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Abstract

We propose the construction of an intra-daily algorithmic trading strategy based on machine
learning models, specifically Tree-Based Methods as Gradient Boosting, Random Forests and
BART. The models are constructed to capture the dynamic of market microstructure variables
and model their impact into the sign of the future returns. We also verify the impact in the
statistical and financial performance of time aggregation and minimum returns requirements
for class identification. In the end we verify the financial significance of our models through a
trading simulation.

Introduction

Forecast the financial markets is of huge
interest for different agents. Besides the variety
of different interests this is not an easy task, ex-
pectation of asset returns is of hard predictabil-
ity, but in spite of that some success has been
achieved along the years including the forecasts
of returns signs. Recent works made by Dixon,
Klabjan e Bang (2016), Tsantekidis et al. (2017)
and Fletcher e Shawe-Taylor (2013) already veri-
fied that the sign of high-frequency returns can
be predicted by modeling the trading dynamic.

We propose to verify the ability of an al-
gorithms family that as far as we know hasn’t yet
been fully tested, Ensemble-trees are a hot topic
inside the Machine Learning (M.L.) community
specially due to their recently excellent perfor-
mance in M.L. competitions (CHEN; GUESTRIN,
2016). Breiman et al. (1984) were the responsible
to popularize the decision trees, and since then a
lot of tree ensemble methods has been presented
in the literature. We’ll investigate the forecast
ability of three of them: Boosting (FREUND;
SCHAPIRE, 1997), Random Forests (BREIMAN,
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2001) and BART (CHIPMAN et al., 2010).

We’ll use this models to forecast the
signal of asset returns based on 27 Market Mi-
crostructure variables, and asses models quality
with the major Brazilian asset, the Petrobras
Company (PETR4.SA), recently in media due
to political corruption scandals. The series starts
in Dec/2015 and goes to Jun/2018, part of the
troubled period.

1 Theoretical Reference

1.1 Sign of Returns
Due to recent results to be presented in

section 1.2, we’ll investigate if exists predictabil-
ity of returns sign in intra-daily horizons. In
high frequency horizons, observations without
any change on prices are quite common, this kind
of situation defines a 3 class prediction problem,
returns Rt can be positive, negative or null. Null
return can be intuitively understood as Rt = 0,
but we’ll define it in a different way, due to the
noise on high frequency signs we’ll test differ-
ent minimums of price oscillation to classify a
return as different from null, in this work null
return will be defined as |Rt+1| < m where m is
a real constant, this was originally proposed by
Tsantekidis et al. (2017).

Should be clear by now that we have on
our hands a three classification problem, this kind
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of problem is usually described by a multinomial
density function like (1):

P (X1 = n1, . . . , Xr = nr) =
n!

n1! . . . nr!
pn1

1 . . . pnr
r , (1)

for the rest of this paper we’ll assume that our
signals follows (1).

1.2 Related Work
Machine learning uses generic algorithms

of high versatility without requiring specific hy-
pothesis about the data generating process (DGP),
this versatility makes them highly adaptable to
different datasets. Recently several works achieved
good performance using machine learning to fore-
cast high-frequency returns signs, our interest is
inside a share of this literature that combines
those algorithms to Market Microstructure vari-
ables.

Inside the Deep Learning paradigm we
have the works of Dixon (2017) and Tsantekidis
et al. (2017), that modeled the volumes into the
top 10 levels of the Limit Order Book (LOB). The
evaluated architectures goes from Traditional
Multilayer Perceptrons passing through Recur-
rent, Long-Memory and Convolution Neural Net-
works, they also compared these architectures to
Support Vector Machines, a technique that was
previously analyzed by Fletcher e Shawe-Taylor
(2013) and Kercheval e Zhang (2015). On these
two last works the variety of variables, and conse-
quently, richness of modeled dynamic was bigger,
they verified that the most important variables
for forecasting were inside the trading dynam-
ics like last price and number of traded stocks.
Han et al. (2015) extended this rich dynamic to
the classification trees world, and achieved even
better forecasting capacity.

The lack of one predominant technique
to model the relationship between the variety
of Microstructure estimators and returns signals
turns this an open point in literature. In our
work we’ll increase one more test to this litera-
ture, Ensemble trees have recently returned to
popularity due to the good performance of the
XGBoost system in M.L. competitions (CHEN;
GUESTRIN, 2016). Despite this awesome per-
formance other ensemble tree methods are quite
famous, as stated before we’ll recover the work
of Han et al. (2015) and evaluate the random
forest model, in addition to that inspired by the
recently great performance of Bayesian Addi-
tive Trees we will also add MPBART (KINDO;
WANG; PEÑA, 2016) to our analysis.

2 Methodology

2.1 Data-Set
To construct our dataset we’ll use the

stock high frequency database from the Brazilian
Stock Exchange B3.SA; we are in debt with Per-
lin e Ramos (2016) for the construction of a sys-
tem that makes the manipulation of this dataset
so simple. Our database starts in 01/12/2015 and
goes to 12/06/2018. With this dataset we con-
structed the following descriptive variables: Time;
Last Price; Last Return; Sign of last Return; Re-
alized Volatility; Number of trades; Quantity of
Trades; Volume; Weighted Price by Volume; New,
Updated and Canceled Orders; Offers Maximum,
Minimum and Weighted Price.

To realize the frequency analysis we con-
structed 60 databases with frequencies ranging
between 1 and 60 minutes, increasing the fre-
quency in each successive databases by one minute.
To add the time series structure we’ll work with
variables lagged two periods and use the time
until the trading sections open as covariate. Af-
ter we find an optimal frequency we’ll apply an
approach proposed by Casals, Jerez e Sotoca
(2009) and combine variables aggregated in other
frequencies.

2.2 Competitor Models
As usual we want to construct a func-

tion regressing the labels yi into our variables
xi = (x1,i, x2,i, ..., xm,i) with i = 1, . . . , N , and
we want to use some model f̂(x) to make this
function. we will test four different models to con-
struct this function. We’ll make forecasts for the
returns signs using three Tree-Ensemble methods,
Random Forests, Boosting and BART, addition-
ally we’ll estimate the Logistic regression. The
interest for the tree tree algorithms is due to
the low volume of works evaluating their perfor-
mance, with exception of Random Forests that
has already been tested by Han et al. (2015).

2.2.1 Logistic Regression

The interest in logistic regression is due
to it being one of the most traditional linear
regression model for classification, usually when
we see a non-linear classification method we ask
if the improvement of forecasting quality is due
to capacity of generating non-linearities in the
regressors space, Logit can give us some intuition
for that. We can initially define the logits of each

2



reference class as:

log
πij

πiJ
= log

πij

1−
∑J−1

j=1 πij

=
k∑

k=0
xikβkj , (2)

where we define the log-chances of one class j
in relation to some chosen basis class J , in an
specific i scenario. Solving for πij , and standard-
izing the probabilities to sum 1 and be positive
we get to:

πij =
exp(

∑K
k=0 xikβkj)

1 + (exp
∑J−1

k=0 xikβkj)
, j ≤ J, (3)

πiJ = 1
1 + exp(

∑J−1
j=0 xikβkj)

. (4)

The equation (3) describe the proba-
bility of each of the j classes in the i scenario
and (4) describes the probability of the basis
class. To find the weights βi we make a gradi-
ent search seeking to maximize the likelihood
obtained through the joint density.

2.2.2 Regression Trees

The next three models are all created ex-
panding the concept of regression trees (BREIMAN
et al., 1984). Regression Trees divide the regres-
sors space into hyper-rectangles and assign a real
constant wj to each region so that given a vec-
tor x ∈ Rj → f(x) = wj we can present the
trees as T (x; Θ) =

∑J
j=1 wjI(x ∈ RJ), where

the parameter Θ = {Rj , wj}J
1 , contains the Rj

hyper-rectangles and the wj constants used to
forecast in each of the J regions, usually J is
treated as an hyper-parameter previously cho-
sen.

2.2.2.1 Boosting

Boosting (SCHAPIRE, 1991) is a mod-
eling philosophy that combines different weak-
learners, seeking to achieve one combined strong-
learner. We can represent our tree combination
as:

ŷi = φ(xi) =
K∑

k=1
fk(xi), fk ∈ F , (5)

where F = {f(x) = wq(x)} (q : Rm ⇒ T,w ∈ Rt)
is the Classification and Regression Tree (CART)
space, defining our final model (5) as a sum of
K trees.

Analytically this problem is not well-
defined and we need a numeric optimization al-
gorithm to solve this problem, usually, as a sum
of trees, which in each step t we estimate one ad-
ditional tree conditionally on the previous ones:

ŷ
(0)
i = 0,

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi),

. . .

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi),

(6)

in each iteration the estimated function ft(xi)
will be the one that minimizes the following reg-
ularized objective function:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk), (7)

Ω(fk) = γT + 1
2λ|||w||

2, (8)

The penalization element (8) helps to smooth
the learned functions preventing the over-fitting,
when we try to minimize (7) with more trees T
or leafs w; γ and λ are hyper parameters that
control the learning smoothness, and l is a convex
loss function that measures the forecasts qual-
ity, in our classification case usually the mlogloss
function. There’s a number of different implemen-
tations of this sequential estimation, in this work
we’ll use the famous system of Chen e Guestrin
(2016)

2.2.3 Random Forests

Another famous ensemble-tree method
is Random Forests (BREIMAN, 2001) which is
inspired in Bagging. Bagging is a forecast com-
bination methodology that aggregates B models
and uses their means as the punctual forecast as
in (9), we’ll select a sample of size b < N from
our dataset B times and fit B models f̂∗B(x)
with them.

f̂bag(x) = 1
B

B∑
g=1

f̂∗g(x) (9)

Random Forests adds a new procedure
to Bagging trying to decrease the model correla-
tion in the growing tree process. When construct-
ing the classification trees we’ll in every split
change the underlying DGP by changing the split
candidate-variables. In every split we’ll select
randomly r < k covariates that are eligible for a
split and restrict the candidate split variables to
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Figure 1 – Forecasting Accuracy - Frequency Analysis

Horizontal axis display the evolution from 1 to 60 minute frequency. Vertical axis indicate the Forecasting
Accuracy. Left Graphic presents the Accuracy of all forecasts. Right Graphic presents only the forecasting
accuracy of the extreme classes, positive and negative.

this subset, this randomization procedure tries to
decrease the correlation between the B models.
After we grow our B trees {T (x; Θg)}B

1 the Ran-
dom Forests classifier T̂rf is found rearranging
the trees output to a vector with K − 1 zeros
and a one inside the cell of the Kth predicted
class, after that we sum all trees and use the kth

biggest cell to make the forecast T̂rf (x):

f̂B
rf (x) = 1

B

B∑
b=1

T (x; Θb) (10)

T̂rf (x) = argmaxkf̂rf (x) (11)

Exists many implementations of this al-
gorithm and in this work we’ll use the implemen-
tation from Candel et al. (2016).

2.2.4 Bayesian Trees and MPBART

BART (CHIPMAN et al., 2010) and his
multinomial version MPBART (KINDO; WANG;
PEÑA, 2016) can be seen as a Bayesian version of
boosting. We’ve already told that a tree structure
is compound of two parts, the tree splits also
known as the tree-structure that define the hyper-
rectangles Rj and the vector of parameters in the
terminal leafs wj . Once this two parameters are
known the tree is unique and fully specified. So in
the usual Bayesian spirit we need to make a prior
for our Bayesian-Tree parameters. We’ll use the
same decomposed prior p(w,R) = p(w|R)p(R) as
in Chipman, George e McCulloch (1998) implicit
stating that the prior for the tree structure is
independent of the leafs.

We can view our classifier as surging
from a response latent vector that now we’ll call
by zi with dimensions K−1, when all elements of
this vector became negative we’ll forecast class K,

and other else if at least one of them is positive
we forecast the correspondent class as in (12):

yi(zi) =
{
j if max(zi) = zij > 0,
K if max(zi) < 0.

(12)

This vector zi is a function of the regressors
variables plus a random noise:

zi = G(Xi; Θ) + ε, for i = 1, . . . , n, (13)

G(Xi; Θ) = (G1(Xi; Θ1), ..., GK−1(Xi; Θk−1))
(14)

εi = (εi,1, . . . , εi,K−1)′ ∼ N(0,Σ), (15)
where Θ = {T,M} is the collection of tree struc-
tures. Equation (14) is specified as a vector that
in each cell have a sum of j classification trees
with respective structures Rk,j and leafs param-
eters wk,j = wk,j,1, . . . , wk,j,l for all the l =
1, . . . , b trees terminal nodes:

Gk(Xi;T,M) =
nT∑
j=1

g(Xi, Rkj , wkj) (16)

Where g are the individual regression
tree. The parameter estimation as usual is made
through a Metropolis Within Gibbs algorithm.
For further details look into the work of Kindo,
Wang e Peña (2016).

3 Simulation Results

3.1 Minimum Threshold and Optimum Fre-
quency

3.1.1 Frequency Analysis

The sample that we’ll use in this first
part is composed by one-hundred days going
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Figure 3 – Forecasting Accuracy - Threshold Analysis

Horizontal axis display the evolution from 1 do 60 minute frequency. Left Graphic presents the Accuracy of
all forecasts. Right Graphic presents the Final Balance of the financial simulation

from 26/05/2017 to 17/10/2017, the first 80 days
were used to train and the last 20 to test. Were
constructed 60 databases with different temporal
aggregations, in each successive base we enlarge
the sampling frequency by one minute, the most
disaggregate basis is of 1 minute and the most
aggregate is of 60 minutes, in this first part we’ll
use the minimum threshold 0, 01% for classify a
return as different from null. We’ll evaluate the
forecast quality of all 4 models: Boosting Trees,
Random Forests, BART and Logistic regression
in all 60 different frequencies.

As we can see in the left graphic into
figure 1 as we aggregate more our data-set the
models became more accurate. This behavior is
natural, as we came from the lower to the biggest
frequencies we slowly get out from a 3 classes to
a 2 classes problem, in the 60 minutes database
is really rare that the price don’t change, but
in the 1 minute base this is relatively common.
Perhaps a more interesting statistics would be
verify the number of times that we predict cor-
rectly into one of the extreme classes, positive
or negative, right graphic at figure 1 presents
this statistics. We can see that the accuracy have
the highest values in the smallest frequencies
reaching a minimum just a little before the 20
minutes, after that the curves slowly raises as we
aggregate more our dataset.

When we look to the financial perfor-
mance we don’t really get a clear picture. Figure
5 shows the ending balance of a short financial
simulation in the last 20 days. The vertical axis
presents the budget in Brazilian Real (R$), we
make this simulation with only one stock for get-
ting intuition, the mid price during this 20 days
was close to R$15,50.

Figure 5 – Financial Simulation

Final Balance of the four models. Horizontal axis
presents the frequencies evolution and vertical axis
presents the final balance of each model in each time
aggregation.

Figure 5 shows to us that the variance
of financial results increases dramatically as we
start to aggregate more our dataset, starting
in the lowest frequencies with strictly positive
results going to the biggest frequencies with a
variety of final results, both positives and nega-
tives.

3.1.2 Minimum Threshold

Following this first analysis we selected
only two models, Boosting and the Logistic Re-
gression, to analyze the impact of a minimum
threshold to classify a return as different from
null. This selection is simply due to this two mod-
els be the faster, allowing us to evaluate a bigger
space of different combinations. We classified the
returns as Positives, Negatives or Null requiring
0,01%, 0,05%, 0,1%, 0,5% of price oscillation.
Right graphic at Figure 3 presents the accuracy
of the forecasts for all 60 analyzed frequencies.

The left graphic at figure 3 tells us that
the highest levels of accuracy occur in the small-
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Table 1 – Forecasting Accuracy - 500 days

Forecasting Accuracy of all three models with respective confidence intervals.

Algorithm Boosting Trees Random Forests B.A.R.T. Logit
Accuracy 0.4113 0.4135 0.4124 0.3988

C.I. Superior 0.4142 0.4164 0.4152 0.4016
C.I. Inferior 0.4085 0.4107 0.4095 0.396

est aggregations together with the biggest thresh-
olds, as long we aggregate more our dataset less
accurate became the forecasts for the biggest
threshold. We believe that this behavior is due
to in the small windows doesn’t occur many sit-
uation where the prices oscillates so much. An
interesting behavior also occurs with the second
greatest threshold 0,1%, he starts the forecasts
with a great accuracy but suddenly fall, only
starting to recover the forecasting quality af-
ter the 20 minutes aggregation. The other two
thresholds presents a constantly and improving
forecasting behavior as we aggregate more our
dataset.

To refine the analysis we again make a
short financial simulation with only 20 days to
evaluate the forecasting quality, for making the
simulation a little different we changed the num-
ber of shares for the minimum lot required to
trade at B3.SA, 100 shares. The final balance of
all models with respective threshold is presented
in the right graphic at figure 3, displaying that
the unique strategies that would finalize the sim-
ulation with positive final balance would be the
ones with smallest frequencies, specially going
from 4 to 8 minutes. All others frequencies would
result in negative balances.

3.2 Financial Simulation
In the last section 3.1 we verified some

interesting behaviors, first of all seem to have
a great increase in forecasting accuracy as we
move for the greatest forecasting windows, but
we never see this greater accuracy translate into
profits, indeed we verified that only at the small-
est frequencies the models achieve positive final
balances. We also don’t see a great benefit in
set a higher threshold for class identification, de-
spite the greatest forecasting performance of the
highest threshold in the smallest frequencies.

Now let’s verify the forecasting qual-
ity five minutes ahead requiring only 0.01% as
minimum return for classifying it as different
from null, different from the previous analysis
we’ll expand our test-set. In this simulation our

Figure 7 – Financial Simulation

Balance evolution of the trading simulation for all
4 tested models. Horizontal axis presents the time
evolution and vertical axis presents the balance.

data-base will start at 2015/12/01 and end at
2018/06/12. We’ll make a rolling window sim-
ulation with the training set having the fixed
number of 100 days and test set having the fixed
number of 10 days. How we verified that greatest
forecasting horizons seems to have good statis-
tical properties, we’ll try to insert their quality
into the 5 minutes forecasts, together with the
variables sampled in intervals of 5 minutes we
will also add variables aggregated in 20 and 60
minutes. This will let us add the notion of ac-
celeration to the model and hopefully achieve
better statistical results.

We can see at table 1 that the overall
performance of all tree based methods are really
similar, with the confidence intervals overlapping.
The only model that appears to be significant
worst than the others is the logistic regression,
in addition to that if we think of ourselves in a
3 category regression we achieved a performance
that is superior to the 33,33% baseline. A good
way to differentiate all models is their financial
result, in figure 7 we present the wallet evolution
of a trader that trades only one stock in every
entry, again the vertical axis is in Brazilian Real
(R$), and the horizontal axis presents the time
evolution.

We can verify by figure 7 that all mod-
els generates a positive financial result with the
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Table 2 – Forecasting Accuracy - 500 days

In the first line we have the average financial return of all four models. In the second line we have this
numbers standardized by the returns financial standard deviation.

Algorithm Boosting Trees Random Forests B.A.R.T. Logit
Avg. Fin. Ret. 0.00084643 0.00080354 0.00056521 0.00025881
Std. Fin. Ret. 0.0314323 0.0301379 0.0212663 0.00971084

Boosting Trees model achieving the highest final
balance. Worth call the attention that PETR4.SA
was being traded by an average of R$12,79 in
our sample period so a final profit of R$70 is a
really exciting result. In a similar spirit of the
sharp index we divided the average results of this
models by their standard deviation, the results
are at table 2.

Table 2 shows that the highest average
return provided by the boosting trees model is
also benefited by a lower risk return proportion.
But shaw we call your attention for the negligi-
ble average financial return, we would need an
average cost of less than 0,001% to make this
strategy profitable.

4 Conclusions

We reviewed three state of art ensemble-
trees methodologies in this work: Random Forests,
Boosting and BART, together with the logistic re-
gression, and looked for their performance when
forecasting high-frequency financial signals. We
also investigated the impact of the series tem-
poral aggregation and a threshold for classify a
return as different from null.

First we verified that as more we ag-
gregate our dataset usually the models start to
present better statistical properties, but on the
other hand only the smallest frequencies have a
positive financial result. In addition we verified
that the the forecasting quality gets better and
worst in a similar way by all models, indicating
that all findings are characteristics of the true
DGP.

Secondly we verified that require higher
thresholds to classify a return as different from
null can generate better statistical properties,
but this came with a cost, the lack of predictions
in extreme classes. In addition to that in the
smallest thresholds usually we improve the fore-
casting performance as we aggregate more our
data, and in the highest thresholds the behavior
is the extreme opposite.

By end we verified that all analyzed al-

gorithms achieve a positive forecasting perfor-
mance in our 500 days simulation, ending the
period with profits. But we have to call the at-
tention for the Boosting Trees implementation
of Chen e Guestrin (2016), that achieved the
best risk return relationship. Despite of that, the
average returns of all models would probably
be corrupted by the transaction costs, a future
problem that will have to be analyzed.

In conclusion, we verified that small-
est frequencies and smallest thresholds provide
good trading strategies independently of the used
model, with special attention for Boosting Trees,
but none of the models achieve sufficient profits
to compensate the transaction costs. Future work
directions include analyze the size of detected
movements, insert a risk management strategy
like stop rules and analyze variables importance
in the typical regression tree way.
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