
Gated Recurrent Unit Hierarchical Architecture for
Fundamental Stock Analysis and Forecast

Gabriel Adriano de Melo
Department of Electrical and

Computer Engineering
Instituto Tecnológico de Aeronáutica

São José dos Campos, Brasil
Email: gam@ita.br

Paulo Marcelo Tasinaffo
Department of Electrical and

Computer Engineering
Instituto Tecnológico de Aeronáutica

São José dos Campos, Brasil
Email: tasinaffo@ita.br

Abstract—This work proposed a novel technique for funda-
mental analysis using a shared, hierarchical neural network
model, based on the state-of-the-art Gated Recurrent Unit (GRU).
The model uses the quarterly reports to predict the mean stock
price at the next report, a three month ahead forecast based
on past performance. There are 3 hierarchical models in the
proposed architecture: the first is a general recurrent feature
extractor, that can be interpreted as an encoder, the second is a
specialized feedforward layer that captures the information from
companies in the same sector, the third is a highly specialized
logistic regression performed on the activations from the second
model, trained separately for each company. This structure
provides a solid background for transfer learning in which
multiple neural networks, one for each stock, has most of it
weights shared between its instances.

I. INTRODUCTION

As a way to apply novel Deep Learning techniques to the
financial field, an extensive research was carried out in order
to prospect the commonest problems, from which, time series
forecasting from the stock prices was found. A deeper review
has found that many researchers use only the stock prices data
to make a prediction. It turns out that this time series with
a high frequency sampling has a high autocorrelation, and a
frequency distribution that is similar to a Brownian Motion,
which implies that the best estimator is simply the last known
price of the times series with a factor of the drift.

Another common pitfall for researchers that have trained
Machine Learning Models with more than thousands of pa-
rameters, specially neural networks models, is to have a biased
estimative for the model’s performance given the evaluation on
the test set. For instance, [1] argues that most claimed research
findings in financial economics are likely false. The reason for
this is that the test set has also been used to fine-tune those
parameters, and so the models were sampled and discarded
based on the same set.

In order to avoid the short-term unpredictability that the
stock prices show, whose best estimator is the current price,
a longer quarterly sampling frequency was chosen, in which
fundamental indicator’s for the companies are released. There-
fore, the analysis is predicated on those firm characteristics
and under the assumption that those metrics govern long-term
stock returns, as stated by [4].

An Artificial Neural Network architecture was proposed
using a Gated Recurrent Unit layer followed by a hierarchical
arrangement of fully connected layers, in which the last two
layers were fine tunned according to the company and its
segment. This model can be think of an ensemble of Neural
Networks, for each company, that shares the same parameters
for the initial layers. This feature extraction is thought to be
invariant for the company and for the time period considered,

This paper is divided in the following manner: Section II
brings a literature review from papers that also have applied
neural networks in financial forecasting; Section III provides
a basic understanding of neural networks and the architectures
used as base for developing the proposed model; Section IV
describes the network’s development discussing the range of
feasible hyper-parameters; Section V provides the implementa-
tion details and execution results for this work; Finally, Section
VI summarize this work with suggestions for future research.

II. RELATED WORK

Forecasting data series using neural networks has been
widely use in many different areas such as electric load
forecasting [5] using recurrent neural networks with the Long-
Short Term Memory (LSTM) cell.

Most of the research for financial market forecasting takes
into consideration only the stocks prices and its technical
indicators (functions of the price series) as seen on [2], [3],
[6]. These researches also use only a training and a test set on
which their models are evaluated for hyper-parameter tunning,
giving a biased estimate of the performance.

Deep feedforward neural networks were employed by [7]
using only technical indicators (price based) in high-frequency
having a performance that was close to random chance.
Convolutional neural networks (CNN) were also used to model
high frequency trading [8] using a spatio-temporal modeling
by spatial-time diagrams. Auto-encoders were employed by
[9] to predict the stock prices in order to have a portfolio that
would outperform the market index, but the returns give in the
test set were worst than the index.

Reinforcement learning with deep neural network was ap-
plied by [10] with results that outperformed the Dow Jones
Industrial average from 2016 to 2018, but the agent had only



30 stocks to choose from. This limitation on the stock number
and which criterion were used to choose these stocks weren’t
discussed in that paper, a finding that undermines the research.

The work of [11] applied several architectures for price
time-series forecasting such as linear algorithms (auto re-
gressive moving averages) and various neural networks ar-
chitecture: convolutional neural network (CNN), recurrent
neural network (RNN), Long Short-Term Memory (LSTM)
and Multilayer Perceptron (MLP). The work did not provide
a validation set and it reported a forecast that was close
to the naive approach of predicting the future price as the
current price. The approach used directly the undifferentiated
time series with mean square error (MSE), which may be
misleading since these time series has a high autocorrelation.

Factorization and empirical mode decomposition based neu-
ral networks were also employed by [12], who reported good
results but it didn’t have a validation set.

III. THEORETICAL BACKGROUND

The Artificial Neural Networks are universal function ap-
proximators whose optimizing objective (in supervised learn-
ing) is to minimize the loss (the error) of its outputs with re-
spect to the ground truth. Biology has provided the inspiration
for developing this field in which neurons are the basic unit
of computation and the information is said to be distributed
across the synaptic connections between the neurons. In the
computation model, a neuron represents only a node where
its inputs are linearly summed with a bias and then fed to
an activation function. It is crucial that the activation function
should be non-linear so that the whole network can compute
a non-linear function from its inputs.

The most common optimization technique is backpropaga-
tion, in which the partial derivatives of the loss function with
respect to the activations are successively calculated from the
last layer to the first layer.

A. Recurrent Neural Networks

Recurrent neural networks were developed in order to
receive a sequence of data as input using its hidden states
activations as an extra input for the next sequence step. This
characterizes a feedback loop inside the neural network, that
can be interpreted as a memory. The outputs of this network
not only depends on its inputs but it also depends on its past
activations, as shown on the Equation 1. In this equation, A<t>

is a matrix that represent the activations in a layer of the
recurrent network at the instant t, σ is an activation function
that is applied element-wise, X<t> is the input vector for this
layer at time t, Wax and Waa is the weight matrix for the
inputs and the past activations respectively.

A<t> = σ(WaxX
<t> +WaaA

<t−1>) (1)

This property has made recurrent neural networks perform
well on sequence tasks as machine translation and speech
recognition. It is important to note that the simple fully
connected recurrent neural network suffers from the vanishing
and exploding gradient problems, caused by the multiplicative

nature of backpropagating the error signals. This leads to an
exponential increase or decrease of the gradient, making learn-
ing difficult for deep networks or for long time dependencies
in the backpropagation through time.

B. Gated Recurrent Units

The most recent improvement for the Long-Short Term
Memory (LSTM) [13] has been the Gated Recurrent Unit
(GRU) that simplifies the cell architecture while maintaining
similar or even better performance [14]. The Figure 1 shows
the dataflow diagram of a GRU cell.

Fig. 1. Gated Recurrent Unit (GRU) cell represented by its dataflow diagram.

The GRU cell state is summarized by the Equation 2, where
W are the weight matrix, Γu, Γr are the coefficients calculated
from the Update and Reset gates, respectively.

Â(t) = tanh(Waa(Γr ∗A(t− 1)) +Waxx(t))
Γr = σ(WraΓrA(t− 1) +Wrxx(t))
Γu = σ(WuaΓrA(t− 1) +Wuxx(t))

A(t) = Γu ∗ ˆA(t) + (1− Γu) ∗A(t− 1)

(2)

IV. PROPOSED MODEL

In this section, the Hierarchical Architecture using a layer
of Gated Recurrent Units (GRU) is presented. This model is
used to predict the price variation of a stock in a 3-month
time-step given its fundamentals and past price variation. This
characterize a regression task.

This network has 3 different hierarchies in which distinct
features are extracted. The innermost representation is respon-
sible for generalizing between all company fundamentals data,
being a sequence-to-sequence model. The idea is that there
are fundamental companies characteristics between the dataset
that can be summarized across all training cases. Therefore,
this first model should trained across all companies.

The second hierarchy defines the sector to which an specific
company pertains. In this way, every sector has its own weights
that are shared between all companies within the same sector.
This was developed because different sectors have distinct



Fig. 2. A model for the proposed Gated Recurrent Unit Hierarchical Architecture.

fundamental ratios that should be taken in consideration when
comparing the company data from those sectors.

Finally, the last hierarchy is just a logistic regression of
the past hierarchical features, for which the prices estimates
are made. This last layer depends only on one company data,
therefore it has a minimal amount of parameters in order to
avoid overfitting. This description is summarized in the Figure
2.

V. IMPLEMENTATION

The Python framework Keras [15] was used to build the
neural network architecture proposed. The mean squared error
(MSE) was defined as the loss function, observed in Equation
3, where Yi is the target value at the training case i and Ŷi
is the network’s prediction for this case. The batch size was
defined as 32.

MSE =
1

N

N∑
i=1

(Yi − Ŷi)2 (3)

As the optimization heuristics, the adaptive moment estima-
tion (Adam) [16] has been selected due to its efficiency and
robustness provided by the estimates of the average first mo-
ment and second moments of the gradients. In other words, this
estimation combines the momentum of the gradient, defined as
its exponentially weighted sum (exponential moving average)
observed in the equation 4, and also the normalization factor

that is the momentum of the square of the gradient (element-
wise) observed in the Equation 5. Its hyper-parameters are
the learning rate α, whose initial value was set as 0.01; β1,
the smoothing factor for the first moment, with default value
0.9; β2, the smoothing factor for the second moment, with
default value 0.999; and ε, a small constant that guarantees
numeric stability in the update equation’s denominator, seen
in Equation 6, avoiding division by zero.

In the Equations 4, 5, 6, W denotes the weight vector
that represents all trainable parameters in the neural network,
V is the exponentially weighted sum from the gradient and
S is from the square (element-wise) of the gradient. These
equations are evaluated at every mini-batch iteration in the
training phase, as the gradients estimates are evaluated.

Vupdated = β1V + (1− β1)∇W (4)
Supdated = β2S + (1− β2)(∇W )2 (5)

Wupdated = W − α Vupdated√
Supdated + ε

(6)

A. Data Overview

The data was acquired at the Corporate fundamental data
provided freely by the Tilden Group [17]. The Tilden Group
states that this dataset has come from over 20 years of
10-Q and 10-K filings made by public companies with the
U.S. Securities and Exchange Commission. They affirmed to
have extracted the data from both text and XBRL filings,



Fig. 3. Dataset segmentation in training, validation and test sets.

normalizing the data into quarterly time series of final restated
values.

The data from 763 available companies was initially verified
by discarding stocks that were early than 1994 or that had all
data of a indicator missing. In order to get information about
the sectors each company was categorized, new data from
another plataform, SimFin [18], was freely acquired. Only
companies that had a category in this dataset was kept, while
the others were discarded. After those steps of discarding data
that was unattainable, only 209 companies had remained.

It is important to note that some values were missing
from some fundamental data entries for almost all companies,
so it was necessary to interpolate those values. A linear
interpolation was used. Besides missing values, there were also
outliers that have been found in the data that were the result
of some mistake, by having a value as big as 1018. Using the
median deviation to the median, those outliers were filtered
and theirs values were also interpolated. Those problems found
in the dataset may harm the model performance by breaking
some of the structural patterns of the data.

The following indicators were used directly as input, after
being normalized: EPS basic, EPS diluted, Dividend per share,
ROE (Return on equity), ROA (Return on assets), P/B ratio
(the ratio of Price to Book value of equity per share), P/E
ratio (the ratio of Price to EPS diluted TTM as of the previous
quarter), Dividend payout ratio, Long-term debt to equity ratio,
Equity to assets ratio, Net margin (the ratio of Earnings TTM
to Revenue TTM), Asset turnover (the ratio of Revenue TTM
to TTM average Assets), Free cash flow per share, Current
ratio.

The following indicators were divided by its value at
the previous time-step (ratio normalization): Assets, Current
Assets, Liabilities, Current Liabilities (at the end of a quarter),
Shareholders equity (includes both common and preferred
stockholders), Goodwill & intangibles, Long-term debt, Rev-
enue, Earnings, Earnings available for common stockholders,
Cash from operating activities, Cash from investing activities,
Cash from financing activities, Cash change during period,
Cash at end of period, Capital expenditures, Price (the medium
price per share of the company common stock during a given
quarter as reported, not adjusted for subsequent dividends),
Book value of equity per share, Cumulative dividends per
share, Non-controlling interest, Preferred equity. This normal-
ization is shown by Equation 7 where the R(t) is the ratio
normalization performed, V (t) is the value to be normalized
at time-step t and ε is a small constant to avoid division by

0 2 4 6 8 10 12 14
Quarters

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

1.125

P
ric

e 
ra

tio

Predicted 1
Predicted 2
Target

Fig. 4. The mean ratio of the price predicted by the models.

0 2 4 6 8 10 12 14 16
Quarters

1.0

1.2

1.4

1.6

1.8

P
ric

e 
N

or
m

al
iz

ed

Predicted 1
Predicted 2
Target

Fig. 5. The mean price normalized predicted by the models.

zero, used with value 10−8. If the value of V (t−1) was zero,
R(t) would also be masked to zero, signaling a abnormal ratio
to the neural network and preventing large ratios.

R(t) =
V (t)

V (t− 1) + ε
(7)

The sector were distributed in the following way with the
company count: Farm 1, Beverages 5, Publishing 3, Com-
munication 7, Chemicals 7, Transportation 5, Industrial 19,
Forest 1, Employment 1, Steel 1, Oil 16, Biotechnology 1,
Consulting 1, Metals 3, Brokers 2, Retail 17, Application 11,
Aerospace 5, Tobacco 1, Medical 13, Health 4, Packaging
3, Computer 5, Drug 6, Utilities 11, Business 5, Airlines
4, Autos 3, Entertainment 2, Engineering 1, Restaurants 2,
Semiconductors 8, Personal 1, Building 2, Travel 5, Consumer
18, Manufacturing 5, Asset 2, Advertising 2.

There were initially 96 quarters. After differentiating and
taking one time step for forecasting, 94 quarters remained,
from which the last 16 were separated to the test set, the last



Fig. 6. An alternative training method for the General Model feature encoder.

remaining 16 to the validation set and the remaining 62 were
taken to the training set, as shown in the Figure 3.

The results of the model are shown in Figure 4, where the
actual outputs and targets to the neural network are shown.
There were two models, the first which had fewer parameters
and the second with more that generated, respectively, the
predictions 1 and 2. It is important to note that model 2
has suffered from overfitting as it had a MSE of 0.718 in
comparison with 0.361 from model 1. While model 1 had
only 1 GRU, model 2 had 6.

Another way of training the General Model is trying to
predict more than one characteristic at the same time, what is
called multi-task learning, shown in the Figure 6. This alter-
native would be similar to an autoencoder with the difference
that it is not trying to reproduce its input but rather predict
the next sequence.

VI. CONCLUSIONS

This work’s technique for forecasting stock prices from
fundamental analysis using a shared, hierarchical neural net-
work model, based on the state-of-the-art Gated Recurrent Unit
(GRU) was not better than random choice. Even tough the
model have used the quarterly reports to predict the mean stock
price at the next report, a three month ahead forecast based
on past performance, the effect of short term oscillations was
still high.

There were 3 hierarchical models in the proposed archi-
tecture: the first was a general recurrent feature extractor,
that can be interpreted as an encoder, the second was a
specialized feedforward layer that captures the information
from companies in the same sector, the third aws a highly spe-
cialized logistic regression performed on the activations from
the second model, trained separately for each company. This
structure provided a solid background for transfer learning in
which multiple neural networks, one for each stock, had most
of it weights shared between its instances.

In this way, the three-month time window for the prices
estimate was very noisy and non-stationary due to the variety

of factors that may affect the stock markets [19]. The historical
corporate fundamental data series is not easily available, for
instance, the Compustat database needs credentials to be
accessed through Wharton Research Data Services, a database
that was inaccessible to us.

REFERENCES

[1] C. R. Harvey, Y. Liu, and H. Zhu, “. . . and the cross-section of expected
returns,” The Review of Financial Studies, vol. 29, no. 1, 2016.

[2] D. A. Hara, M. A. Botelho, A. Panariello, and C. H. C. Ribeiro,
“Algorithmic trading using artificial intelligence tools,” in Workshop of
Artificial Intelligence Applied to Finance (WAIAF), 2018.

[3] E. Jabbur, R. Oliveira, and A. Pereira, “Proposal and implementation
of machine learning and deep learning models for stock markets,” in
Workshop of Artificial Intelligence Applied to Finance (WAIAF), 2018.

[4] E. F. Fama, “Market efficiency, long-term returns, and behavioral fi-
nance,” Journal of Financial Economics, vol. 49, pp. 283–306, 1998.

[5] J. Zheng, C. Xu, Z. Zhang, and X. Li, “Electric load forecasting in smart
grids using long-short-term-memory based recurrent neural network,”
in 2017 51st Annual Conference on Information Sciences and Systems
(CISS), March 2017, pp. 1–6.

[6] Y. Song, “Stock trend prediction: Based on machine learning methods,”
Master’s thesis, University of California Los Angeles, 2018.

[7] E. Chong, C. Han, and F. C. Park, “Deep learning networks for stock
market analysis and prediction: Methodology, data representations, and
case studies,” Expert Systems with Applications, vol. 83, pp. 187–205,
2017.

[8] M. F. Dixon, N. G. Polson, and V. O. Sokolov, “Deep learning for spatio-
temporal modeling: Dynamic traffic flows and high frequency trading,”
Appl Stochastic Models Bus Ind., pp. 1–20, 2018.

[9] J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning for finance:
deep portfolios,” Applied Stochastic Models in Business and Industry,
vol. 33, pp. 3–12, 2016.

[10] Z. Xiong, X.-Y. Liu, S. Zhong, H. B. Yang, , and A. Walid, “Practical
deep reinforcement learning approach for stock trading,” in NIPS 2018
Workshop on Challenges and Opportunities for AI in Financial Services:
the Impact of Fairness, Explainability, Accuracy, and Privacy, Montréal,
Canada., 2018.

[11] H. M, G. E. A., V. K. Menon, and S. K. P, “Nse stock market prediction
using deep-learning models,” Procedia Computer Science, vol. 132, pp.
1351–1362, 2018.

[12] F. Zhou, H. min Zhou, Z. Yang, and L. Yang, “Emd2fnn: A strategy
combining empirical mode decomposition and factorization machine
based neural network for stock market trend prediction,” Expert Systems
With Applications, vol. 115, pp. 136–151, 2019.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[15] F. Chollet et al., “Keras,” https://keras.io, 2015.
[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015.

[17] L. Tilden Group, “Corporate fundamental data,” http://www.stockpup.
com/data/, 2018.

[18] S. UG, “Simplifying finance: Data finder,” https://simfin.com, 2018.
[19] J. Alberg and Z. C. Lipton, “Improving factor-based quantitative in-

vesting by forecasting company fundamentals,” in 31st Conference on
Neural Information Processing Systems (NIPS), 2017.


