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Abstract

Given two cointegrated stocks, we construct
a convenient synthetic asset and go on to cap-
ture statistical arbitrage opportunities in the
pair of stocks by using a feedforward neural
network to build a model for the dynamics of
the distortion process (mispricing) of the syn-
thetic asset in wich the volatility of its resid-
uals follows a GARCH process. Forecasts for
the mispricings are represented as a condi-
tional probability density from which we de-
rive con�dence bounds on the future values
of the mispricings and implement a trading
decision process. We also comment on the re-
search in course which will consider optimiz-
ing the perfomance of the decision process by
using a Genetic Algorithm routine.

Keywords: Statistical arbitrage, algorithmic trading,
neural networks, GARCH models.

1 Introduction

Statistical arbitrage consists in frequent trading on risk
assets, such as stock, trying to long (buy the asset)
when the price is at low levels and to short (to sell
the asset) when the price is at high levels. Oppos-
ingly to deterministic arbitrage, which does the same
with government bonds and other risk-free assets, sta-
tiscal arbitrage is riskier than deterministic arbitrage.
In this article, we present an arti�cial intelligence al-
gorithm based on statistical arbitrage to estimate the
mispricing between a pair of stocks, and explore this
mispricing to take a certain position in one of the two
stocks in relation to time, with the goal to make a pro�t
from the arbitrage.
The usual methodologies for the analysis by pairs

trading are the correlation and cointegration, which
search for identifying and testing short and long time
relations between the assets, respectively. With the
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evolution of the studies in statistical arbitrage, the
use of Arti�cial Neural Networks on the linear mo-
dels has become more frequent and this is proposed in
MEDEIROS et al.[6] for modelling interest tax. Follow-
ing this line, another possible technique is to obtain the
discrepancies between pairs of stocks and model them
as a mean-reverting synthetic asset in order to describe
its dynamics by means of time series analysis. In 2006,
THOMAIDIS et al.[10] published an article proposing
an intelligent tool combined with statistical methods to
detect possible distortions on the prices of the pair of
stocks by constructing the synthetic asset by an adap-
tive process and moving on to describe the dynamics of
the distortions based on Arti�cial Intelligence together
with some model describing the time-varying nature
of the variance of the distortion�s residuals. It is this
methodology that we privilege in this work.
At �rst, we build a time series which corresponds to

the mispricing between the two stocks. Afterwards, we
utilize a neural network to estimate such mispricing on
time t based on the W = 300 previous observations
of the mispricing, utilizing a great percentage of our
dataset to train the network. Following, we estimate
GARCH parameters to estimate the standard devia-
tion of the mispricing at each time, and check if our
prediction implies on a change in the mispricing that
is su¢ ciently large in comparison to such standard de-
viation. If it is, we consider this as an opportunity to
take a short or long position (depending on the sign) to
explore this price distortion. We still present improve-
ments to the technique used, mainly on the decision
process to take a (long or short) position.

2 Mispricing dynamics for a
portfolio composed of two
stocks

Let fP1;tg and fP2;tg be the time series of the prices of
two cointegrated stocks, identi�ed as 1 and 2, on the
horizon 0 � t � T: The standard procedure to identify
statistical distortion on the pricings, or mispricing, is
to run a regression of the values of one stock, say P2,
against the other (P1, indeed) and to test the residues
for zero-mean reversion as well as its stability along
time, or (weak) stationarity. In this case, the mis-
pricing is de�ned to be the residuals of this regression.
Thus, given the assets represented by the time series
fP1;tg and fP2;tg, we de�ne the synthetic asset con-
structed from them to be any time series of the form

fao;t + a1;tP1;t + a2;tP2;tg ; (1)

with mean-reversion (0; �2t ); �
2
t <1:

Each ordered pair (a1;t; a2;t) 2 R2 represents the ac-
tual proportions of each asset to be kept on the op-
erations portfolio, the negative sign of the coe¢ cient
meaning holding a short position, or �sell the corre-
sponding asset�, whereas the positive sign means hold-
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ing a long position, or �buy the corresponding asset�.
In this way, the coe¢ cients a1;t and a2;t give the ratio
of each asset in an eventual positioning (a long/buy
position in one asset and a short/sell position in the
other one) on the synthetic asset at the instant t of the
decision.
We follow the adaptive scheme in THOMAIDIS-

KONDAKIS[9] in order to control the non-stationarity
of the synthetic asset by which the coe¢ cients are peri-
odically re-estimated. Thus, we consider the �adaptive
regression�

P2;t = �t�1 + �t�1P1;t + Zt ;

where the time-varying coe¢ cients �t and �t are given
in the following manner. We compute the means in
terms of a window chosen W;

MP1;2 = mean

�
P2;j
P1;j

; j = t�W + 1; t�W + 2; :::; t

�
;

MP2 = mean fP2;j ; j = t�W + 1; t�W + 2; :::; tg ;

and put
�t =MP1;2 (2)

�t = (1� �t)MP2 : (3)

Finally, we de�ne the dynamics of the mispricings to
be the time series fZtg given by

Zt = P2;t � �t�1 � �t�1P1;t ; (4)

for �t and �t as above. As we shall show in our val-
idation studies in the sequel, the more frequent the
values of the coe¢ cients �t and �t are updated (that
is, the bigger the value of W ), the strongest is the
mean-revertion, yielding more abrupt corrections for
the mispricing.

3 Forecasting approach using an
ANN-GARCH model

In high sampling frequencies, which is the case for in-
traday data, it turns out that the average uncertainty
about the realised value, that is, the volatility of Zt ,
is not constant over time but depends rather strongly
on the history of Zt. As for the prediction of the dy-
namics of the mispricings, we let Ẑt be an estimate for
Zt modelled as

Ẑt = f(Zt�N ; Zt�(N�1); :::; Zt�2; Zt�1) ; (5)

where f is the output of a feedforward arti�cial neural
network (ANN) with N inputs

(Zt�N ; Zt�(N�1); :::; Zt�2; Zt�1)

and having a scalar as output which, once normalized,
yields the price prediction. This is a 500 hidden layers

ANN with each of them having 300 neurons. The acti-
vation function used for the training was the recti�ed
linear function given by

f(x) = maxf0; xg:

In comparison with others activation functions such

as arctan(x) or
1

1 + exp(�x) , this particular one has
the advantage of having low cost of computing. Note
that, since this function is not di¤erentiable on x = 0,
one needs to approximate it by a continously di¤er-
entiable function on a neighborhood of the origin (v.
MAAS et al.[5] for details).
To forecast the mispricing volatility, we assume

that the variance of the forecast Ẑt, conditional
to Zt�N ; Zt�(N�1); :::; Zt�2; Zt�1 , is time-varying
and model such changes on the volatility using the
GARCH (Generalized AutoRegressive Conditionally
Heteroskedastic) developed in BOLLERSLEV[1]. In
this kind of problems, we are concerned with modelling
the return (i.e., the growth rate) of a time series.
For this reason, we introduce the new variables

Rt =
Zt � Zt�1
Zt�1

(6)

R̂t =
Ẑt � Ẑt�1
Ẑt�1

;

as well as

Rt = logZt � logZt�1 (7)

R̂t = log Ẑt � log Ẑt�1 :

We justify the sort of equivalence between (6) and
(7) because if we apply the log function to

rt =
xt � xt�1
xt�1

;

or, equivalently,

xt = (1 + rt)xt�1 ;

then
log xt � log xt�1 = log(1 + rt)

and the Taylor series expansion results log(1+rt) � rt,
if rt is a rather small percentage.
In general, the GARCH(m; s) methodology applied

to an asset xt models its return rt as

rt = �t�t; where (8)

�2t = �0 +
mX
i=1

�ir
2
t�i +

sX
j=1

�j�
2
t�j ; (9)

with �t being a standard Gaussian white noise N(0; 1);
In this study, we shall use the GARCH(1; 1) model,

with the ARCH library of the Python language provid-
ing the estimates for the values of �0, �1 and �1 for
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the mispricings computed from our data base. Note
that each �t can only be evaluated from rt�1 and �t�1.
In order to exploit the predictable component of the

mispricing dynamics, we implement the decision crite-
rion from the fact that the mispricing return is mean-
reverting. Therefore, we take a �xed error margin �
to build a reference con�dence bound and compose it
with the volatility �t obtained from the GARCH model
to implement a trading strategy as follows:

� If Rt�R̂t > (1��)�t, we sell (short) the synthetic
asset. This means that we sell 1 stock of P2 and
buy �t stocks of P1:

� If Rt � R̂t < �(1 � �)�t, we buy (long) the syn-
thetic asset, that is, we buy 1 stock of P2 and sell
�t stocks of P1:

To obtain the contribuition of each trading posi-
tioning (shorting or longing) to the Pro�t and Loss
(P&L) diagram of the arbitrage trading system, we as-
sume that a positioning taken at t is realized (that is,
the transaction is completed) the the following instant,
t+ 1: Thus,

� Each longing taken at the instant t adds up
(Zt+1 � Zt) to the P&L diagram.

� Each shorting taken at t adds up �(Zt+1 �Zt) to
the P&L diagram.

4 Application to two stocks that
are traded at Bovespa

We used as our data base the intraday prices, minute
per minute, of the stocks PETR3 and PETR4 from
04/january/2016 to 02/may/2016, giving a total of ap-
proximately 35600 samples. We have taken PETR3 as
the stock with price P1;t and PETR4 as the one with
price P2;t. Figure 1 ilustrates the history of the prices
of the two stocks that were used wilth the purpose to
validate our study.

Figure 1. History of PETR3 and PETR4 from
04/01/2016 to 23/02/2016.

(Source: Bovespa).

After constructing the synthetic asset with the adap-
tive scheme for the coe¢ cients, the time series of the
mispricing fZtg is shown in �gure 2. For the ANN
model fẐtg given by (5) we used 80% of the mispric-
ing series (approximately 0:80�35600 samples) for the
training of our neural network and the remaining 1%
of our data base were used to check the consistency of
our trained network.

Figure 2. Mispricing obtained from the data base.

The graph in Figure 3 shows the ANN modelled fẐtg
in comparison with the historical mispricing fZtg: Note
that the ANN estimative is substantially consistent.

Figure 3. Zt and Ẑt compared.

Moreover, we can see in Figure 4 that the near co-
incidence of the peaks of the percentage variations (re-
turns) of both Zt and Ẑt asserts the degree of precision
of the estimative with neural network.

Figure 4. Comparison between the returns of the
series for Zt and Ẑt:

As for the forecast of the volatility, we used a
GARCH(1; 1) model from the Python ARCH library
to estimate the values of �0, �1 and �1, resulting

�0 = 1:2483� 10�6 ; �1 = 0:05 ; �1 = 0:93:
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5 Discussion and further re-
search

Figure 5 duplicates the realized synthetic asset fZtg
and, plotted in orange, the forecast f bZt+hg that was
used as an auxiliary tool to determine the trading
band according to the criterion establish above. In
the graphs, (1� �) = 0:95 is a con�dence interval of a
Gaussian distribution N(0; �2t ) and �

2
t+h is the condi-

tional variance forecast modelled by a GARCH(1; 1).
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Figure 5. Realized synthetic asset and forecast from
04/01/2016 to 23/02/2016.

Considering a window of 20% of the data base and
(1� �) = 0:95 for the con�dence bound, the resulting
P&L diagram plotted in Figure 6 shows a substantial
increase of the pro�t, which validates the perfomance
of our arbitrage trading system:

Figure 6. P&L of the arbitrage tradings.

The choice for (1��) = 0:95 is based upon the rela-
tion between the accumulated P&L and the con�dence
bound. As we infer from Figure 7, although the accu-
mulated P&L turned out to be low for (1� �) = 0:95,
it is for this value that the average P&L is bigger and
the number of tradings is minimal.
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Figure 7. Trading strategy as a function of the
con�dence bound (1� �)% .

(08/january/2016 to 21/january/2016)

As yet we have abstracted from the di¤erent realistic
costs of transactions, bid-o¤er spread and so on. How-
ever, the present paper reports a research in the course
of being done with deadline due to the end of 2018 and
we shall consider these costs on the validation study
together with further research aiming at an optimiza-
tion of the trading system perfomance. In the sequel,
we proceed to the sketching of the main line of the
approach to be undertaken, which concerns tracking
optimal bands using Genetic Algorithm. This strat-
egy consists on using the Genetic Algorithm (GA) al-
gorithm not exactly on the prediction of the time se-
ries but on an optimization process for building trad-
ing bands. Over the last decades, researchers from the
time series prediction area have advanced some move
towards using arti�cial intelligence techniques in their
model constructions, including eventual gazes at the
Nature as a source of inspiration. In particular, this is
the case of GA for approaching problems of great com-
plexity in numerical optimization. GA designates a
family of computational procedures that dispense with
any knowledge derived from the problem, except only
for some form of assessment of the result, and in which
a number of potential solutions for a problem paves
the way for the evolution of a population. This is done
with the following basic features:

(i) Each individual of a population is encoded from a
solution as a string of symbols (genes). Thus, a ge-
netic algorithm is based upon the encoding of the
set of possible solutions (the population, and each
of its individuals being the representation of a so-
lution) and not upon the optimization parameters
themselves. In our case, once the parameters are
given by real values, the strategy consists in rep-
resenting them directly on the string of symbols
which encodes a solution through a RVR (real val-
ues representation) instead of binary codes from
the alphabet f0; 1g.

(ii) The measure of the quality of each solution is des-
ignated by means of a numerical value (�tness).
This measure is set up by a so called �tness func-
tion

J : I � RN �! R
v 7�! J(v)
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where I stands for the space (i.e., a set supplied
with some algebraic structure) of individuals (so-
lutions) of a population and the variable v stands
for each individual.

(iii) New solutions (new individuals, new strings) are
created by the application of the so called genetic
operators. This process of creation of new individ-
uals is made by genetic operators using transition
rules that are probabilistic as opposed to deter-
ministic. As a biological analogy, we can say that
these new solutions constitute the o¤springs and
the solutions that are previous to the transition
constitute the parents. In our case, the genetic
operators that will be used are:

(1) Arithmetic crossover: each item/gene in the
new string/solution (i.e., o¤spring) is a linear com-
bination of the values in the previous string (par-
ent) at the same positions.

(2) Mutation by Gaussian perturbation: this
transition rule adds a value taken from a zero mean
Gaussian distribution to a given item/gene.

(iv) The evolution of the process (i.e., the proce-
dures in (iii) above) goes on until each individ-
ual/solution is su¢ ciently �t. The outcome of the
algorithm is the best individual/string in the pop-
ulation according to the �tness function.

Speci�cally, the proposed genetic algorithm for this
study is set up as follows:

Indivíduals. The population is made up of the indi-
viduals v 2 R2 identi�ed by isomorphism to the vectors

v =

�
h
y

�
2 R2�1;

where h is the time delay and y = 1 � � used in the
construction of the trading band in our arbitrage sys-
tem.

Initial population. The population starts o¤ ran-
domly with a constant number S of individuals vi =
[hi yi]

>; i = 1; 2; : : : ; S.

Determination of the �tness value of each indi-
vidual. The �tness function that to be privileged at
�rst is the cost functional J : I � R2�1 ! R de�ned
by

J(v) :=

Z th

to

(P&LR(t)� P&Lv(t))2 dt ; 8 v 2 I;

(10)
where
(i) P&LR is the accumulated P&L chosen as the refer-
ence object for the tracking. For instance, the P&LR
can be obtained by an idealized succession of tradings
done when one knows completely of the realized time

series fZtg over the past horizon. For the purpose of
this work, we shalll consider as the reference P&LR
the accumulated P&L for tradings without transaction
costs.
(ii) P&Lv is the accumulated P&L obtained by a suc-
cession of tradings done within the realized time series
fZtg over the forecasted horizon using the trading band
built in association with v.
The �tness value of each individual is computed by

using the cost functional (10) so that the minimization
of J(v) is equivalent to the maximization of the �tness
values. Once the population is taken to be made up
of individuals [hi yi]

> distributed according to their
�tness values, the greatest lower bound for the values of
the cost functional corresponds to the highest position
of the population vector, that is, the string v� such
that J(v�) = inffJ(v) ; v 2 Ig:

Crossover. Once the initialization and the determi-
nation of the �tness value are completed, the operation
of crossover is made by replacing the genetic codes be-
tween pairs of individuals. Let a = [a1 a2]

> and
b = [b1 b2]

> be two o¤springs and z = [z1 z2]
> and

w = [w1 w2]
> be two individuals among the parents.

Then, the crossover is done according to the following
transition rule:�

a1
a2

�
= �

�
z1
z2

�
+ (1� �)

�
w1
w2

�
and �

b1
b2

�
= �

�
w1
w2

�
+ (1� �)

�
z1
z2

�
;

where � is some random number with normal distrib-
ution in [0; 1].

Mutation. Each individual originated during the
crossover is perturbed with a given probability (for in-
stance, 0:2) within a variation scale � �xed according
to the formula�

h0i
y0i

�
=

�
hi
yi

�
+ �

�
1� 2�1
1� 2�2

�
;

where each �i is a random number in the interval [0; 1].

New generation. In the subsequent stage, a subset
consisting of old individuals as well as those created
in the crossover stage is removed from the set of the
total population by cutting o¤ the elements that vi-
olate certain restriction (yet to be established by us)
and distributed and sorted out in accord with the �t-
ness value. The next generation should contain

2

3
S of

the best elements. In order to prevent from the even-

tuality of being stuck in local optimal points,
1

3
S of

the individuals are drawn out again through a normal
distribuition in [0; 1].
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