 43

Machine Perception, A. Rosenfeld, Ed. Amsterdam, The Netherlands:
Elsevier, 1986, pp, 113-148.
I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEEE
Trans. PAMI, vol. 11, no. 7, pp. 773-781, Jul. 1989.
R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate
Observations. New York: Wiley, 1977.
W. E. L. Grimson and D. P. Huttenlocher, “On the sensitivity of the
Hough transform for object recognition,” IEEE Trans. PAMI, vol. 12,
no. 3, pp. 255-274, 1990.
E. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy
covariance matrix,” in Proc. IEEE CDC, San Diego, CA, 1979, pp.
761-766.
R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, vol. I.
Reading, MA: Addison-Wesley, 1992, Appendices.
R. J. Hathaway and J. C. Bezdek, “Switching regression models and
fuzzy clustering,” IEEE Trans. Fuzzy Syst., vol. 1, no. 3, Aug. 1993,

J. Illingworth and J. Kittler, “A survey of Hough transforms,” Computer
Vision, Graphics Image Processing, vol. 44, no. 1, Oct. 1988, pp.

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.
J.-M. Jolion, P. Meer, and S. Bataouche, “Robust clustering with
applications in computer vision,” IEEE Trans. Pattern Anal. Machine
Inrell., vol. 13, no. 8, pp. 791-801, Aug. 1991.
J.-M. Jolion and A. Rosenfeld, “Cluster detection in background noise,”
Pattern Recognition, vol. 22, no. 5, pp. 603-607, 1989.
R. Krishnapuram and C.-P. Freg, “Fitting an Unknown Number of Lines
and Planes to Image Data through Compatible Cluster Merging,” Pattern
Recognition, vol. 25, no. 4, 1992, pp. 385-400.
R. Krishnapuram, H. Frigui, and 0. Nasraoui, “New fuzzy shell cluster-
ing algorithms for boundary detection and pattern recognition,” in Proc.
SPIE Conf. Robotics and Computer Vision, Boston, Nov. 1991, SPIE
vol. 1607, pp. 458-465.
-, ”Quadratic shell clustering algorithms and the detection of
second degree curves,” Pattern Recognition Lett., vol. 14, no. 7, Jul.

-, “A fuzzy clustering algorithm to detect planar and quadric
shapes,’’ in Proc. N . Am. Fuzzy Inform. Process. Soc. Workshop, Puerto
Vallarta, Mexico, vol. I, Dec. 1992, pp. 59-68.
R. Krishnapuram and J. M. Keller, “A possibilistic approach to clus-
tering,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, May 1993,

-, “Fuzzy and possibilistic clustering methods for computer vi-
sion,” in Neural Fuzzy Syst., S. Mitra, M. Gupta, and W. Kraske, Eds.,
SPIE Institute Series, vol. IS-12, 1994, pp. 133-159.
R. Krishnapuram, 0. Nasraoui and H. Frigui, “The fuzzy C spherical
shells algorithms: A new approach,” IEEE Trans. on Neural Networks,
vol. 3, no. 5, Sept. 1992, pp. 663471.
D. G. Lowe, “Fitting parametrized three-dimensional models to images,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 5, pp. 441-450,
May 1991.
V. Milenkovic, “Multiple resolution search techniques for the Hough
transform in high dimensional parameter spaces,” in A. Rosenfeld, Ed.,
Techniques for 3 0 Machine Perception. Amsterdam, The Netherlands:
Elsevier, 1986, pp. 231-255.
J. J. Moore, “The Levenberg-Marquardt algorithm: Implementation and
theory,” in Numerical Analysis, G. A, Watson, Ed., Lecture Notes in
Mathematics.
F. O’Gorman and M. B. Clowes, “Finding picture edges through
collinearity of feature points,” IEEE Trans. Comput., vol. 25, 1976, pp.
133-142.
K. Paton, “Conic sections in chromosome analysis,” Pattern Recogni-
tion, vol. 2, no. I , pp. 39-51, Jan. 1970.
V. Pratt, “Direct least squares fitting of algebraic surfaces,” Computer
Graphics, vol. 21, no. 4, pp. 145-152, 1987.
J. Princen, J. Illingworth, and J. Kittler, “A hierarchical approach to line
extraction based on the Hough transform,” Computer Vision, Graphics
and Image Processing, vol. 52, 1990, pp. 57-77.
-, “Hypothesis testing: A framework for analyzing and optimizing
the Hough transform performance,” IEEE Trans. Partern Anal. Machine
Intell., vol. 16, no. 4, pp. 329-341, Apr. 1994.

pp. 195-204.

87-1 16.

1993, pp. 545-552.

pp. 98-110.

Berlin: Springer-Verlag. 1977, pp. 105-1 16.

[45] R. D. Sampson, “Fitting conic sections to ‘very scattered’ data: An
iterative refinement of Bookstein algorithm,” Computer Vision and
Image Processing, vol. 18, pp. 97-108, 1982.

[46] G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with application to edge and range
image segmentation,” IEEE Trans. on Pattern Anal. Machine Intell., vol.
13, no. 11, pp. 1115-1138, Nov. 1991.

[47] I. Weiss, “Straight line fitting in a noisy image,” in Proc. IEEE Conf.
Computer Vision Pattern Recognition, 1988, pp. 647-652.

[48] P. Whaite and F. P. Feme, “From uncertainty to visual exploration,”
IEEE Trans. Putt. Anal. Machine Intell., vol. 13, no. IO, pp. 1038-1049,
Oct. 1990.

[49] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets and Systems, vol. 1, 1978, pp. 3-28.

Raghu Krishnapuram (S’83-M’84) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Bombay, in 1978.
He obtained the M.S. degree in electrical engineer-
ing from Louisiana State University, Baton Rouge,
in 1985 and the Ph.D. degree in electrical and com-
puter engineering from Camegie Mellon University,
Pittsburgh, in 1987.

Dr. Krishnapuram was with Bush India, Bombay
for a year where he participated in developing elec-
tronic audio entertainment equipment. From 1979

to 1982, he was a deputy engineer at Bharat Electronics Ltd., Bangalore,
India, manufacturers of defense equipment. He is currently an Associate
Professor in the Electrical and Computer Engineering Department at the
University of Missouri, Columbia. In 1993, he visited the European Laboratory
for Intelligent Techniques Engineering (ELITE), Aachen, Germany, as a
Humboldt Fellow. His current research interests are many aspects of computer
vision and pattern recognition as well as applications of fuzzy set theory and
neural networks to pattern recognition and computer vision.

Hichem Frigui received the B.S. degree in electncal
and computer engineering in 1990 and the M.S.
degree in electrical engineenng in 1992, both from
the University of Missoun, Columbia.

From 1992 to 1994 he worked with IDEE, Tunis,
where he participated in the development of banking
software applications. He is currently pursuing
the Ph.D. degree in electrical engineering at the
University of Missouri, Columbia.

His current research interests include pattem
recognition, computer vision, fuzzy set theory, and

artificial intelligence.

Olfa Nasraoui received the B.S. degree in electrical
and computer engineering, and the M.S. degree
in electrical engineering, in 1990 and 1992,
respectively, from the University of Missouri,
Columbia.

She worked as a Software Engineer with IDEE,
Tunis, from 1992 to 1994 and is currently pursuing
the Ph.D. degree in electical engineering at the
University of Missouri, Columbia.

Her current research interests include pattem
recognition, computer vision, neural networks, and

applications of fuzzy set theory.

