
Building a decentralized stock exchange using blockchain

Luiz Pizano Fonseca
New Technologies Department

Votorantim S.A.
Email: luizpizano.lpf@gmail.com

Paulo Andre Lima de Castro
Autonomous Computation Systems Lab

Aeronautics Institute of Technology (ITA)
São José dos Campos, SP, Brazil

Email: pauloac@ita.br

Abstract—This paper shows the implementation of the stock
exchange on the Ethereum platform, taking advantage, this
way, of the platform capacity of executing an application in
a decentralized but secure way (secure either against single
point of failure, either against a possible fraud). The assets
and the currency used to buy those assets are represented at
the Ethereum platform as specific Ethereum tokens; and a
code implements the application capable of receiving buy/sell
orders and capable of detecting automatically appropriate
matches of buy/sell orders and perform the transaction with
the transference of the currency and the assets.

Index Terms—blockchain, stock exchange, decentralized

1. Introduction

Cryptocurrencies have dragged attention of many in-
vestors and researchers. These coins are completely digital
and its system doesn’t rely on a central database register-
ing all the transactions and the balance of all accoutns,
but promises to have a safe copy of that database at any
computer which offers itself to process the application that
runs the system. That is the specialty of the technology
behind Bitcoin: a decentralized and safe database. Without
the need of a middle trustful organization, like a bank,
that registers those transactions and demands money for
its service.

The name of the technology briefly described above
is blockchain. In a few words, it’s a block chain where
each one of them has a list of transactions (A tranfers
0.003 bitcon to B) already performed. In order to use
the techology not just to decentralize the database, but
whole applications, Vitalik Buterin proposed a platform
which would allow its users to develop codes specifying
functions which could for example transfer a digital cur-
rency, or specifying the functions to interact with a crowd-
funding and under which conditions the collected money
would be released, in a way that those “contracts” (smart-
contracts as it is written in the official documentation)
remains available at the platform for anyone to use it (for
example to participate the crowdfunding). Once deployed
on the platform, the code specifying the features of the
contract wouldn’t be corrupted, and in accordance with
the interaction of the users, for example donating to the
crowdfunding, the variable registering the total collected
money (called state variable of the contract) would have
its value updated at all the nodes of the network. There
wouldn’t be interest anymore on thinking of a central
server for a crowdfunding application, such as Catarse

[4]. Copies of the application and its data would be
in multiple machines around the world, offered by any
machine owner, and those machines would consitute the
processing and data store of the platform. The name of
that platform, already operating, and with a conference
sponsored by giants like Microsoft and Santander [9], is
Ethereum.

Another player of the system described on this paper
is the capital market, BM&Bovespa for example, who, in
order to negotiate the assets, receives into its system buy
and sell orders and automatically recognizes when a buy
order proposes a price bigger than the price proposed by
a sell order and executes the transaction.

1.1. Motivation

Blockchain technology has been used to enable the
creation of several different digital currencies. In this
paper, we use it in a very different scenario: virtual
stock exchange. Stock exchange are institutions that fa-
cilitate the buying and selling of financial assets by many
economic agents. These exchanges rely on centralized
systems. The exchange and its systems must have the
trust of all the market participants in order to be effective.
These require significant amount of investment in building
trading systems and contracts among the exchange and
the participants (brokers, buyers, sellers and so on). Our
motivation is investigate the use of the blockchain tech-
nology to create a completely decentralized virtual stock
exchange.

We may consider the stocks of a company as a specific
coin. The Ethereum platform, in turn, allows the creation
of a custom currency and of all the instructions to control
the authorization of a transaction (for example receive
buy and sell orders and automatically perform transactions
when there is a proper match), all with safe transactions
and without the need of a trustful organization that oper-
ates the transaction, like BM&Bovespa.

Being aware mutually of the capital market need and
of the Ethereum platform potential, we notice, as it was
mentioned, that the assets and the money can be repre-
sented on Ethereum platform as custom currencies, and
a code (or smart-contract according to Ethereum termi-
nology) can specify an application capable of detecting
automatically proper matches of buy orders and sell orders
and then performing the transaction with the transference
of the assets and the money. That way the capital market
can be implemented on the Ethereum platform.



1.2. Objective

This paper aims to represent the assets and the money
as custom currencies on the Ethereum platform, and de-
ploy a smart-contract capable of receiving buy and sell
orders and automatically detect proper matches of buy and
sell orders and execute the correspondent transaction with
the transference of asset and money. That way the asset
exchange market will be implemented on the Ethereum
platform.

2. Ethereum platform

2.1. Ethereum

Figure 1. Last release of the platform.

A blockchain-based platform which allows not only
the decentralization of a database, but of a whole ap-
plication, which, besides variables, contains program in-
structions, as presented in section Introduction:Motivation
1.1. “With Ethereum, a piece of code could automatically
transfer the home ownership to the buyer and the funds
to the seller after a deal is agreed upon without needing
a third party to execute on their behalf.” [3]. The appli-
cations for this platforms, called “dapps” (decentralized
applications), are developed in Solidity, a language created
by the Ethereum project.

As presented in Ethereum project homepage:
“Ethereum is a decentralized platform that runs smart
contracts: applications that run exactly as programmed
without any possibility of downtime, censorship, fraud or
third party interference.

These apps run on a custom built blockchain, an
enormously powerful shared global infrastructure that can
move value around and represent the ownership of prop-
erty.

This enables developers to create markets, store reg-
istries of debts or promises, move funds in accordance
with instructions given long in the past (like a will or a
futures contract) and many other things that have not been
invented yet, all without a middle man or counterparty
risk.

The project was bootstrapped via an ether presale in
August 2014 by fans all around the world. It is developed
by the Ethereum Foundation, a Swiss nonprofit, with
contributions from great minds across the globe.”

Figure 2. Graphical interface to client users, the Mist.

In order to just create accounts or deploy smart-
contracts, capable of, for example, manage a crowdfund-
ing, there is a friendly graphical interface, the Mist. In that
case, the platform user will play the role of client (not of
server, or, better saying, miner).

A contract is considered an account, though it is
controlled by its contract code, differently from the ex-
ternally owned accounts, the accounts owned by someone
with a password and that does not have a contract code
associated. More detailed explanation can be found at
Ethereum documentation [1].

2.2. Solidity

Solidity is the language created by the Ethereum
project to write smart-contracts. As it is written in Solidity
documentation [19]: “Solidity is a contract-oriented, high-
level language whose syntax is similar to that of JavaScript
and it is designed to target the Ethereum Virtual Machine
(EVM). Solidity is statically typed, supports inheritance,
libraries and complex user-defined types among other
features. As you will see, it is possible to create contracts
for voting, crowdfunding, blind auctions, multi-signature
wallets and more.”

Tutorials to learn Solidity, for example to create a
cryptocurrency [7], can be found at Ethereum website
[11].

Since the development required a debugger, the Remix
IDE was used [18]. It’s “a browser-based IDE with inte-
grated compiler and Solidity runtime environment without
server-side components” [19].

Figure 3. Remix editor and debugger tab.



3. Virtual asset exchange

3.1. Contracts structure

Two contracts implement the system: Currency, man-
aging the currency balance of the accounts, and Assets,
managing the asset balances of the accounts, buy/sell
orders of assets, and automatically performing transactions
when proper conditions are satisfied.

Figure 4. Three sections describe each contract: name, public attributes
and public functions.

A complete use of the system will be described in
section “Virtual Asset Exchange:Usage” 3.2, but it can be
visually summarized with the diagram of figure 5.

Figure 5. The interaction between the contracts is: after the approval by
the buying user for the Asset contract to manipulate its currency, when
the Asset contract performs a transaction, it calls a public function of
the Currency contract to transfer currency from one account to another
according to the price and quantity of assets involved in the transaction.2

Asset public attribute:
balanceOf maps account addresses to its balances.

Asset public functions:
transfer(to,quantity) transfers a certain “quantity” of as-

set unities from the calling account to the account
whose address is the “to” argument address.

insertSellOrder(proposedPrice,quantity) inserts a sell
order with a certain “proposedPrice” and a certain
ordered “quantity”.

2. This sequence diagram was drawn with the online tool accessible
at https://www.draw.io [23].

insertBuyOrder(proposedPrice,quantity) inserts a buy
order with a certain “proposedPrice” and a certain
ordered “quantity”.

Currency public attributes:
name is arbitrarily chosen, like “Real”.
totalSupply is the total existent quantity of the currency.
decimals is the number of decimal algarisms of the cur-

rency, so a quantity of 1000 of the currency could
actually be represented as 10,00 if decimals=2.

standard is just a way versioning the currency contract,
although it’s not needed. It’s actually an inheritance
from the Ethereum tutorial to create a cryptocurrency
[7].

balanceOf maps account addresses to its balances.
owner is the address of the owner of the Currency con-

tract, who can for example mint currency.
symbol is the symbol of the currency, “R$” for example.
frozenAccount maps account addresses to a boolean de-

termining if the account is frozen or not.
allowance maps account addresses to another map with

all the addresses allowed to manipulate the currency
of the account address and the quantity each address
can manipulate.

Currency contract public functions.
approve(spender,value) allows “spender” address to ma-

nipulate the “value” quantity of the caller account.
transferFrom(from,to,value) transfers the quantity

“value” if the caller’s account address is allowed to
do so.

mintToken(target,mintAmount) creates the
“mintAmount” quantity of currency and allocates it
at the “target” balance.

transfer(to,value) transfers the quantity “value” to the
“to” account.

freezeAccount(target,freeze) freezes/unfreezes the “tar-
get” account depending on the value of the boolean
“freeze”.

transferOwnership(newOwner) transfers the ownership
of the Currency contract to the “target” account. Only
the owner of the contract can do that.

getBalance(address) returns the balance of the provided
account.

Figure 6. Currency is exhibited at the client graphical taking into account
its symbol and the number of decimal algarisms.

The attributes of the Currency contract were not ran-
domly chosen, they were inherited from the cryptocur-
rency creation tutorial [7]. The proposed currency is rec-
ognized as a currency by the client application, so it’s ex-
hibited by the graphical interface at an exclusive currency
frame, taking into account its symbol and the number of
decimal algarisms, as show in figure 6. Probably the set of
attributes and functions needed for the client application



to recognize the currency contract are the ones defined at
the standard token interface ERC20 [8].

3.2. Usage

A complete use of the system, as it is represented at
figure 5, happens when:

1) An user inserts a sell order just like the figure 7.

Figure 7. 2 assets are offered at a price of 2 each.

2) Another one inserts a buy order such that the pro-
posed price in the sell order is equal or smaller than
the proposed price of the buy order just like figure
8.

Figure 8. The user intends to buy 2 assets at the price of 3 each.

But before that the user needs to approve the Cur-
rency contract to manipulate its own money, just like
figure 9. The function Approve is available at the
Currency contract; Currency contract address must
be provided and the quantity approved must be at
least 6 in this case since the buy order intends to
buy 2 assets at the price of 3 each.

Figure 9. Account owner allows the Asset contract to manipulate six
units of currency from its own account.

3) Under such conditions, a transaction automatically
happens and so assets and currency are transferred.

Figure 10. The transaction happened and the solicitant of the buy order
received 2 asset units.

Figure 11. If we check the currency balance of the buy order solicitant,
we notice that it was decreased by 6 currency units, since he proposed
to buy 2 assets by 3 each. As in this case he owned 50 currency units
originally, now he owns 50-6=44.

3.3. Contract deployments

The contract Currency was deployed using Mist, figure
12.

Figure 12. Highlight of the parameters needed to deploy the Currency
contract.

Next, the contract Asset was deployed, figure 13.

Figure 13. Highlight of the parameters needed to deploy Asset contract.



Figure 14. Obtaining, in Mist, Currency contract address. The provided
token name was Real in this case, as in figure 12.

Notice in figure 13 it was needed to provide the
Currency contract address to deploy the Asset contract.
Figure 14 shows it could be obtained in Mist.

3.4. Solidity implementation

First of all, a contract to manage the currency used to
buy the stocks was implemented. The contract is called
Currency, but the name could be replaced conveniently,
by Real for instance.

The contract token, is the basic parent contract to
implement a customized cryptocurrency. It is basically the
code available at Ethereum website [7]. Currency inherits
token.

The contract owned, is used to assure that the only
account that can use the function mintToken is the owner
of the token contract account. Currency inherits owned.

Next contract Asset was created to manage sell/buy
orders.

The buyList and the sellList arrays work as a max-
heap and a min-heap respectively, since to evaluate if
there is a match of buy order and sell order, only the
maximum/minimum buy/sell order price is needed.

The source code can be accessed at my Github [20].

4. Experiment

4.1. Environment setup

In order to perform a transaction at the Ethereum
network, deploying a contract for example, it’s necessary
to pay a tax with ether, the platform currency, which is
received as a reward by the miner who builds a valid
block. Since mining at the official, public network would
require a GPU and would take too much time, a private
network was created with a low difficulty math challenge
so that mining with the CPU would be fast, a valid block
building every two seconds approximately.

Figure 15. Genesis file specifying a new private network.

In order to create a new private network, it’s needed
to provide configuration file, named genesis.json. One of
its configuration parameters is “difficulty”, the parameter
setting the aforementioned math challenge difficulty.

Once the private network is created, the mining can
start, so that the required transactions may enter the
blockchain.

Figure 16. Mining running.

4.2. Experiment

The experiment conducted next was precisely the one
described at section 3.2. All the steps are described there
with details, but just as a refresh they are summarized
here.

1) An user inserts a sell order.
2) Another user (who will be the buy user) needs to

approve the Currency contract to manipulate its own
money. The function Approve is available at the
Currency contract; Currency contract address must
be provided and the quantity approved must be at
least all the buy user is willing to spend since an au-
tomatic transaction will need approval to manipulate
the money.

3) The buy user inserts a buy order such that the pro-
posed price in the sell order is equal or smaller than
the proposed price of the buy order.

4) Under such conditions, a transaction automatically
happens and so assets and currency are transferred.

A video record of the experiment can be watched at
https://youtu.be/TMg4yJEnnK4 [6].

5. Conclusion and future work

Our implementation of a decentralized stock exchange
on the Ethereum platform is based on the creation of
two contracts: Asset, which manages the balances and the
transferences of a particular kind of asset, and the contract
Currency, which represents a currency, like the brazilian
Real and manages the balances and the transferences of
the currency. Any user who wants to buy assets needs
to approve the Asset contract to manipulate its currency.
That can be made using the public function Approve of
the Currency contract. If the Ethereum network proves to
be secure along time, the implementation wont’t be just
possible, but acceptable.

The source is available in Github [20] and a video of
the complete usage of the system can be watched at my
channel on Youtube [6].

https://youtu.be/TMg4yJEnnK4


All was done at local computer, with just one node.
A next step could be creating a node at another computer
with the same genesis.json file and add the first node as
a peer so that both nodes starts to synchronize. The Geth
Github Wiki provides instructions on how to synchronize
two private nodes [21]. I antecipate I did it as a trial
and it has not worked with what they call boot node,
but with normal complete nodes. So when I used “ad-
min.addPeer(enodeUrlOfFirstInstance)” command, I used
a normal complete node address.

References

[1] “Account types, gas, and transactions - ethereum home-
stead 0.1 documentation,” ethdocs.org/en/latest/contracts-and-
transactions/account-types-gas-and-transactions.html.

[2] “Account types, gas, and transactions;
ethereum homestead 0.1 documentation,”
http://ethdocs.org/en/latest/contracts-and-transactions/account-
types-gas-and-transactions.html?highlight=gas#what-is-gas,
[accessed 2017-05-04].

[3] “A begginer’s guide to ethereum - the coinbase blog,”
https://blog.coinbase.com/a-beginners-guide-to-ethereum-
46dd486ceecf.

[4] “Catarse crowdfunding platform,” https://www.catarse.me/, [ac-
cessed 2017-11-13].

[5] “Choosing a client - ethereum homestead 0.1 documenta-
tion,” http://www.ethdocs.org/en/latest/ethereum-clients/choosing-
a-client.html, [accessed 2017-10-26].

[6] “Complete use of the capital market system on ethereum,”
https://youtu.be/TMg4yJEnnK4, [accessed 2017-11-16].

[7] “Create a cryptocurrency contract in ethereum,”
www.ethereum.org/token.

[8] “Erc20 token standard - the ethereum wiki,”
https://theethereum.wiki/w/index.php/ERC20 Token Standard,
[accessed 2017-11-11].

[9] “Ethereum developers conference devcon2,”
https://www.youtube.com/watch?v=66SaEDzlmP4&t=234s,
[accessed 2017-11-13].

[10] “Ethereum documentation,” http://www.ethdocs.org/en/latest/.

[11] “Ethereum project website,” https://www.ethereum.org/.

[12] “Ethereum stack exchange, an ethereum questions and answers
platform,” https://ethereum.stackexchange.com/.

[13] “ethereum/go-ethereum: Official go implementation of the
ethereum protocol,” https://github.com/ethereum/go-ethereum, [ac-
cessed 2017-10-26].

[14] “ethereum/yellowpaper: The yellow paper: Ethereum’s formal
specification,” https://github.com/ethereum/yellowpaper, [accessed
2017-10-26].

[15] “Geth’s github wiki,” https://github.com/ethereum/go-
ethereum/wiki.

[16] “How bitcoin works under the hood,”
www.youtube.com/watch?v=Lx9zgZCMqXE&t=57s . Acessado
em: 2017/06/20.

[17] “Installation instructions for ubuntu · ethereum/go-ethereum
wiki,” https://github.com/ethereum/go-ethereum/wiki/Installation-
Instructions-for-Ubuntu, [accessed 2017-10-26].

[18] “Remix, the solidity compiler,” https://remix.ethereum.org/.

[19] “Solidity documentation,” https://solidity.readthedocs.io/en/develop/.

[20] “Source code.” https://github.com/luizpizano/Ethereum-
capitalMarket, [accessed 2017-11-17].

[21] “Synchronization of private nodes.”
https://github.com/ethereum/go-ethereum/wiki/Setting-up-private-
network-or-local-cluster, [accessed 2017-11-16].

[22] “Synchronization of private nodes.”
https://en.bitcoin.it/wiki/Confirmation, [accessed 2017-11-17].

[23] “Tool to draw diagrams,” https://www.draw.io.


	Introduction
	Motivation
	Objective

	Ethereum platform
	Ethereum
	Solidity

	Virtual asset exchange
	Contracts structure
	Usage
	Contract deployments
	Solidity implementation

	Experiment
	Environment setup
	Experiment

	Conclusion and future work
	References

