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Fuzzy and Possibilistic Shell Clustering 
Algorithms and Their Application to Boundary 
Detection and Surface Approximation-Part I 

Raghu Krishnapuram, Member, IEEE, Hichem Frigui, and Olfa Nasraoui 

Abstruct- Traditionally, prototype-based fuzzy clustering al- 
gorithms such as the Fuzzy C Means (FCM) algorithm have 
been used to find “compact” or “filled” clusters. Recently, there 
have been attempts to generalize such algorithms to the case 
of hollow or “shell-like” clusters, i.e., clusters that lie in sub- 
spaces of feature space. The shell clustering approach provides 
a powerful means to solve the hitherto unsolved problem of 
simultaneously fitting multiple curveslsurfaces to unsegmented, 
scattered and sparse data. In this paper, we present several fuzzy 
and possibilistic algorithms to detect linear and quadric shell 
clusters. We also introduce generalizations of these algorithms in 
which the prototypes represent sets of higher-order polynomial 
functions. The suggested algorithms provide a good trade-off 
between computational complexity and performance. Since the 
objective function used in these algorithms is the sum of squared 
distances, the clustering is sensitive to noise and outliers. We show 
that by using a possibilistic approach to clustering, one can make 
the proposed algorithms robust. 

I. INTRODUCTION 

LUSTERING methods have been used extensively in C pattern recognition and computer vision [27]. Objective 
function based clustering methods are one particular class of 
clustering methods in which a criterion function is iteratively 
minimized until a global or local minimum is reached. Ob- 
jective function based clustering can be either hard (crisp) 
or fuzzy, depending on whether each feature vector belongs 
exclusively to one cluster or to all clusters to different degrees. 
In general, the performance of fuzzy algorithms is superior to 
that of the corresponding hard versions, and they have a lower 
tendency to get stuck in local minima [4]. 

In objective function based clustering algorithms, each 
cluster is usually represented by a prototype, and the sum of 
distances from the feature points to the prototypes is used 
as the objective function. This method has been traditionally 
used to detect “compact” or “filled” clusters in feature spaces, 
whose prototypes are typically represented by cluster centers 
and cluster covariance matrices. The Fuzzy C Means (FCM) 
algorithm [4] and its derivatives [12], [20], [23] may be used to 
find clusters that resemble filled hyper spheres or filled hyper 
ellipsoids. Lately this approach has been extended to the case 
of hollow or shell-like clusters by using shells (manifolds) for 
prototypes and measuring the distances to the shells rather 
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than to the cluster centers. Coray seems to have been the 
first to suggest the use of this idea to find circular clusters 
[lo]. More recently, Dave’s Fuzzy C Shells (FCS) algorithm 
[13] and the Adaptive Fuzzy C-Shells (AFCS) algorithm [16] 
have proven to be successful in detecting circular and elliptical 
shapes. These algorithms are computationally rather intensive 
since one needs to solve coupled nonlinear equations to update 
the shell parameters in every iteration [5]. They also assume 
that the number of clusters is known. A computationally 
simpler Fuzzy C Spherical Shells algorithm for clustering 
hyperspherical shells and an unsupervised version to be used 
when the number of clusters is unknown have also been 
introduced [ 361. Extensions to more general quadric shapes 
have also been proposed [16], [31], [32]. One problem with 
the proposed extensions is that they use a highly nonlinear 
algebraic distance, which results in unsatisfactory performance 
when the data are scattered [16], [32]. Finally, none of the 
above shell clustering algorithms can deal with situations in 
which the clusters include lines/planes and there is much noise. 
In this paper, we address these drawbacks in more detail and 
present new fuzzy and possibilistic algorithms to overcome 
these drawbacks. 

The algorithms proposed in this paper can be used for 
simultaneously fitting a given number of parameterized 
curves/surfaces to an unsegmented data set. They are 
particularly useful for boundary detection and surface 
approximation in computer vision, especially when the 
edges are jagged or when the range data is sparse and 
noisy. In Section X, we qualitatively compare the shell 
clustering approach with the more traditional generalized 
Hough transform approach for boundary detection. In Part I1 of 
this paper, we discuss problems associated with conventional 
boundary detection and range image segmentation methods 
in more detail and present unsupervised shell clustering 
algorithms that use a new cluster validity measure to overcome 
these problems. 

In Section 11, we briefly describe prototype-based fuzzy 
clustering. In Sections 111-VII, we introduce several fuzzy 
shell clustering algorithms. Although the algorithms proposed 
in these sections are specifically designed to seek clusters 
that can be described by segments of second-degree curves, 
(or by segments of shells of hyperquadrics), they can be 
generalized easily to deal with shells of more complex types. 
In Section VIII, we present one such generalization in which 
the prototypes correspond to sets of higher-order polynomial 

1063-6706/95$04.00 0 1995 IEEE 

~ 



30 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995 

functions. In Section IX, we describe a possibilistic approach 
to clustering, which has the advantage that the partition and 
the prototype estimates are much less sensitive to noise when 
compared with the fuzzy approach. 

11. PROTOTYPE-BASED FUZZY CLUSTERING 
Let X = {xj I j = 1 . .  . N} be a set of feature vectors 

in an n-dimensional feature space with coordinate-axis labels 
[zl,zz, ... ,z,], where xj = [zjl,zjz, .. . , 2 j n l T .  Let B = 
(PI, . . . , pc) represent a C-tuple of prototypes each of which 
characterizes one of the C clusters. Each pi consists of a set of 
parameters. In the following, we use to denote both cluster 
i and its prototype. Let uij represent the grade of membership 
of feature point xj in cluster Pi. The C x N matrix U = [uij] 
is called a constrained fuzzy C-partition matrix if it satisfies 
the following conditions [4], [25] 

N 

u;j E [0,1] for all i ,  0 < uij < N for all i ,  j and 
j=1 

C E U ' .  2 3 -  - 1 for all j. (1) 

The problem of fuzzily partitioning the feature vectors into C 
clusters can be formulated as the minimization of an objective 
function J ( B ,  U; X) of the form 

i=l  

C N  

In the above equation, m E [l, m) is a weighting exponent 
called the fuzzifier, and d2 (xj, Pi )  represents the distance from 
a feature point xj to the prototype Pi. Minimization of the 
objective function with respect to U subject to the constraints 
in (1) gives us [4] 

where Ij = {i I 1 5 i 5 C, d2(xj, Pi)  = 0 ) .  Minimization of 
J ( B ,  U; X) with respect to B varies according to the choice 
of the prototypes and the distance measure. For example, in 
the FCM algorithm, the clusters are usually assumed to be 
compact and spherical in shape, and each of the prototypes 
is described by the cluster center ci. If the distance measure 
is Euclidean or an inner product induced norm metric, these 
centers may be updated in each iteration using [4] 

(4) 

where 
N 

Ni = C(U;~)". ( 5 )  
j=1 

In the Gustafson-Kessel (G-K) algorithm, the prototypes con- 
sist of the cluster centers c; and the covariance matrices C; 

[23]. It uses the distance measure d2(xj, ci) = ICill/n(~j - 

c;)~C;'(X~ - ci). The centers are updated as above, and the 
covariance matrices are updated by 

The G-K algorithm and the unsupervised fuzzy parti- 
tion-optimum number of clusters algorithm due to Gath and 
Geva [20], assume that the clusters are compact ellipsoids and 
allow each cluster to have a different size and orientation. They 
can also be used to detect linear clusters in 2-D and planar 
clusters in 3-D, since these are extreme cases of ellipsoids 
W l .  

The general form of prototype-based clustering algorithms 
is given below. 

PROTOTYPE-BASED FUZZY CLUSTERING 
Fix the number of clusters C;& m, m E [l, CO); 

Initialize the fuzzy C-partition U; 
REPEAT 

Update the parameters of each cluster prototype; 
Update the partition matrix U by using (3); 

UNTIL(llAUII < E ) ;  

The hard (crisp) versions of these algorithms are easily 
obtained by changing the updating rule for the memberships 
so that they are always binary. In other words, one uses 

1 if d2(xj,pi) < d2(xj,pk) for all IC 
U" - 

2.l - { 0 otherwise. 

Ties are broken arbitrarily. In practice, the hard versions do 
not perform as well as their fuzzy counterparts. Due to space 
limitation, we do not deal with the hard algorithms in this 
paper. 

111. THE FUZZY C QUADRIC SHELLS (FCQS) ALGORITHM 

This algorithm [31], [32] assumes that each cluster resem- 
bles a hyperquadric surface, and the prototypes pi consist of 
parameter vectors p; which define the equations of the hyper- 
quadric surfaces. The general equation for such a hyperquadric 
surface is 

where 
T Pi = 

qT = 

pTq = 0 (7) 

2,-12n, z1,z2,. . . , G I ,  13 

and s = + n + 1 = T + n + 1. We may define the 
algebraic (or residual) distance from a point xj to a prototype 
Pi as 

d2(xj,p;) = d&j = P'qjqTp; = p'Mjp; (9) 
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where 

To obtain a fuzzy C-partition of the data, we may minimize the 
objective function in (2) with d& as the underlying distance 
measure. Since the objective function is homogeneous with 
respect to pi, however, we need to constrain the problem to 
avoid the trivial solution. Some of the possibilities are 

Constraints i) [41] and ii) [21] do not make the distance 
measure invariant to translation and rotation of the data. They 
do allow the solution to be linear or planar. Constraint iii) 
was used by Chen [9] and Krishnapuram et al. [36] for 
circles and by Dave and Bhaswan [16] for quadric curves. 
It precludes linear solutions and can lead to instabilities or 
poor performance when the data points are approximately 
linear (planar) as in the case of partial circles (spheres) with 
very large radii [42]. Moreover, in the case of noncircular 
(nonspherical) quadrics, this constraint makes the distance 
measure rotation-variant, which is undesirable. Constraint iv) 
[2], [6], [l 11 has the problem that no conic that passes through 
the origin satisfies it. The last constraint was imposed by 
Bookstein [7], [45] and has the advantage that the resulting 
distance measure is invariant to rigid transformations of the 
prototype. It does not allow, however, the solution to be 
linear or planar. F'ratt showed that this is a great disadvantage 
and proposed a new quadratic constraint for the case of 
circles [42]. Taubin [46] generalized this idea for fitting 
an implicit polynomial curve to a data set. This constraint 
will be discussed in Section VI. Bookstein's Constraint, i.e., 
Constraint v) above, is in our experience the best compromise 
between computational complexity and performance. Agin [ 13 
also discusses some of these issues. 

If we define 

then constraint v) in (10) simplifies to 110;11~=1. It is easily 
verified [19], [31] that the solution is 

ai = eigenvector of (Fi - G'H;'Gi)associated 

bi = -HTIG- z zai 
with the smallest eigenvalue, and (1 1) 

Fig. 1. 
prototypes found by the FCQS algorithm superimposed on the dataset. 

(a) A data set consisting of two ellipses and a circle. (b) The 

It is to be noted that HY1 exists as long as there are at least 
n + 1 noncollinear feature points in the data set. Thus, in the 
FCQS algorithm, the parameters are updated using (1 l), and 
the memberships are updated using (3) except that d2(x,, 0;) 
is replaced by d&. 

Shell clustering algorithms are quite sensitive to how one 
initializes the C-partition. In our experience, a few (typically 
10) iterations of the FCM algorithm followed by a few 
(typically 10) iterations of the G-K algorithm and a few 
(typically five) iterations of the Fuzzy C Spherical Shells 
algorithm [36] provides a good initialization for the FCQS 
algorithm. While using the FCM algorithm for initialization, a 
value of 3.0 for the fuzzifier m seems to give good results. This 
is because the FCM is not really meant for shell clusters and 
a higher value of m gives a fuzzier partition, which is more 
desirable for initialization purposes. In all other algorithms, a 
value of 2.0 for m works best in practice. 

Fig. 1 shows a typical example of the results obtained by 
the FCQS algorithm with a synthetic data set containing about 
200 points. Fig. l(a) shows the 200 x 200 image of the original 
data set. A uniformly distributed noise with an interval of 3.0 
was added to the z and y locations of the data points so that the 
points do not lie on ideal curves. Fig. l(b) shows the resulting 
prototype curves superimposed on the original data set. The 
number of clusters was assumed to be known. The algorithm 
typically converges in about 20 iterations and the CPU time 
on a Sun Sparc 1 workstation is less than 10 s. 

Since the FCQS algorithm uses the algebraic distance given 
by (9) which is highly nonlinear in nature, the membership 
assignments are not very meaningful. Moreover, when there 
are curves (surfaces) of highly-varying sizes, the algebraic 
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'I c = (0.2) 

x T A i x  + xTb;  + ci = 0. Then the distance d g i j  can be 
obtained by minimizing llxj - z1I2 subject to 

zTA;z + Z T b i  + C; = 0 (12) 

where z is a point on the quadric pi. By using a Lagrange 
multiplier A, the solution is found to be 

Fig. 2. An example to illustrate the sensitivity of the algebraic distance to 
the size of the curve as well as location of the feature point with respect to the 
curve. Points A ,  B, and C are all geometrically equidistant from the bigger 
ellipse, and point A is equidistant from both ellipses. However, the algebraic 
distance does not reflect this. 

distance is biased towards smaller curves (surfaces), and for 
a particular curve (surface) it is biased towards points inside 
the curve (surface) as opposed to points outside. Thus, the 
distance measure gives rather eccentric and highly curved 
fits if the data is scattered as the prototypes try to enclose 
more points inside the curve. The distance also is sensitive to 
the placement of the feature point with respect to the curve. 
Consider for example, two ellipses El and E2 as shown in 
Fig. 2. Ellipse El is centered at (0,O) and its major and minor 
semi-axes have the values 2 and 1. Ellipse E2 is centered at 
(5, 0) and its major and minor semi-axes have the values 1 
and 1/2. Consider points A = (3,0), B = (1,O) and C = 
( 0 , 2 ) .  Note that all three points are equidistant from El in the 
Euclidean sense, and point A is equidistant from both El and 
Ez. Keeping in mind constraint iv) in (lo), we can write the 
expressions for the algebraic distances of a point x = (z, y) 
from El and E2 as d2(x,E1) = (16/17){x2/4 + y2 - 1}2 
and d2(x,E2) = (1/17){(x - 5)2 + 4y2 - 1}2. Thus, we 
see that d2(A,  El) = 25/17, d 2 ( B ,  El) = 9/17, d2(C, E l )  = 
144/17, and d2(A,  E2) = 9/17. This clearly illustrates the bias 
of this distance measure as discussed above. Another problem 
with the nonlinear distance is that it makes the fit of each 
curve rather sensitive to the presence of other curves, which 
sometimes leads to unstable hyperbolic fits. An example is 
shown in the next section. 

Here we would like to note that although the distance used 
in the AFCS algorithm [ 161 for elliptical clusters is not biased 
towards points inside the curve, it is still sensitive to the 
size of the curve as well as the placement of the feature 
point with respect to the curve. For example, the expressions 
for the AFCS distance of a point x = (qy) from El and 
E2 can be written as d 2 ( x , E 1 )  = {[x2/4 + y2]1/2 - l}z 
and d2(x,E2) = {[(x - 5)' + 4y2]1/2 - 1}2. Thus, we see 

d2(A,  E2) = 1. In the next sections we introduce modifications 
to the basic FCQS algorithm to mitigate this problem, keeping 
in mind that one needs to keep the computational complexity 
as low as possible. 

that d ( A,  El) = 1/4, d ( B,El) = 1/4,d2(C,E1) = 1 and 

Iv. MODIFICATIONS TO THE FUZZY 
C QUADRIC SHELLS ALGORITHM 

One possible way to alleviate the problem due to the 
nongeometric nature of d& is to use the geometric (per- 
pendicular) distance denoted by d& between the point x; 
and the shell pi. To compute dCij we first rewrite (7) as 

(13) 
1 

z = -(I 2 - XA;)-l(Xb; + 2xj ) .  

Substituting (13) in (12) yields a quartic (fourth-degree) equa- 
tion in X in the 2-D case (see Appendix A for details), and 
has at most four real roots A k ,  k = 1, . . . ,4. The four roots 
can be computed using the standard closed-form solution. For 
higher dimensions, the equation is of sixth degree or higher, 
and iterative root finding techniques need to be used. For each 
real root X I ,  so computed, we calculate the corresponding z 
vector z k  using (13). Then, we compute dCzJ using 

d$zJ = minllx, - z k 1 I 2 .  (14) 

Minimization of the objective function in (2) with respect 
to pz when dCZ, is used as the underlying distance measure 
can be achieved only by using iterative techniques such as 
the Levenberg-Marquardt algorithm [39], [46]. To overcome 
this problem, we may assume that we can obtain approxi- 
mately the same values for pz by using ( l l ) ,  which will 
be true if all the feature points lie reasonably close to the 
hyperquadric shells. This leads to a modified FCQS algorithm, 
in which the memberships are computed using d$zJ ,  but 
the parameters are updated using d&. An alternative is to 
use the Levenberg-Marquardt algorithm after initializing it 
with the solution obtained by (11) in each iteration. This 
is implementationally and computationally more complex, 
however, and is recommended only for small data sets. We 
have observed that this can increase the CPU time by an 
order of magnitude, although the overall number of iterations 
required for the FCQS algorithm to converge is somewhat 
lower. Moreover, our simulations indicate that the performance 
of the modified FCQS algorithm is adequate for most computer 
vision applications. The initialization procedure recommended 
for the FCQS algorithm can also be used for the modified 
version with good results. 

Fig. 3(a) shows a data set with three curves for which the 
original version of the FCQS algorithm fails. It can be seen 
that due to the presence of other curves, the fit for the circle 
becomes distorted, resulting in a hyperbola. Fig. 3(b) shows 
the result of the modified FCQS algorithm, illustrating the 
advantage of the more meaningful membership assignments 
in the modified version. It is to be noted that in the modified 
algorithm, although the memberships are based on geometric 
distances, the parameters are still estimated by minimizing the 
algebraic distance. This may give poor fits when the data 
is highly scattered. An example of this behavior is shown 
in Section VI. Another problem with the modified FCQS 
algorithm is that d;,, has a closed-form solution only in the 
2-D case. In higher dimensions, solving for dCZJ is not trivial. 

Henceforth we will simply use the acronym FCQS to denote 
the modified version. 

k 
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I I 1  I 

(a) (b) 

Fig. 3. An example illustrating the advantage of the modified FCQS algo- 
rithm over the FCQS algorithm on a data set containing a circle, a parabola, 
and an ellipse. Prototypes of clusters found by (a) the FCQS algorithm and (b) 
the modified FCQS algorithm. The modified algorithm avoids the hyperbolic 
fit. 

‘I 
(a) (b) 

Fig. 4. Examples illustrating the tendency of the FCQS algorithm to fit 
pathological prototypes to scattered linear data. (a) A “flat” hyperbolic fit 
for two parallel lines. (b) An extremely elongated elliptical fit for two parallel 
lines. 

V. LINE DETECTION USING THE FCQS ALGORITHM 
The FCQS algorithm can be used to find linear clusters, even 

though the constraint forces all prototypes to be of second 
degree. This is because in practice this algorithm fits a pair 
of coincident lines for a single line, a hyperbola for two 
intersecting lines, and a very “flat” hyperbola (see Fig. 4(a)), 
or an elongated ellipse (see Fig. 4(b)), or a pair of lines for 
two parallel lines. Hyperbolas and extremely elongated ellipses 
occur rarely in practice. When the data set contains many linear 
clusters, the FCQS algorithm characterizes them variously as 
hyperbolas, extremely elongated ellipses, etc. In this case, we 
can group all the points belonging to such pathological clusters 
into a data set and then run a line finding algorithm such as the 
G-K algorithm (see [30]) on this data set with an appropriate 
initialization. The parameters of the lines can be determined 
from the centers and the covariance matrices of the clusters. 
The line detection algorithm summarized below may be used 
after the FCQS algorithm converges. 

Add all points assigned to cluster 

Initialize the new linear prototype as the one of the two 

to the data set x; 
C = C + l ;  

coincident lines; 
END IF; 
IF 

a pair of parallel lines THEN 

is a nonflat hyperbola OR a pair of intersecting 
lines OR 

Add all points assigned to cluster Pi to the data set x;  
C = C + 2 ;  

Initialize the new linear prototypes as the asymptotes of 
the hyperbola or as the individual lines making up 
the pair of lines; 

END IF; 
IF Pi is an ellipse with a very large major axis to minor 

Add all points assigned to cluster 0; to the data set x; 
Initialize the new linear prototypes as the two tangents 

axis ratio THEN 

c=c+2; 
to the ellipse at the two ends of the minor axis; 

END IF; 
IF P; is a hyperbola with a very large conjugate axis to 

Add all points assigned to cluster Pi to the data set 

Initialize the new linear prototypes as the two tangents 

transverse axis ratio THEN 

x;  c = c + 2; 

to the hyperbola at its two vertices; 
END IF; 

END FOR; 
Run the G-K algorithm on the data set x with C clusters 

using the initialization for the prototype of each cluster. 

Appendix B summarizes the various conditions that one 
needs to check to determine the nature of the second degree 
curve. The initialization procedures for the various cases in the 
line detection algorithm are described in Appendix C. Since 
the initialization is excellent, the G-K algorithm converges in a 
couple of iterations. The above algorithm successfully handles 
the pathological cases shown in Fig. 4. 

VI. THE FUZZY C PLANO-QUADRIC 
SHELLS (FCPQS) ALGORITHM 

When the exact distance is too complex to compute, one 
could use what is known as the “approximate distance” (first- 
order approximation of the exact distance) given by [24], 
[461 

d&3 
d2(X,, Pz) = = ___ 

IVdQv l 2  
. (15) - - PTMJP% 

PTID(q,)D(q,)TIPz 

THE LINE DETECTION ALGORITHM where VdQij is the gradient of the functional pTq in (7) 
evaluated at xj  and the matrix D(qj) is the Jacobian of q 
in (8) evaluated at xj [46]. In other words, the approximate 
distance is simply the algebraic distance divided by the gradi- 
ent magnitude. The objective function to be minimized in this 

Set x, the set of all data points in linear clusters to 8; 
Set number of lines C to 0; 
FOR each cluster pi DO 

IF is a pair of coincident lines THEN 
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-1 0 e . .  

0 1 ... 
0 0 ... 
. . ... 
. . . . .  
. . ... 
0 0 . * .  

A suitable constraint needs to be chosen while minimizing 
(16) with respect to pi. One may use the constraint proposed 
by Taubin [46] given by 

j=1 

This constraint has the advantage that it takes the data points 
into account and allows the degenerate case of lines and planes. 
It is meant for fitting a single curve to a given set of data 
points. Hence, we need to generalize it to the fuzzy case and 
to fit C curves simultaneously. This is achieved by changing 
the constraint to [33] 

PT C(ui j )"[~(e)D(qj)Tl  Pi = Ni 

(18) 
(19) 

[' j=1 1 
for i  = l , . . . ,C ,  or 

p'Dip; = N; f o r i  = l , . . . , C  

where Ni is as in (3, and 
N 

Di = Cbij)" [D(qj)D(qj)T]. (20) 
j = 1  

Minimization of (16) with respect to pi subject to (19) 
yields a complicated equation which cannot be solved for 
pi explicitly. To avoid an iterative solution, we make the 
following assumptions: 
i) All data points are reasonably close to some cluster, i.e., 

the u;j are close to being hard. This assumption is valid 
when the data is not very scattered. (It is reasonable for 
the noisy case if we use possibilistic memberships, as will 
be discussed in Section IX.) 

ii) The magnitude of the gradient at all points xj that have 
a high membership in pi is approximately constant, i.e., 
lVdQij12 = pTD(qj)D(qj)Tpi M 1. 

We now discuss the second assumption for the special case of 
hyperspheres. Hyperspheres are described by 

PTq = bilrPi2,. . . ,Pi(n+l),Pi(n+2)1 
x [(x? + xf + xi + . . . + x?), 21,. . . , xn, 1]* 

= 0. (21) 

Here pi represents a prototype parameter vector. Let xj = 
[x l j , . . .  ,xnjlT denote a feature point, and let qj = [(xTj + 
xij  + xij + . . . + xi j ) ,  xlj, . . . , xnj , 1IT. Then we have 

IVdQij12 = (2Pilxjl + Pi2)' + ' .  ' + (2Pilxjn + Pi(n+l)) 
2 

= 4Pii (piiX?l + . . * -k pii& + pi2Xji + . . . 
+ P i ( n + I ) X j n )  + (Pa + . . + P&+l)). 

If a feature vector xj lies on the prototype of cluster pi, then 
it must satisfy (21) and the above expression becomes 

IVdQij12 = PTD(e)D(e)TPi 
= -4l1ilpi(~+z) + (& + . . . + p:(,+,)) = constant 

When the memberships are almost hard, however, substituting 
the above result in (18), we get N;K M Ni, or K M 1. 
Thus, assumption ii) is valid for circles (spheres) when qj 
corresponds to a point on the curve (surface). It is obviously 
valid for the case of planes regardless of the location of xj 
since pi1 = 0. It can also be shown that the assumption is 
valid for cylinders and rectangular hyperboloids. For other 
quadric shapes, this assumption does not hold. This issue will 
be discussed further in Section VII. 

If pTD(%)D(e)Tp; M 1, we may ignore the denominator 
in (16). The simplified objective function is given by 

= K. 

C N  

J A ( B ,  U; x) = x('&j)mpTMjPi 
i=l j=1 

C 

= pTEip; 
i=l 

where 
N 

E; = C(u;j)"Mj. 
j=1 

The above objective function is essentially the same as the 
one used in the FCQS algorithm, however, the constraint used 
is different. Minimization of the simplified objective function 
subject to the constraint in (19) leads to 

E;pi = AiDipi. 

It is easily verified that 

D(qj)= A:! , where AI= El 
xj2 xj1 * . .  0 
xj3 0 . . *  0 
0 0 . . .  0 

. ... 

. . . .  

. . . .  

2Xjl 0 . ' .  0 
0 2xj2 . - .  0 

0 0 0 ... 
. ... . 
. . . .  . 

Since the last row of D(qj) is always equal to [ O O . . . O ] ,  D; 
is singular, and the above generalized eigenvector problem 
cannot be converted to regular eigenvector problem, however, 
we may solve it using the QZ algorithm [46]. Care must be 
exercised while solving (22), because the matrices D; and E; 
are highly unbalanced. Several methods for balancing matrices 
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are available in the literature. Thus, (22) gives us the prototype 
update equation for the FCPQS algorithm. The membership 
update equation in the FCPQS algorithm is identical to (3), 
except that d2(x,, pi) is replaced by d i i j .  In the special case 
of hyperspherical prototypes, this algorithm may be called the 
Fuzzy C Plano-Spherical Shells algorithm. 

The FCPQS algorithm requires solving a six-dimensional 
generalized eigenvector problem (in the 2-D case) as opposed 
to a three-dimensional regular eigenvector problem. In addition 
to its computational complexity, we noticed that the FCPQS 
algorithm in general requires more iterations to converge 
than the FCQS algorithm. When the data set contains only 
one noiseless linear (planar) cluster among other nonlinear 
(nonplanar) clusters, the FCPQS algorithm does detect and 
characterize the linear (planar) cluster correctly. On the other 
hand, if the linear (planar) cluster is scattered or noisy, or if 
multiple linear (planar) clusters are present, the lines (planes) 
may be “overfitted” by a quadric curve (or surface). (One 
can always obtain a lower error of fit by fitting an extremely 
elongated ellipse to a scattered line.) The FCPQS algorithm 
also sometimes combines a pair of linear clusters into a single 
quadric cluster, a result similar to that of the FCQS algorithm. 
In such cases, the line detection procedure described in the 
previous section needs to be applied. Thus, in the 2-D case, 
this algorithm does not seem to have any advantage over the 
FCQS algorithm. 

The real advantage of the FCPQS algorithm over the FCQS 
algorithm is in higher dimensions. It may be recalled (from 
Section IV) that the exact distance to a quadric has no 
closed-form solution in higher dimensions. Thus, (the modified 
version of) the FCQS algorithm is quite impractical. The 
performance of the FCPQS algorithm, however, is quite good, 
and its computational complexity is reasonably low. (See [46] 
for a discussion on the computational complexity of the QZ 
algorithm.) This is the primary reason we chose this algorithm 
to develop an unsupervised algorithm for surface fitting. This 
algorithm will be explained in Part I1 of this paper. 

In the 3-D case, we noticed that the smallest eigenvalue 
solution of (22) may sometimes correspond to an “overfit- 
ted” prototype or to a surface prototype that almost never 
occurs in real images. Examples are hyperboloids of two 
sheets, hyperbolic cylinders, and imaginary quadric surfaces. 
Therefore, we accept the smallest eigenvalue solution of (22) 
only if it represents the parameter vector of an “acceptable” 
surface type, otherwise we keep checking the next eigenvectors 
(assuming that they are organized in ascending order of the 
eigenvalues) until we find the first one that represents an 
“acceptable” surface prototype. By an “acceptable” surface 
prototype, we mean the following: real ellipsoids, hyperboloids 
of one sheet, real quadric cones, elliptic paraboloids, real 
elliptic cylinders, parabolic cylinders, and (pairs of) planes. 
The different types of quadric surfaces and their identification 
conditions are listed in Appendix B. 

In the 3-D case, many quadric surfaces such as cones, 
cylinders, and planes are not bounded surfaces, and have an 
infinite extent. Therefore, a given cluster having the prototype 
of one of these unbounded surface types will attract many 
other points belonging to other clusters if the points lie on the 

(a) @) 

Fig. 5. (a) Result of the Fuzzy C Spherical Shells algorithm on a data set 
containing a line and a circle. The prototypes are shown superimposed on the 
data set. The constraint used in this algorithm does not allow the degenerate 
case of lines. (b) Result of the Fuzzy C Plano-Spherical Shell algorithm. 

(infinite) extension of the given cluster. To avoid this problem, 
one may use a heuristically modified distance which is a 
convex combination of the approximate distance to the shell 
dAz and the Euclidean distance d ~ z .  This modified distance 
d ~ z  can be formulated as 

d M 2  = (1 - E ) d ~ z  -k E d p  

where E is chosen such that the second term becomes compara- 
ble to the first term only for large dEz .The value of E was of the 
order of in our application. The objective function can be 
easily reformulated using the modified distance. The Euclidean 
distance dE2 is measured from the statistical center (mean) of 
the cluster, and the center is updated in every iteration using 
(4). We recommend using the modified distance only as a 
method to refine the results obtained by the FCPQS algorithm. 
Thus, this distance may be used for a couple of iterations after 
the FCPQS algorithm converges. 

Figs. 5(a) and 5(b) show the results of the Fuzzy C Spher- 
ical Shells algorithm [36] and the Fuzzy C Plano-Spherical 
Shells algorithm, respectively, on a data set consisting of a 
circle and a line. The prototypes obtained are superimposed 
on the original data. Unlike the Fuzzy C Spherical Shells 
algorithm, the Fuzzy C Plano-Spherical Shells algorithm with 
the constraint in (19) is able to characterize both the line and 
the circle correctly. Figs. 6(a) and 6(b) show the fit obtained 
by the FCQS and FCPQS algorithms for a scattered ellipse. 
(It is to be noted that the modification to the FCQS algorithm 
presented in Section IV has no effect if there is only one 
cluster in the data set, since all memberships are equal to 
1.0.) It can be seen that the FCPQS fit is much better, even 
though the assumptions made in arriving at (22) are not valid 
for an ellipse. The sum squared error (measured using dpz 
for the two cases are 301.2 and 254.7, respectively. In the 
2-D case, we observed that the FCPQS algorithm takes 20% 
to 30% more iterations to converge compared to the FCQS 
algorithm. The CPU requirements per iteration are about 10% 
to 20% higher. In higher dimensions, the difference will be 
considerably higher. 

VII. A WEIGHTING PROCEDURE TO IMPROVE FITS 

As discussed in the previous section, the assumption that 
1Vd~;jl’ x constant for all xj having a high membership in 
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Fig. 6. An example illustrating the advantage of the FCPQS algorithm over 
the FCQS algorithm for scattered data. (a) Prototype found by the FCQS 
algorithm for a scattered ellipse. (b) Prototype found by the FCPQS algorithm 
for the same scattered ellipse. 

p; is always true for linear (planar) prototypes regardless of the 
location of the feature point xj with respect to the prototype. 
Otherwise, this assumption is correct only for certain types of 
shells (such as circles and rectangular hyperbolas in 2-D, or 
spheres and cylinders in 3-D), even then only if all the feature 
points lie close to one of the shells. Thus, this assumption is 
invalid for ellipses and parabolas in 2-D, and ellipsoids and 
many other quadric shapes in 3-D. Therefore, the fit will be 
biased towards points where the gradient magnitude I V d ~ i j  I 
is high. One solution is to weight the distance measure to 
improve the fit [42], [46]. We achieve this by minimizing the 
weighted objective function given by 

C N  

subjected to 

where 
N 

j=1 

Since the purpose of introducing the weights wij is to reduce 
the bias due to the omission of the denominator in (16), ideally 
these weights should be chosen as 

With this choice of wij, however, the objective function in 
(23) becomes identical to the one in (16), which cannot be 
minimized easily. To simplify the problem, we may treat the 
w;j as constants which are updated in every iteration according 
to (24) using the parameter values pi from the previous 
iteration. Using this heuristic, the parameters can be obtained 
by solving 

(Ew)ip; = Xi(Dw)ipi, where 
N 

j=1 

Since this reweight procedure is heuristic, it is not guar- 
anteed that the fit obtained after reweighting will always be 

Fig. 7. Effect of the reweight procedure on the FCQS algorithm. The 
prototype for two intersecting lines found by the FCQS algorithm (a) without 
reweight and (b) with reweight. 

better than the original fit. Therefore, in each iteration, we 
compute the parameter vector pi both with and without the 
weights and accept the parameter vector pi resulting from the 
reweight procedure only when the error of fit decreases. The 
sum of geometric or approximate distances for each individual 
cluster may be used as a measure of the error of fit. 

The reweight procedure can also be adopted for the FCQS 
algorithm with the same choice of weights with good results. 
Following the same steps that were used above, it can be 
shown that the solution with the reweight procedure for the 
FCQS algorithm (subject to Bookstein's constraint) is given 
by the following equations instead of (1 1). 

a; = eigenvector of ((Fw); - (Gw)T(Hw);~(Gw);) 
associated with the smallest eigenvalue, and 

b; = -(Hw);'(Gw)i ai 

where 
N 

(Fw); = C ( U i j ) " W i j R j ,  
j=1 
N 

(Gw 1; = C(~ij )"wijSj 
j=1 

and 
N 

(Hw); = C ( ~ ; j ) ~ w ; j T j .  
j=1 

The FCQS algorithm with the reweight procedure produced 
the same fit for the scattered ellipse of Fig. 6 as the one 
produced by the FCPQS algorithm. Fig. 7(a) shows the results 
of the FCQS algorithm on a data set with two intersecting lines. 
In this figure, the fit is poor around the intersection, because 
the gradient magnitude is zero at the point of intersection. 
Fig. 7(b) shows the result of the FCQS algorithm with the 
reweight procedure. An obvious improvement in the fit can 
be seen. 

In the case of the FCPQS algorithm, the use of the reweight 
procedure does not have much effect in 2-D, however, its effect 
can be significant in 3-D. Therefore, we recommend the use 
of the FCPQS algorithm with reweight in the 3-D case. 
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VIII. GENERALIZATION TO PROTOTYPES REPRESENTED 
BY SETS OF HIGHER-ORDER POLYNOMIAL FUNCTIONS 

where I k  is a k x k identity matrix, and 
N 

Consider the set of zeros of f (x) defined by D; = C ( ~ i j ) " [ D ( ~ j ) O ( x j ) " ] .  
j = 1  

D(xj) is the Jacobian matrix D(x) evaluated at x, given by 
fl(X)=O;fZ(X) = o ; " ' , f k ( x )  = o .  (25) 

Here X" = [XI ,  2 2 ,  . . . , x,] is an n-dimensional coordinate 8Fl ( X , )  a F h ( X 3 )  

D(Xj) = . . . .  a? 1 .  [ - : : :  8% 
aFh ( X j  

vector, as before. It is to be noted that f (x) is a vector con- 
sisting of k functions, all of which have to be simultaneously 
satisfied. Thus, if n = 2 and k = 1, we have a planar curve, 
if n = 3 and IC = 1, we have a 3-D surface, and if n = 3 
and k = 2, we have a space curve. For example, a circle of 
radius 1 on the xy-plane in 3-D is defined by the equations 
x2 + y2 - 1 = 0, and z = 0. Let 

F(x) = [Fl(x),Fz(x),...,Fh(X)lT 

be a vector of h polynomials. Each of the F,(x) is a 
polynomial of degree p or less in each of the coordinate 
axis labels x1,x2,..' ,x,. For example, when n = 2 
and k = 1, and p = 2, F(x) can be chosen to be 

as in (8), in which case each element of F(x) is a monomial. 
For a suitable choice of F(x) ,  we can write (25) as 

qT = [z:, zF,. . . , x i ,  2 1 ~ 2 , .  . . , x,-~x,, ~ 1 , ~ 2 , .  . . , z,, 11 

f(x)  = P F ( x )  = 0 

where P is a k x h matrix of parameters consisting of 
the coefficients of the functions f2(x). Thus P represents 
the prototype parameters, where each prototype is a set of 
functions f(x) .  We can construct an objective function based 
on C such prototypes as 

C N  

JP ,  U; X) = ~(U2J)"IIP2F(x,)112 (26) 
z = 1  ,=1 

where II = (PI, . . . , Pc) represent a C-tuple of prototypes. 
Here I(PzF(x,)l12 represents the algebraic distance from x, to 
prototype P , .  The above objective function can be written as 

C N  

JP ,  U; X) = ~(2LZ,)"Tr[P2F(x,)FT(X,)PT1 

= C(U2,)mTr[PzM,PTI 

2=1 ,=1 

C N  

2 = 1 3 = 1  

C 

= Tr[PiE;PT] 
i=l 

where 
N 

Mj = F ( x j ) F " ( ~ j ) ,  and Ei = E ( u i j ) " M j .  
j=1 

The above objective function can be minimized subject to the 
constraint 

r N  1 

It can be shown [46] that the solution to the minimization of 
(26) subject to (27) is given by the eigenvectors corresponding 
to the least IC eigenvalues of the generalized eigenvector 
problem given below. 

piEi = XipiDi. 

Each of the eigenvector solutions pi gives us one row of 
Pi. As in the case of the FCPQS algorithm, the use of 
the constraint in (27) gives us fits that correspond to the 
approximate distance, even though the objective function uses 
the algebraic distance, especially when reweighting is used. 

It is to be noted that in this general case, each prototype 
is represented by a set of higher-order polynomials. In this 
sense, the above algorithm is also a generalization of the Fuzzy 
C Regression Models (FCRM) introduced by Hathaway and 
Bezkek recently [25]. The FCRM considers two-dimensional 
prototypes of the form y = f ( z ) ,  where f ( x )  is a polynomial. 
In other words, y is explicitly considered as a dependent 
variable, and higher powers of y do not appear in this model. 
The FCRM uses the algebraic distance, and the implicit 
constraint that the coefficient of y is one. 

Ix. POSSIBILISTIC MEMBERSHES FOR ROBUST CLUSTERING 

Fuzzy clustering algorithms do not always estimate the 
prototype parameters of the clusters accurately. The main 
source of this problem is the probabilistic constraint used 
in fuzzy clustering, which states that the memberships of a 
data point across all clusters must sum to one. [See (l)]. This 
problem has been discussed in detail in [34]. Here we present 
two simple examples to illustrate its drawbacks as related to 
shell clustering. Fig. 8(a) shows a situation where there are two 
linear clusters. Fuzzy clustering would produce very different 
(asymmetric) memberships in cluster 1 for points A and B, 
even though they are equidistant from the prototype. Similarly, 
point A and point C may have equal membership values in 
cluster 1, even though point C is far less typical of cluster 1 
than point A. The resulting fit for the left cluster would thus 
be skewed. Fig. 8(b) presents a situation with two intersecting 
circular shell clusters. In this case, intuitively, one point A 
might be considered a "good" member of both clusters, where 
as point B might be considered a "poor" member, and point C 
an outlier. Here again, the constraint in (1) would force points 
A, B, and C have memberships of 0.5 in both clusters. The 
membership values cannot distinguish between a moderately 
a typical member and an extremely atypical member, because 
the membership of a point in a class is a relative number. In 
otherwords, the memberships that result from the constraint in 
(1) denote degrees of sharing rather than degrees of typicality. 
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'C  One can cast the clustering problem into the framework of 
possibility theory [18], [49] by relaxing the constraint in (1) 
and reformulating the objective function in (2) as [34] 

C N  

J" U; X) = C ( ' " i j ) " d 2 ( X j >  P i )  
i=l j=1 

C N  

+ vi C(1 - Q j ) m  (28) 
i=l j=1 ' 

(a) (b) where are suitable positive numbers. The first term in 
(28) requires that the distance from the feature vectors to 
the prototypes be as low as possible, whereas the second 
term forces u i j  to be as large as possible, thus avoiding the 
trivial Solution. It is easy to show [34] that U may be a 

Fig. 8. Disadvantages of constrained fuzzy memberships. (a) A data set with 
two linear clusters. Membership values in cluster 1 for points Aand B will 
be different, even though they are equidistant from the prototype. Point A 
and point B may have equal membership values in cluster 1, even though 
point C is far less typical of cluster 1 than point A. (b) A data set with two 
intersecting circular-shell clusters. The memberships of points A, B, and C 
are all 0.5 in the two clusters, even though point B is less typical of the 
clusters, and point c is an outlier. 

global minimum of J,(B, U; X) only if the memberships 
are updated by 

(a) (b) 

Fig. 9. The effect of noise points on shell clustering. Prototypes for two 
noisy ellipses found by (a) the Hard C Quadric Shells algorithm and (b) the 
Fuzzy C Quadric Shells algorithm. 

Therefore, noise points, which are often quite distant from the 
primary clusters, can drastically influence the estimates of the 
class prototypes, and hence the final partition. 

One established technique for reducing the effect of noise 
on least-squares fits is to use weights that are inversely related 
to the distance of the point to the prototype [24], [37], [48]. 
Although one may interpret memberships as weights, the 
memberships generated by fuzzy clustering are not inversely 
related to the distance, since they are relative numbers. Other 
ways to deal with noise in clustering maybe found in [29], 
[47]. DavC also discusses another effective way to deal with the 
noise problem (although not the relative membership problem) 
by introducing the concept of a noise cluster [14], [15]. 

If there is only one cluster in the data, there is no difference 
between crisp and fuzzy clustering. Otherwise, the effect of 
noise points on the final partition is more drastic in the crisp 
case, because the membership of noise points tends to be 
distributed among all classes in the fuzzy case. Since the sum 
of the memberships of a point is constrained to be equal to 
one, however, this difficulty still remains with a lesser degree 
in the fuzzy case. Fig. 9 shows the effect of noise on a data 
set containing two elliptic clusters. As can be seen, the result 
of the fuzzy case (Fig. 9(b)) is poor but better than that of the 
hardcase (Fig. 9(a)). 

Thus, the updated value of uij depends only on the distance 
of xj from pi, and not on the distance of xj from all other 
prototypes, which is a desirable result. The prototypes are 
updated in the same manner as in the corresponding fuzzy 
algorithms. 

It is best to initialize the possibilistic algorithms with 
the corresponding fuzzy algorithms. Since the value of vi 
determines the distance at which the membership value of a 
point in a cluster becomes 0.5, it should relate to the overall 
size and shape of cluster P;. When the nature of the clusters is 
known, values for 71; may also be fixed apraori. For example, 
in the case of shell clustering algorithms, the values for vi 

may be set equal to the square of the expected thickness of 
the shells. Another possibility is to use the fuzzy intra-cluster 
distance to compute vi, i. e., 

Typically K is chosen to be one. Several other ways to 
estimate the q; are given in [34]. 

Although the fits themselves are not very sensitive to the 
exact values of vi, some of the shell cluster validity measures 
(to be discussed in Part I1 of this paper) do depend on the 
choice of q;. For this reason, the best approach is to compute 
approximate values for the vi from the initial fuzzy partition 
using (30), and after the possibilistic algorithm converges, run 
a few more iterations of the algorithm with a fixed value of 
7;. This will ensure that the validities of all the clusters are 
measured on a uniform scale. The fixed value of is the 
expected thickness of the shell clusters. A good value for q; in 
boundary detection applications is about two. The possibilistic 
shell clustering algorithm is summarized below. 
THE POSSIBILISTIC SHELL CLUSTERING 
ALGORITHM 

Fix the number of clusters C ;  fix m , m E [l, co); 
Initialize C-partition U using the corresponding fuzzy 
algorithm ; 
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x 

X 
I 

Fig. 10. 
proach. Prototypes for two noisy ellipses found by the PCQS algorithm. 

Advantage of unconstrained memberships in the possibilistic ap- 

Estimate qi using (30); 
REPEAT 

Update the prototypes using U; 
Compute U using (29); 

UNTIL (IlAUll < &I); 
{The remaining part of the algorithm is optional and is 
to be used only when validity measures need to be 
computed} 
Fix the values of 77; to the expected thickness of the shells; 
REPEAT 

Update the prototypes using U; 
Compute U using (29); 

U”I’IL (IlAUll < ~ 2 ) ;  
Possibilistic versions of the FCQS and FCPQS algorithms 

can be derived very easily by merely changing the membership 
updating equation from (3) to (29). We will hence forth refer 
to these possibilistic versions as the Possibilistic C Quadric 
Shells (PCQS), and the Possibilistic C Plano-Quadric Shells 
(PCPQS) algorithms, respectively. Fig. 10 shows the result of 
the PCQS algorithm on the noisy data set in Fig. 9 for which 
both hard and fuzzy clustering failed. This result shows that 
the possibilistic approach makes the clustering process robust. 

X. CONCLUSIONS AND RECOMMENDATIONS 

In this paper, we presented several fuzzy and possibilistic 
shell clustering algorithms. The FCQS algorithm uses a con- 
straint on the second-degree terms and does not allow the 
degenerate case of linear prototypes. This problem can be 
overcome by using a procedure to extract linear clusters from 
certain types of pathological clusters. Although the constraint 
used in the FCPQS algorithm theoretically allows the detection 
of linear clusters, in practice it often overfits second-degree 
curves to linear segments. Also, this algorithm requires us 
to solve a six-dimensional generalized eigenvector problem 
(in the 2-D case), compared to the three-dimensional regular 
eigenvector problem in the FCQS algorithm. Therefore, in our 
experience, the (modified) FCQS algorithm and its possibilistic 
version are the best choices for most applications in 2-D. The 

reweight procedure presented in Section VI1 is particularly 
important in the 3-D case, and since the computation of the 
exact distance is too expensive, the FCPQS algorithm and its 
possibilistic version are the only viable algorithms in this case. 

The existing fuzzy clustering methods use relative member- 
ships, which cannot always distinguish between good members 
and poor members. On the other hand, if one takes the view 
that the membership of a point in a class has nothing to do 
with its membership in other classes, then one can achieve 
membership distributions that correspond more closely to the 
notion of typicality. The resulting possibilistic algorithms are 
naturally more immune to noise. One disadvantage of the 
possibilistic approach is that one needs to estimate the band- 
widths rl;. In most practical applications of shell clustering, 
the expected thickness of the shell clusters is known, and this 
is not a major drawback. It is also to be remembered that the 
possibilistic algorithms need a good initialization. Thus, the 
fuzzy algorithms will always be useful. 

Traditionally, the generalized Hough transform (GHT) [3], 
[26], [38] has been used to detect shapes when the bound- 
aries/surfaces are noisy or sparse. One disadvantage of the 
GHT is that its computational complexity is O ( N  x Npl x 
Np2 . . . x N p , - l ) ,  where N is the total number of points in 
the image to be processed, Np, is the number of quantization 
levels of the i-th parameter, and s is the total number of 
parameters. The memory requirement of the GHT is O(Npl x 
Np2 . . . x N p , ) .  Since the accuracy of the parameter values is 
determined by the number of quantization levels, Np, cannot 
be too small. (In contrast, the accuracy of the parameter values 
in shell clustering is limited only by computer precision.) Some 
researchers have used hierarchical resolutions to mitigate this 
problem [43]. In the case of a general second-degree curve 
in 2-D, we need five parameters to describe the curve. The 
speed of the GHT can be improved only if we make certain 
assumptions about the curve, (i.e., if the curve is circular, 
elliptic etc.), and if the gradient information is available [8], 
[16], [26], [38]. Also, in spite of recent advances [28], [MI, 
if the edge points are somewhat scattered around the ideal 
curve (or surface), then peak detection is very difficult in 
multidimensional Hough space due to bin splitting. Moreover, 
the detection of small segments is virtually impossible, since 
small peaks in the GHT are lost in the bias. The GHT also 
suffers from a high probability of spurious peaks [22]. Most 
importantly, peaks in the GHT correspond to “majority fits” 
and not “best fits.” 

The computational complexity of all the algorithms pre- 
sented in this paper is O ( N C K ) ,  where N is the number 
of points, C is the number of clusters, and K is the number 
of iterations. If we have a good initialization procedure, the 
number of iterations K can be kept low. This compares very 
favorably with the complexity of the GHT. The memory 
requirements of these algorithms, which is O ( N C )  is very low 
compared to those of the GHT. A more thorough comparison 
with the GHT is possible only for specific types of curves. 
An excellent comparison of the shell clustering approach 
with GHT for the case of circles and ellipses may be found 
in [16]. In [17] DavC and Fu also show how the GHT 
with a crude discretization of parameter space can provide 
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a good initialization for the shell clustering algorithms, thus 
significantly reducing the computational burden. This is a 

Since A: is a diagonal matrix, (I - X A:)-’ can be easily 
inverted, and from (A3) we obtain 

1.  (A4) 
fuzzy generalization of the method suggested by O’Gorman 
and Clowes [40], who obtain a crude segmentation of the data 

xp:, + 2x1, Xpi5 + 2x1, 
2(1 - Xpll) 2(1 - Xp:2) 

ZIT = [ 
set using the HT and then fit lines to obtain more accurate 
results. This approach is particularly viable when the parameter 
space is of low dimensionality. 

general proof of convergence has been presented for any 
of the shell clustering algorithms, although in practice these 

Substituting (A4) into (A21 yields the following quartic equa- 
tion in X 

Finally, we would like to note that to our knowledge, no C4X4 + C3X3 + C2X2 + CIX1 + CO = 0 ( A 3  

where 
algorithms always seem to converge. This is an important topic c4 = 4p:1p:2(4p! ! ! - p! (2 - p! !z) 
that needs to be researched in the future. zlPz2Pz6 t2pz4 zlPz5 

(73 = 8P:lP:2(P:: + P 1 3  + 8(P:;P:: + P:;P:24) 

+ 16P:6(P:2, +Pig + 4P:lp:Z) exact distance from a point xj to the curve pi in the 2-D case. 
We first note that in (12), A;, b; and c; are given by 

C1 = -32p:1p:2(231 + 4 2 )  + 8(& + pi;) 

. . Pir/2 pin J 
APPENDIX B 

SUMMARY OF SECOND DEGREE CURVE AND SURFACE TYPES 

b; = I : 
We first rotate the cluster prototype p; and the point xj so 
that the matrix A; becomes diagonal. This does not change 
the distance. The angle of rotation in the 2-D case is given by 

and c; =pi,.  

A. Two-Dimensional Case 

in 21 and x2 given by 

Pi(r+n) 
The nature of the graph of the general quadratic equation 

Equations (12) and (13) can now be written as 

where xj’ and z’ denote the locations of points xj and z after 
rotation. It is easily verified that 

x 3 -  . - R.x’. 2 3  and z = R;z’ 

where 

-Sinai COSQ; 1 

is described in Table I in terms of the values of 

I”’ 5Pi5 

B.  Three-Dimensional Case 

in x1,x2, and 23  given by 
The nature of the graph of the general quadratic equation 

2 2 2 Plxl + PZZ2 + p323 + P4Z122 + p5x123 
+ P6z223 + p721 + p822 + P9x3 + pl0 = 0 

is described in Table 11. 
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TABLE I 
TWO-DIMENSIONAL QUADRATIC CURVE TYPES THREE-DIMENSION 

In Table 11, the expressions for p3, p4, A, k l ,  k2 and k3 are 

r PI ~ 4 / 2  ~ 5 / 2 i  

b 7 / 2  ps/2 p9/2 pi0 J 

IP1-x P4/2 P5/2 1 
A = determinant of E, and 

k l ,  k2 and k3 are the roots of p4/2 pz-x p6/2 = 0. 

l P 5 P  P6/2 p3-2 I 
APPENDIX C 

CONVERSION OF PATHOLOGICAL PROTOTYPES TO LINES 
By checking the conditions satisfied by the parameters of 

the prototype according to Table I, we may determine if the 
cluster is a pathological case (i.e., if it is a hyperbola, a pair 
of lines or an extremely elongated ellipse). If a cluster is a 
pathological case, it is converted to lines. This is done using 
the line detection algorithm in Section V. The initialization 
is carried out by determining the equations of the line(s) that 
might best describe the pathological clusters. Then each of the 
points belonging to the pathological clusters is crisply assigned 
to the line prototype to which it is closest. This provides a very 
good initial partition for the G-K algorithm. The procedures 
for identifying the line prototypes are described below. 

A .  Line Detectionfrom a Hyperbola or a 
Pair of Intersecting Lines 

Each hyperbola should be split into two lines using the 
following procedure, provided it is not a very “flat” hyperbola. 
The case of a very “flat” hyperbola will be discussed later. 

TABLE I1 
.L QUADRATII 

Nonzero k‘s 

same sign ? 

YeS 

yes 

no 

no 

no 

yes 

yes 

no 

YeS 

yes 

no 

no 

yes 
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SURFACE TYPES 

Quadric Surface 

~ 

Real ellipsoid 

Imaginary ellipsoid 

Hyperboloid of one sheet 

Hyperboloid of two sheets 

Real quadric cone 

Imaginary quadric cone 

Elliptic paraboloid 

Hyperbolic paraboloid 

Real elliptic cylinder 

Imaginary elliptic cylinder 

Hyperbolic cylinder 

Real intersecting planes 

Imaginary intersecting planes 

Parabolic cylinder 

Real parallel planes 

Imaginary parallel planes 

Coincident planes 

Before running the G-K algorithm, the linear prototypes are 
initialized to be the asymptotes of the hyperbola. Finding the 
equations of these asymptotes is quite simple if the matrix A; 
is diagonalized as in Appendix A. After rotation, the equation 
of each hyperbola becomes 

where pbl, P : ~ ,  pb4 and pL5 are given by (A4) in Appendix A. 
It is easy to show that the two asymptotes of the hyperbola 
defined by the above equation are given by 

xz - cilzl  + cio = 0, and 2 2  + cilxl + cia = 0 

where 

p:4 P’il I Pli5 . 
Ciz  = -- -- 

2p’i, PI2 2Pb2 J 
After the prototypes have been computed, they are rotated 
back to their original space. 

Sometimes, the FCQS algorithms will fit a pair of intersect- 
ing lines instead of a hyperbola. When cluster pi is a pair of 
intersecting lines, the above equations characterize the lines 
themselves instead of the asymptotes of the hyperbola, thus 
making the initialization even better. 
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B .  Line Detection from a Pair of Parallel Lines or a 
Very Elongated Ellipse or a Very Flat Hyperbola 

is a pair of parallel lines, after the prototype 
is rotated, the two lines can be either parallel to the x1 axis 
or to the x2 axis. If the lines are parallel to the x1 axis, then 
p:, M p14 0, and the equations of the two lines are given by 

If cluster 

2 2  = and 2 2  = 

where 

On the other hand, If the lines are parallel to the 2 2  axis, then 
p:, M p:, M 0, and the equations of the two lines are given by 

XI = ci3 and XI = c;4 

where 
p! - Jp!2 - 4p! 

> and c23 = 2 4  2 4  z l d 6  

2P: 1 

P64 + JP6i - 4PIIP66 
2P6, 

c;4 = 

When the two lines are not exactly parallel, but form a small 
angle between them, the FCQS algorithm will sometimes fit 
one very elongated ellipse or a very flat hyperbola instead of 
a pair of parallel lines. An ellipse can be categorized as very 
elongated if 

Major Axis Length 
Minor Axis Length > CL (C1) 

where 
1 

Major Axis Length = 2 

1 
Minor Axis Length = 2 ” 

[ & + - pt6] ’ 

and CL is chosen to be about 10. Similarly, we may also 
assume that a hyperbola can be classified as very flat if 

Conjugate Axis Length 
Transverse Axis Length 

If the transverse axis is parallel to the x1 axis, i.e., if 

> CL. 

then 

Conjugate Axis Length = 2 

and 

Transverse Axis Length = 2,/-$ [ 2 + $ - p6.1 . 
~ P ; Z  

in this case, Condition (C2) reduces to 

On the other hand, if the inequality in (C3) is reversed, then the 
above expressions for conjugate and transverse axes lengths 
are interchanged, and the negative sign inside the root appears 
in the expression for the transverse axis length. In this case, 
Condition (C2) reduces to 

When one of the FCQS algorithm fits either a very elongated 
ellipse or a very flat hyperbola, the equations for the lines will 
be computed using the equations derived for parallel lines. 
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