
Wibx: Making Smart Contracts Even Smarter
Rafael Augusto Lopes Shigemura, Gildarcio Sousa Goncalves, Fábio Alves de Oliveira, Luiz Henrique Coura, Edizon

Eduardo Basseto Júnior, Luiz Alberto Vieira Dias, Adilson Marques da Cunha, Paulo Marcelo Tasinaffo, Johnny Cardoso

Marques

Computer Science Department

Brazilian Aeronautics Institute of Technology (Instituto Tecnológico de Aeronáutica – ITA)

São José dos Campos, São Paulo, Brazil

Abstract – This paper describes the main results of a

research effort involving techniques for automatic detection

of security vulnerabilities on an Ethereum-based Smart

Contract. During 16 weeks, at the Brazilian Aeronautics

Institute of Technology (Instituto Tecnológico de

Aeronáutica - ITA), a research-oriented version of Scrum

agile method and its best practices took place. The Project,

named Technological Solutions Applicable to Media and

Social Products (in Portuguese Soluções Tecnológicas

Aplicáveis a Mídias e Produtos Sociais) is being driven by a

partnership between ITA and Ecossistema enterprise, in

order to generate knowledge and expertise in blockchain

related disciplines, as well to ground a brand new utility

token named Wibx. The main contribution of this research

branch (blockchain security) was the enhancement of the

original Oyente tool, renaming it as Oyente-NG (New

Generation), including the detection of 5 new relevant

vulnerabilities beyond the 7 already previously

implemented ones. Lastly, a Proof of Concept applying the

Oyente-NG tool over a set of real contracts developed for

Wibx is provided.

Keywords - Blockchain; Smart Contracts, Scrum Method;

Intelligent Systems; Blockchain Security.

I. INTRODUCTION

Since its introduction in 2008, Blockchain technology [1]

has been promising in several aspects: removal of

intermediaries, cost reduction of values transmissions,

reliable and decentralized storage of transactions, alternative

currencies, among others. These possibilities have generated

global interest, but when it comes to value management,

several issues emerge. Unlike other centralized forms of

currency control such as credit cards, Blockchains is still in

its beginning and there is plenty of room for potential

fraudsters. Thus, it is essential to investigate appropriate

strategies for overall vulnerability mitigation and security

improvement.

Besides the Blockchain itself, a hot topic is the smart

contract technology [2]. Basically, a smart contract is an

agreement between mutually distrusting participant

automatically enforced by the consensus mechanism of the

blockchain, without relying on a trusted authority [3].

This attractive potential of automatic, decentralized, and

trustworthy contract enforcement, along with standard

blockchain capabilities, leveraged the third largest

blockchain platform to date: Ethereum [4], whose

capitalization has reached 132 billion dollars in January 2018,

as shown by Figure 1.

Figure 1. The Ethereum Market Cap in 2018 [5].

Such a huge market cap, the related high volume of

interested business investing resources on it, and the relative

immaturity of underlying technology created a green field for

hackers aiming to get financial or technological advantages.

One remarkable event was The DAO (Decentralized

Autonomous Organization) Attack [6], where a

crowdfunding contract, which raised ~150 million dollars,

was hacked on June 18, 2016, and the attacker managed to

take control over ~60 million dollars until the hard-fork of

Ethereum main blockchain nullified the effects of the

involved transactions.

Amidst this scenario, the Ecossistema enterprise has

decided to develop and launch its own cryptocurrency, based

on the Ethereum platform along with a private blockchain.

This crypto, named Wibx [7][8], was planned to be a utility

coin for mass usability, demanding high-level security and

reliability.

The Ecossistema enterprise and the Brazilian Aeronautics

Institute of Technology (Instituto Tecnologico de

Aeronáutica - ITA) are undertaking a research-oriented

version of Scrum agile method and its best practices [9][10].

The Project, named Technological Solutions Applicable to

Media and Social Products (in Portuguese, Soluções

Tecnológicas Aplicáveis a Mídias e Produtos Sociais) was

conceived, in order to generate knowledge and expertise in

blockchain related disciplines, as well to ground the

Ecossistema`s Wibx cryptocurrency.

Thus, a research branch for blockchain security has

emerged, and its main goal was to find novel techniques for

vulnerability mitigation in Ethereum blockchains, in general,

and Ethereum-based smart contracts, in special.

The main contribution of this research was the enhancement

of the original Oyente [11] tool, named Oyente-NG (Oyente

- New Generation), including the detection of 5 new relevant

vulnerabilities, beyond the 7 already previously implemented

ones. Lastly,a Proof of Concept applying the Oyente-NG tool

over a set of real contracts developed for the Wibx utility coin

is provided.

II. BACKGROUND

 This section describes the following key concepts,

methods, and techniques used for the development of the

Technological Solutions Applicable to Media and Social

Products project, named in Portuguese Soluções

Tecnológicas Aplicáveis a Mídias e Produtos Sociais -

STAMPS: the Blockchain technology; the Ethereum

platform; the Smart Contract technology; the vulnerabilities

in Ethereum-based Smart Contracts; and the Oyente tool.

A. The Blockchain Technology

Blockchain is a growing list of records, named blocks,

which are linked by cryptography. Each block contains a

cryptographic hash of the previous block, a timestamp, and

transaction data (generally represented as a Merkle tree root

hash) [1].

By design, a blockchain is resistant to modification of

data. It is an open, distributed ledger that can efficiently

record transactions between two parties in a verifiable and

permanent way, as shown in Figure 2. For use as a distributed

ledger, a blockchain is typically managed by a peer-to-peer

network collectively adhering to a protocol for inter-node

communication and validating new blocks. Once recorded,

data in any given block cannot be altered retroactively

without alteration of all subsequent blocks, which requires a

consensus of the network majority. Although blockchain

records are not unalterable, blockchains may be considered

secure by design.

Figure 2. The most popular design of a blockchain, used by

Bitcoin and Ethereum. Block with several elements [11].

Blockchain was invented by Satoshi Nakamoto in 2008 to

serve as the public transaction ledger of the cryptocurrency

bitcoin [1]. The invention of the blockchain for bitcoin made

it the first digital currency to solve the double-spending

problem without the need of a trusted authority or central

server. The bitcoin design has inspired other applications [4],

and blockchains, which are readable by the public are widely

used by cryptocurrencies. Private blockchains have also been

proposed for business use [12].

B. The Ethereum Platform

Ethereum is an open-source, public, blockchain-based

distributed computing platform and operating system

featuring smart contract (scripting) functionality. It supports

a modified version of the Nakamoto consensus [1] via

transaction-based state transitions [4].

The platform was initially described in a white paper by

Vitalik Buterin [4], with a goal of building decentralized

applications. Buterin had argued that bitcoin needed a

scripting language for application development. Failing to

gain agreement, he then proposed the development of a new

platform with a more general scripting language.

Ethereum provides a decentralized virtual machine, the

Ethereum Virtual Machine (EVM), which can execute scripts

by using an international network of public nodes. The virtual

machine's instruction set, in contrast to others like Bitcoin

Script, is thought to be Turing-complete. The platform also

provides an special concept called "Gas" for internal

transaction pricing mechanism and is used to mitigate spam,

remunerate miners, and allocate resources on the network

[13].

C. The Smart Contract Technology

Basically, Smart Contracts are computer programs that

can be correctly executed by a network of mutually

distrusting nodes, without the need of an external trusted

authority [3].

Conceptually, as explained by Szabo on its seminal paper

[17]: "Smart contracts combine protocols with user interfaces

to formalize and secure relationships over computer

networks. Objectives and principles for the design of these

systems are derived from legal principles, economic theory,

and theories of reliable and secure protocols."

It makes clear that, since its principle, the main goal was

to implement full-fledged, real-life contracts using software,

but following some principles as confidence, impartiality,

and automation.

Using cryptographic technology and other security

mechanisms, Smart Contracts can secure many

algorithmically specifiable relationships from breach or

malicious interference by third parties, up to considerations

of time, user interface, and completeness of the algorithmic

specification [17].

Its potential application in important contracting areas,

including credit, content rights management, payment

systems, and contracts with bearer were perceived far before

the Blockchain era. Ethereum leveraged the concept,

implementing it natively throughout solidity, a Turing-

complete language capable of generating programs running

beside its blockchain, thus taking advantage of all its

capabilities, as in Figure 3.

Figure 3. An Ethereum smart contract that illustrates a

simple voting system.

D. Vulnerabilities in Ethereum-based Smart Contracts

Despite being designed, in principle, for secure

specifiable relationships from breach or malicious

interference by third parties, this is not totally true at practice.

In fact, even when implemented on top of another secure

technology as blockchain, a considerable volume of

vulnerabilities was discovered, putting at risk the assets and,

therefore, the businesses relying on it.

In the past two years, several research papers were

published about potential security vulnerabilities in

Ethereum-based Smart Contracts [14][15][16]. Especially in

Luu [11], it is found a useful taxonomy which, despite not

been exhaustive, reflects the most prominent breaches. That

is shown in Table 1, with one more vulnerability included:

the Integer Underflow & Overflow.

 One of the previous-mentioned vulnerabilities, The DAO

Attack, was alone responsible for ~60 million dollars in

losses [6]. Furthermore, a complicating factor is the

immutability of smart contracts: there is yet no means to fix

a buggy contract (like the DAO contract), and once it is

published on the network, there is no way back.

Thus, it is evident the ROI in R&D of strategies and

techniques for risk mitigation related to Smart Contracts,

especially for companies aiming to allocate resources on it.

To the Blockchain Security branch of the project it was given

the task of researching, developing, and applying techniques,

methods, and tools that would mitigate the risk that any of

these vulnerabilities could be exploited on the Wibx crypto

coin.

Table 1. Taxonomy of vulnerabilities in Ethereum-based

Smart contracts, and known related attacks.

Cause of Vulnerability Known Attacks

Call to the unknown The DAO Attack

Gasless send

King of The Ether Throne

(KoET)

Exception disorders GovernMental, KoET

Type casts -

Reentrancy The DAO Attack

Keeping secrets Multiplayer Games

Immutable bugs Rubixi, GovernMental

Ether lost in transfer -

Stack size limit GovernMental

Unpredictable state

GovernMental, Dynamic

Libraries

Generating randomness -

Integer Underflow &

Overflow The Beauty Chain Attack

Parity Multisig Bug The Parity Attack

Time constraints GovernMental

E. The Oyente Tool

As demonstrated in [18], some of the vulnerabilities

discussed in the previous section could be addressed, at their

root cause, by improvements to the operational semantics of

Ethereum. However, it would require analysis and approval

of community and, thereafter, all clients in a network to

upgrade.

As that option is virtually impracticable, there were

provided a pre-deployment mitigation tool called Oyente [18]

to help: 1. developers to write better contracts; and 2. users to

avoid invoking problematic contracts. Importantly, other

analyses can also be implemented as independent plugins,

without interfering with the existing features.

Based upon symbolic execution [19], Oyente manages to

represent program's concrete states as symbolic states. That

symbolic state forms symbolic paths having path conditions,

which can be proved satisfiable or unsatisfiable, thus

confirming the path (and, consequently, the conditions)

feasibility.

The main advantage of symbolic execution over

traditional test approaches (like dynamic testing) is the

capacity of reasoning about a program path-by-path (which is

often a finite set), instead of reasoning input-by-input (which

is often an infinite set). Symbolic execution can also be

viewed as abstract interpretation [20], as shown in Figure 4.

Figure 4. Illustrative example of a symbolic execution [21] .

 Table 2 presents the open and addressed vulnerabilities,

according the above-mentioned taxonomy.

Table 2. Vulnerabilities in Ethereum-based Smart contracts,

and its mitigation status.

Cause of Vulnerability Status

Call to the unknown Open

Gasless send Open

Exception disorders Addressed by Oyente

Type casts Open

Reentrancy Addressed by Oyente

Keeping secrets Open

Immutable bugs Open

Ether lost in transfer Open

Stack size limit Addressed by Oyente

Unpredictable state Addressed by Oyente

Generating randomness Open

Integer Underflow & Overflow Addressed by Oyente

Parity Multisig Bug Addressed by Oyente

Time constraints Addressed by Oyente

As shown in Figure 5, the Oyente architecture is modular

and well suited for scalability. Briefly, the system takes as

inputs to the program, be it as bytecode or source file, as well

(and optionally) the blockchain global state. Then, the CFG

(Control-flow Graph) Builder generates the control flow

graph of the contract and passes it to Explorer, which will

execute the simulation. Thereafter, the CORE ANALYSIS

seeks for potentially problematic paths and query the Z3

Solver [22] for path feasibility. Finally, the VALIDATOR

checks the flagged 'problematic' paths for possible false

positives and the Visualizer shows the results in textual mode.

Figure 5. Oyente architecture and its main components

inside the dotted rectangle. Shaded components publicly

available [11].

Figure 6 shows an output from Oyente, running over a

snippet purposely built with the reentrance vulnerability.

There, we can see the results and its flags pointing to the

presence or absence of 7 vulnerabilities originally detectable.

The reentrance is flagged True, as expected.

Figure 6. Oyente execution output over an example snippet

containing the reentrance vulnerability.

To the best of our knowledge, this kind of approach for

verification & validation of smart contracts is not

implemented in any other blockchain platforms like Bitcoin

[1], Corda [19], amongst others.

III. THE OYENTE-NG PROPOSED TOOL

This section describes the implementation of

improvements in original Oyente, in order to detect a new set

of vulnerabilities. It presents and briefs the targeted ones and,

at the end, it explains the criteria adopted for the detection of

each vulnerability.

A. The Targeted Vulnerabilities

Although the implemented analyses and their results [16]

were quite relevant, they wouldn’t be enough to achieve

compliance with Wibx minimum security requirements.

Thus, considering them and also following the proposed

taxonomy, there were defined the need for 5 more automatic

detections, the risks for which are presented in Table 3.

Table 3. Selected vulnerabilities for implementation in

Oyente-NG.

Vulnerability Known risks

Call to the unknown Ether stealing

Gasless send

Ether overspending for

transaction processing

Type casts Unexpected contract behavior

Ether lost in transfer Ether locking

Generating randomness Ether stealing

The only vulnerability we were unable to implement was

the Immutable Bug. It concerns to the impossibility of

changing a contract once it is published onto Ethereum

blockchain. The immutability has been exploited in various

attacks [15] and, for all of then, the stolen ether was

unrecoverable. Even having this important feature, there was

not yet a definitive solution, though it is possible to obtain

some insights in [23].

B. Implementation Overview

We describe how we have implemented our analyses as

follows:

● Call to the unknown detection - We do analyse the

symbolic trace of each called function, in order to

infer possible mismatches between the called and

the caller signatures. If some mismatch is found, the

contract is flagged as potential call to unknown;

● Gasless send detection - Considering that each

bytecode instruction has its gas consumption, we

detect a potential high demanding gas contract by

summing up the value of each instruction

symbolically executed. If the amount of gas is

greater than 2300, the contract is flagged as high

demanding. This figure 2300 is the limit for gas

units available to the calee and is considered a good

estimator for gas-intensive contracts;

● Type casts detection - In analogue way to call to

unknown, we detect dangerous type casts through

called and caller function`s signature checking

during symbolic execution;

● Ether lost detection - During the analysis stage,

every address found in source file is checked

according to Ethereum standards. A contract is

flagged as potential Ether lost if some address is

invalid; and

● Randomness bug detection - Detecting randomness

bug is, at principle, straightforward. We only have

to check if the contract executes some of random

source instructions which, although well known, are

all extremely dangerous for the assets involved with

the contract.

IV. THE PROOF OF CONCEPT ON A REAL

SCENARIO

This section describes the usage of the Oyente-NG on a

real scenario. It shows the automatic detection of

vulnerabilities unseen by the developers, even being

experienced ones. At the end, it addresses the development

and the main challenges faced by the research project.

A. Evaluation of the Wibx contract - Version 1

Although simple, the contract was found with 2

occurrences of Integer Overflow and a potential Out of Gas

Send. Figure 7 shows the overall analysis and its results.

Figure 7. Output of Oyente-NG run over the first version of

the Wibx contract, and detected vulnerabilities.

We can see on the above figure how the Oyente-NG flags

the vulnerabilities found. On the first red box, there is a

boolean declaring the presence or absence of each. Second

and third red boxes show some details, pointing, in this case,

the program variables susceptible to integer overflow.

Finally, the orange box shows estimates for the worst case

gas consumption

Figure 8 presents the detailed report of variables. For

instance, it points that, on the line 96, column 9 of the source

code, the variable balanceOf[_to] is prone to overflow. It

makes easier and faster for the developer to validate and patch

the issues.

Figure 8. Integer overflow vulnerability detected, and

respective places of occurence.

Figure 9 presents, in case of potential gasless send (also

called out-of-gas send), an estimate for the worst case. With

the intention of assuming transaction costs, it is essential for

Wibx to minimize the gas usage of its contracts, in order to

reduce operational costs and increase efficiency.

Figure 9. The worst case Gas estimates for the contract.

B. Evaluation of the Wibx contract - Version 2

The second version of Wibx contract is far more

elaborated and complex, gathering the contract itself and a set

of dependencies. It is essential to ensure the security of both,

contract and dependencies, so will be shown the outputs of

each file. Figure 10 shows the analysis of the dependency

BCCHandled.sol, which was found with high gas demand.

Figure 10. Evaluation of first dependence:

BCCHandled.sol.

Figure 11 shows the analysis of the dependency

ERC20.sol, which was also found with high gas demand.

Figure 11. Evaluation of second dependence: ERC20.sol.

Figure 12 shows the analysis of the dependency

SafeMath.sol, an almost ubiquitous library for safe arithmetic

operations. It is possible to see that this file achieved the best

possible evaluation, with no vulnerabilities found.

Figure 13 shows the analysis of the dependency

TaxLib.sol, which also achieved the best possible evaluation,

with no vulnerabilities found.

Finally, Figure 14 shows the analysis of the main contract:

WibxToken.sol. It was found, besides the potential excessive

gas use, an occurrence of integer underflow, even using the

SafeMath library. It was later discovered that a missing and

(not so well documented) importing command made the code

vulnerable.

Although none of the new implemented vulnerabilities

were found at provided contracts, we are planning a

benchmark for using the main Ethereum network, in order to

gather statistics about the actual state of affairs concerning

these vulnerabilities.

Figure 12. Evaluation of the third dependence:

SafeMath.sol.

Figure 13. Evaluation of the fourth dependence: TaxLib.sol.

Figure 14. Evaluation of the main contract: WibxToken.sol.

V. CONCLUSION

The goal of this paper was to report the main results of a

research effort involving automated reasoning techniques for

the detection of security vulnerabilities in Ethereum-based

Smart Contracts.

The implemented product, Oyente-NG, has allowed the

detection of 5 additional vulnerabilities in complement to the

7 existing ones previously implemented in the original

Oyente. Thus, we have shown that: it is possible to

automatically analyze, detect, and flag vulnerabilities for

Ethereum-based smart contracts; and also it is possible to

state that this approach is able to be effectively applied to

mitigate risks and/or increase smart contracts resilience.

The following challenges and requirements were

successfully tackled on this research: vulnerability taxonomy,

automatic detection using symbolic execution, agile

development, and smart contracts assessment.

A Research-Based Scrum Agile Framework was adapted

for managing the cohesive, productive, and collaborative

development team of researchers remotely working. Finally,

a Proof-of-Concept applied to a real set of smart contracts has

shown the effectiveness of the proposed method.

The authors recommend that those implemented elements

associated with different enterprise efforts be used to improve

and speed up smart contract quality, thereby optimizing

existing resources and contributing to better security.

VI. FUTURE WORKS

As a natural continuation of this research and due to its

importance on the global context, the authors of this paper

suggest the following works for further research, involving

the expansion of the proposed concept:

● Its use for detecting the largest set of contracts (as

much as possible) for benchmarking purposes;

● The implementation of new vulnerabilities, insofar as

they are discovered, similarly to the updates of

antivirus products; and

● Finally, an applicability study of the proposed concept

for other languages used for smart contract

development, e.g, typescript.

ACKNOWLEDGMENT

The authors would like to thank: the Brazilian

Aeronautics Institute of Technology (Instituto Tecnológico

de Aeronáutica - ITA); the Casimiro Montenegro Filho

Foundation (Fundação Casimiro Montenegro Filho - FCMF);

and the Ecossistema Digital Business enterprise. for their

infrastructure and financial support to the development of this

research project, allowing its PoC in a real environment.

REFERENCES

[1] Nakamoto,S., “Bitcoin : A Peer-to-Peer Electronic Cash

System”, https://bitcoin.org/bitcoin.pdf, 2009.

[2] Clack, C.D., et. al..: "Smart contract templates:

foundations, de-sign landscape and research directions",

2016.

[3] Atzei N et. al., "A survey of attacks on Ethereum smart

contracts" In Proceedings of the 6th International

Conference on Principles of Security and Trust, vol.

10204, pages 164-186, 2017.

[4] Buterin, V., “A Next Generation Smart Contract &

Decentralized Application Platform”,

https://cryptorating.eu/whitepapers/Ethereum/Ethereum

_white_paper.pdf, 2013.

[5] CoinMarketCap.com. “Ethereum Capitalisation”.

https://coinmarketcap.com/currencies/ethereum/, 2018.

[6] Prisco, G., "The DAO raises more than $117 million in

world’s largest crowdfunding to date".

https://bitcoinmagazine.com/articles/the-dao-raises-

more-than-million-in-world-s-largest-crowdfunding-to-

date-1463422191, 2016.

[7] Ecossistema Ltd., “Wibx Whitepaper”,

https://static.wibx.io/whitepaper_en.pdf, 2018.

[8] Ecossistema Team, “Wibx Coin”,

https://github.com/wibxcoin/Contracts, 2018.

[9] Sutherland J., “SCRUM Handbook”, Scrum Training

Institute Press, 2017.

[10] Cohen D., et. al., “An Introduction to Agile Methods”

In Advances in Computers, vol. 62, pages 1-66, 2004.

[11] Luu, L. et. al., “Making Smart Contracts Smarter” In

CCS ‘16, Vienna, Austria, 2016.

[12] IBM, "IBM Blockchain based on Hyperledger Fabric

from the Linux Foundation",

https://www.ibm.com/blockchain/hyperledger.html,

2019.

[13] G. Wood, “Ethereum: A Secure Decentralised

Generalised Transaction Ledger EIP-150 Revision”,

https://gavwood.com/paper.pdf, 2014.

[14] Tosh D. K. et al, “Security Implications of Blockchain

Cloud with Analysis of Block Withholding Attack” In

17th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing,

https://www.computer.org/csdl/proceedings/ccgrid/201

7/6611/00/07973732.pdf, 2017.

[15] X. Li, et al., “A survey on the security of blockchain

systems” In Future Generation Computer Systems,

https://arxiv.org/pdf/1802.06993.pdf, 2017.

[16] Dika, A., “Ethereum Smart Contracts: Security

Vulnerabilities and Security Tools”,

https://brage.bibsys.no/xmlui/bitstream/handle/11250/2

479191/18400_FULLTEXT.pdf?sequence=1, 2017.

[17] Szabo, N., "Formalizing and securing relationships on

public networks",

https://firstmonday.org/ojs/index.php/fm/article/view/5

48/469-publisher=First, 1997.

[18] King, J., “Symbolic execution and program testing” In

Commun. ACM, 19(7):385-394, 1976.

[19] Hearn, M.., “Corda: A distributed ledger”,

http://www.corda.net/content/corda-technical-

whitepaper.pdf, 2016.

[20] Cousot, P., Cousot, R., “Abstract interpretation: A

unified lattice model for static analysis of programs by

construction or approximation of fixpoints”. In

Proceedings of the 4th ACM SIGACT-SIGPLAN, 1977.

[21] Introduction to Software Analysis. “Chapter 11:

Dynamic Symbolic Execution.” YouTube video, 15:52.

Jan. 05, 2019. https://youtu.be/QrtGOrSrVPQ

[22] Microsoft Corporation. “The Z3 theorem prover”.

https://github:com/Z3Prover/z3.

[23] Nadolinski, E. , “Proxy Patterns”,

https://blog.zeppelinos.org/proxy-patterns/, 2018.

https://bitcoin.org/bitcoin.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://coinmarketcap.com/currencies/ethereum/
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-
https://static.wibx.io/whitepaper_en.pdf
https://github.com/wibxcoin/Contracts
https://www.ibm.com/blockchain/hyperledger.html
https://gavwood.com/paper.pdf
https://www.computer.org/csdl/proceedings/ccgrid/2017/6611/00/07973732.pdf
https://www.computer.org/csdl/proceedings/ccgrid/2017/6611/00/07973732.pdf
https://arxiv.org/pdf/1802.06993.pdf
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2479191/18400_FULLTEXT.pdf?sequence=1
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2479191/18400_FULLTEXT.pdf?sequence=1
https://firstmonday.org/ojs/index.php/fm/article/view/548/469-publisher=First
https://firstmonday.org/ojs/index.php/fm/article/view/548/469-publisher=First
http://www.corda.net/content/corda-technical-whitepaper.pdf
http://www.corda.net/content/corda-technical-whitepaper.pdf
about:blank
https://twitter.com/leanthebean
https://blog.zeppelinos.org/proxy-patterns/
https://blog.zeppelinos.org/proxy-patterns/

