

Cataloging-in Publication Data
Documentation and Information Division

Adriano de Melo, Gabriel
Hypercube neural networks for natural language processing applied to story point estimation /

Gabriel Adriano de Melo.
São José dos Campos, 2019.
126f.

Dissertation of Master of Science – Course of Electronic Engineering and Computation. Area of
Informatics – Instituto Tecnológico de Aeronáutica, 2019. Advisor: Prof. Dr. Paulo Marcelo
Tasinaffo. Co-advisor: Prof. Dr. Inaldo Capistrano Costa.

1. Neural Networks. 2. Deep Learning. 3. Story Points. 4. Agile software development.
5. Natural Language Processing. 6. Scrum. I. Instituto Tecnológico de Aeronáutica. II. Title.

BIBLIOGRAPHIC REFERENCE

ADRIANO DE MELO, Gabriel. Hypercube neural networks for natural
language processing applied to story point estimation. 2019. 126f. Dissertation
of Master of Science – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTHOR’S NAME: Gabriel Adriano de Melo
PUBLICATION TITLE: Hypercube neural networks for natural language processing
applied to story point estimation.
PUBLICATION KIND/YEAR: Dissertation / 2019

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of
this dissertation and to only loan or to sell copies for academic and scientific purposes.
The author reserves other publication rights and no part of this dissertation can be
reproduced without the authorization of the author.

Gabriel Adriano de Melo
Praça Marechal Eduardo Gomes, 50
12.228-900 – São José dos Campos–SP, Brazil

HYPERCUBE NEURAL NETWORKS FOR

NATURAL LANGUAGE PROCESSING APPLIED

TO STORY POINT ESTIMATION

Gabriel Adriano de Melo

Thesis Committee Composition:

Prof. Dr. Paulo André de Lima Castro Presidente - ITA
Prof. Dr. Paulo Marcelo Tasinaffo Advisor - ITA
Prof. Dr. Inaldo Capistrano Costa Co-advisor - ITA
Prof. Dr. Carlos Henrique Quartucci Forster Member - ITA
Prof. Dr. Eduardo Martins Guerra External Member - INPE

ITA

To God, to my family, to my advisor and

my friends.

Acknowledgments

I would like to express my profound gratitude to Professor Paulo Tasinaffo, my research

advisor, and to Professor Inaldo Costa, my research co-advisor, for their helpful criticism,

enthusiastic support and patient advice of this research.

I would also like to thank Dr. Morakot Choetkiertikul, for supplying me his dataset

and a baseline model. My grateful thanks are also extended to 1st Lt Edney Da Silva

Santos and 1st Lt Marcio Murilo Conte Monteiro for requesting the analysis and providing

the case study data.

I would also like to extend my thanks to Professor Victor Curtis and to Professor Carlos

Alonso for their help in offering me the department’s laboratory and the computational

resources required for training the artificial neural networks models.

To my parents and to my family I must express my very deep gratitude for providing

me with unfailing motivational assistance, support and encouragement throughout those

years of study and through the work of inquiring, researching and developing this thesis.

Without them the elaboration of this research would not have been feasible. My dear

friend Vitor Pimenta was also of great help as we developed the multi-frequency character

model for binary analysis.

Finally, but by no means least, I take this opportunity to express gratitude to all the

members, professors, technicians and colleagues of the Computer Engineering department

for their support, assistance and contribution to my education. The Brazilian Aeronautics

Institute of Technology (ITA), the Brazilian Aeronautics Center of Computation in São

José dos Campos (CCA-SJ) and the Brazilian Air Force (FAB) were essential in funding

this work.

“We know very little, and yet it is astonishing that we know so much,
and still more astonishing that so little knowledge can give us so much power.”

— Bertrand Russell

Resumo

Pontos de estória (story points) são a unidade mais utilizadas na estimativa de esforço

de uma estória de usuário (user story) nas metodologias ágeis de desenvolvimento de

software. A utilização de redes neurais profundas na realização dessa estimativa é pouco

presente na literatura mas poderia se tornar uma nova ferramenta de estimativa nas

equipes ágeis. A entrada para o modelo de rede neural proposto é a própria descrição

textual da estória de usuário e a sua sáıda é uma estimativa numérica. São utilizados

modelos neurais recorrentes, na qual a sequência das palavras é levada em consideração

a cada iteração da rede neural. Como dados de treinamento, foram utilizados projetos

de código aberto que fazem uso de metodologias ágeis e descrevem suas funcionalidades

em estórias de usuários com seus respectivos pontos de usuário associados, levantando-se

milhares de casos de teste obtidos pela literatura. Uma nova arquitetura baseada em

hipercubos de cliques dos neurônios foi proposta, caracterizando-se uma rede neural com

conexões esparsas cuja eficiência computacional em espaço e potencialmente em tempo

de treinamento foi superior à arquitetura de similar acurácia de classificação. A fim de

melhorar a explicabilidade do modelo de linguagem e de regressão neural, utilizaram-se

técnicas de visualização das suas ativações e de sua sensibilidade a variações nas entradas.

Um estudo de caso também foi realizado no Centro de Computação da Aeronáutica de

São José dos Campos (CCA-SJ) por meio da coleta de dados de projetos anteriores,

preprocessamento e treinamento espećıfico da rede, efetuando-se a sua posterior avaliação

e comparação com modelos nulos que consideram apenas a distribuição dos pontos de

estória.

Abstract

Story points are the most commonly used unit in estimating a user’s story effort in

agile software development methodologies. The use of deep neural networks to make this

estimate is little present in the literature but could become a new estimation tool in agile

teams. The input to the proposed neural network model is the textual description of

the user story itself and its output is a numerical estimate. Recurrent neural models

are employed, in which the word sequence is taken into account with each iteration of

the neural network. As training data, we used open source projects that make use of

agile methodologies and describe their functionalities in user stories with their respective

associated user points, raising thousands of test cases obtained from the literature. A new

architecture based on hypercube cliques of neurons was proposed, characterizing a neural

network with sparse connections whose computational efficiency in space and potentially in

training time was superior to the architecture of similar classification accuracy. In order

to improve the explicability of the language and neural regression model, visualization

techniques of its activations and its sensitivity to variations in inputs were used. A case

study was also carried out at the Aeronautics Computing Center in São José dos Campos

(CCA-SJ) by collecting data from previous projects, pre-processing and specific training

of the network, making its subsequent evaluation and comparison with null models that

consider only the distribution of story points.

List of Figures

FIGURE 1.1 – Japanese artificial intelligence technology strategy development phases.

Source: (JAPAN, 2017). 24

FIGURE 1.2 – Department of Defense (DoD) Algorithmic Warfare Cross-Functional

Team (Project Maven) development pipeline. Source: (SHANAHAN,

2018). 25

FIGURE 1.3 – The entirety of a Scrum sprint in conjunction with its smaller cycles

depicting the framework. Source: (RUBIN, 2012). 27

FIGURE 1.4 – Boxplot of actual effort in hours given its initial estimate in story

points. Source: (ERDOGAN et al., 2018). 29

FIGURE 2.1 – The generalized design of a machine capable of learning. Adapted

from: (RUSSELL; NORVIG, 2009) . 33

FIGURE 2.2 – A information plane depicting the training phases from bottom to

up the drift phase until the green point that indicates the beginning

of the diffusion phase, for three training samples with more data to

the right. Source: (SHWARTZ-ZIV; TISHBY, 2017) 36

FIGURE 2.3 – Architecture overview of the Face Swapping Generative Adversarial

Network and a example of its application. Source: (NIRKIN et al.,

2019) . 37

FIGURE 2.4 – Emergent strategies generated by a deep reinforcement learning model.

Source: (BAKER et al., 2019) . 38

FIGURE 2.5 – The Deep-SE architecture proposed by Choetkiertikul et al. (2019)

for estimating story points given its textual description. Source:

(CHOETKIERTIKUL et al., 2019) . 43

FIGURE 3.1 – Artificial neuron modeled as a linear combination. Adapted: (MELO,

2019) . 47

LIST OF FIGURES x

FIGURE 3.2 – Artificial neural network representation and its basic unit. 48

FIGURE 3.3 – Design of a neuron in a recurrent network 51

FIGURE 3.4 – Design of a neuron in a recurrent network. Adapted: (MELO et al.,

2019, no prelo) . 51

FIGURE 3.5 – Long-Short Term Memory (LSTM) cell inner architecture. Adapted:

(MELO et al., 2019, no prelo) . 52

FIGURE 3.6 – Gated Recurrent Unit (GRU) inner architecture. Adapted: (MELO

et al., 2019, no prelo) . 53

FIGURE 3.7 – Heaviside step function and its derivative. 57

FIGURE 3.8 – Sigmoid activation function and its derivative. 58

FIGURE 3.9 – Hyperbolic tangent activation function and its derivative. 58

FIGURE 3.10 –Linear activation function and its derivative. 59

FIGURE 3.11 –Rectified linear unit activation function and its derivative. 60

FIGURE 3.12 –Leaky ReLU activation function and its derivative. 61

FIGURE 3.13 –Exponential linear unit activation function and its derivative 61

FIGURE 3.14 –Bias variance trade-off that may result in overfitting for large epochs.

Adapted: (MELO, 2019) . 66

FIGURE 4.1 – Embedding model able to encode word features. Source: (MELO;

TASINAFFO, 2019) . 68

FIGURE 4.2 – One-hot encoding example given its vocabulary. 70

FIGURE 4.3 – Word vector visualization with similar meanings and analogies. . . 71

FIGURE 4.4 – Negative sampling for skip-gram learning in the character based en-

coding. 74

FIGURE 4.5 – Hierarchical LSTM placement for different sampling frequencies:

character and word based. 75

FIGURE 5.1 – Neural clique model proposed to increase structural sparsity. 77

FIGURE 5.2 – The HashedNet functioning as a densely connected layer that share

most of its weights across distinct neurons. Source: (CHEN et al.,

2015). 78

FIGURE 5.3 – Tree-based approach for sparse neural network having fixed fan-in. . 79

FIGURE 5.4 – Adaptable fan-in for more connectivity in the last model. 81

LIST OF FIGURES xi

FIGURE 5.5 – Naive hypercube architecture for 16 neurons forming a tesseract. . . 83

FIGURE 5.6 – Hypercube of clique architecture. 84

FIGURE 5.7 – Comparison of the free trainable weights amount between the devel-

oped sparse models. 85

FIGURE 5.8 – Comparison of the neuron’s quantity between a sparse model capac-

ity and its dense counterpart. 87

FIGURE 5.9 – Comparison between a sparse model capacity and its dense counter-

part in terms of its amount of trainable parameters. 87

FIGURE 6.1 – Apache Mesos Jira website example with an user story. 89

FIGURE 6.2 – Box-plot for the story points distribution in each project. 91

FIGURE 6.3 – CCA-SJ Sigadaer Redmine example with an user story. 93

FIGURE 6.4 – CCA-SJ story points distribution. 94

FIGURE 7.1 – t-SNE plot for the originally reported Deep-SE word embedding. . . 98

FIGURE 7.2 – Training and validation error progression for the proposed model in

the Usergrid dataset. 103

FIGURE 7.3 – Regression plot that compares the neural predicted story points to

their real clipped value for Data Management repository. 104

FIGURE 7.4 – Confusion matrix that compares the neural predicted story points

to their real clipped value for Data Management repository. 105

FIGURE 7.5 – Distribution for the prediction errors in the Data Management repos-

itory. 106

FIGURE 7.6 – Bi-dimensional t-Distributed Stochastic Neighbor Embedding plot

for the 64-dimensional embedding trained on the Apache repository. 107

FIGURE 7.7 – Bi-dimensional t-Distributed Stochastic Neighbor Embedding plot

for the 64-dimensional embedding trained on the CCA-SJ test dataset.108

FIGURE 7.8 – Distribution for the prediction errors in the CCA-SJ test dataset. . . 110

FIGURE 7.9 – Confusion matrix for the proposed model evaluated in the CCA-SJ

test dataset. 111

FIGURE A.1 –Adjacency matrices comparing four different architectures 124

LIST OF FIGURES xii

FIGURE A.1 –t-SNE projection for the MNIST handwritten digits database for

6000 points. Source: (MAATEN; HINTON, 2008) 125

FIGURE A.2 –Sammon, Isomap and LLE dimensionality reductions for the same

MNIST data points. Source: (MAATEN; HINTON, 2008) 126

List of Tables

TABLE 3.1 – Synaptic weight update algorithms. Adapted: (MELO, 2019) 64

TABLE 6.1 – Statistical analysis of the main metrics present in the dataset ver-

sioned as presented by Choetkiertikul et al. (2019). 90

TABLE 6.2 – Statistical analysis of the main metrics present in the clipped dataset.

. 90

TABLE 7.1 – Results directly extracted from the Choetkiertikul et al. (2019) article.100

TABLE 7.2 – Reproduced results for the Mean Baseline Classifier using the Deep-

SE dataset. 101

TABLE 7.3 – Reproduced results for the Median Baseline Classifier using the

Deep-SE dataset. 102

TABLE 7.4 – Reproduced results for the Deep-SE neural model in its own dataset. 104

TABLE 7.5 – Proposed model results compared in the same dataset. 106

TABLE 7.6 – Evaluation for the CCA-SJ Dataset. 109

List of Listings

LISTING 5.1 – Direct tree mapping to neural networks. 80

LISTING 5.2 – Condensed tree mapping to neural networks. 81

LISTING 5.3 – Naive Hypercube. 82

LISTING 5.4 – Hypercube of cliques. 84

LISTING 5.5 – Hypercube of cliques scattered. 86

LISTING 7.1 – User stories description and title readings from csv file and tok-

enization. 95

LISTING 7.2 – Dictionary generation and vocabulary truncation for the most fre-

quent tokens. 96

LISTING 7.3 – Dictionary substitution and train/validation/test split sequentially. 97

LISTING 7.4 – Baseline generation for mean, median and random estimators. . . 99

List of Abbreviations and Acronyms

AI Artificial Intelligence

Adam Adaptive Moment Estimation

AGI Artificial General Intelligence

ANN Artificial Neural Network

ALPAC Automatic Language Processing Advisory Committee

ARPA Advanced Research Projects Agency

AWCFT Algorithmic Warfare Cross-Functional Team

CCA-SJ Aeronautics Computation Center in São José dos Campos

(Centro de Computação da Aeronáutica de São José dos Campos)

CNN Convolutional Neural Netork

DARPA Defense Advanced Research Projects Agency

Deep-SE Deep Story points Estimation

DL Deep Learning

DNN Deep Neural Network

FAB Brazilian Air Force (Força Aérea Brasileira)

FCNN Fully Connected Neural Network

GRU Gated Recurrent Unit

ITA Aeronautics Institute of Technology

(Instituto Tecnológico de Aeronáutica)

JAIC Joint Artificial Intelligence Center

LSTM Long-Short Term Memory

MAE Mean Absolute Error

MdAE Median Absolute Error

ML Machine Learning

MMRE Mean Magnitude of Relative Error

NCE Noise Constrastive Estimation

NLP Natural Language Processing

NTLK Natural Language Toolkit

ODE Ordinary Differential Equation

PO Product Owner

LIST OF ABBREVIATIONS AND ACRONYMS xvi

RG Renormalization Group

RL Reinforcement Learning

RNN Recurrent Neural Network

SE Software Engineering

SGD Stochastic Gradient Descent Optimization

SM Scrum Master

SNN Sparse Neural Networks

SVD Singular Value Decomposition

t-SNE T-distributed Stochastic Neighbor Embedding

TF-IDF Term Frequency Inverse Document Frequency transformation

List of Symbols

b Bias vector b

W Weight Matrix W

W Tensor W

ej One-hot encoding for the j-th index

W (N) N -th layer weight matrix W

W
(N)
i,j N -th layer weight between the i-th neuron at the layer N − 1 and

the j-th neuron at the layer N

b
(N)
i N -th layer bias from the i-th neuron

In Unit matrix with n columns and n rows

Wi,j Element in i-th row and j-th column of matrix W

Wi,: i-th tow of matrix W

W:,i i-th column of matrix W

W> Transpose of matrix W

det(W) Determinant of W

W �A Hadamard (Element-wise) product of W and A

dw

dc
Derivative of w with respect to c

∂w

∂c
Partial derivative of w with respect to c

∇cw Gradient of w with respect to c

L Cost Function

σ Activation Function

lnx Natural Logarithm (base e) of x

log x Logarithm in base 2 of x

R Real numbers set

LIST OF SYMBOLS xviii

<(x) Real part from a complex number x

=(x) Imaginary part from a complex number x

〈v1, v2, . . . , vn〉 n-dimensional vector representation

||x|| x vector L-2 norm

v1 · v2 Internal product between vectors v1 and v2

Contents

1 – Introduction . 22

1.1 – Research Context . 22

1.2 – Motivation . 26

1.3 – Problem Statement . 29

1.4 – Proposed Solution . 30

1.5 – Objectives . 30

1.6 – Contributions . 31

1.7 – Outline . 31

2 – Literature Review . 32

2.1 – Artificial Intelligence . 32

2.2 – Deep Learning . 34

2.3 – Natural Language Processing . 39

2.4 – Story points estimation . 41

2.5 – AI safety . 43

3 – Deep Learning . 45

3.1 – Shallow Neural Networks . 47

3.2 – Convolutional Neural Networks (CNN) 50

3.3 – Recurrent Neural Networks (RNN) 50

3.3.1 – Long-Short Term Memory (LSTM) 52

3.3.2 – Gated Recurrent Unit (GRU) . 53

3.4 – Backpropagation . 54

3.5 – Activation Functions . 56

CONTENTS xx

3.5.1 – Heaviside Step Function . 57

3.5.2 – Sigmoid Function . 57

3.5.3 – Hyperbolic Tangent . 58

3.5.4 – Linear Activation . 59

3.5.5 – Rectified Linear Unit (ReLU) . 60

3.5.6 – Leaky ReLU (LReLU) . 60

3.5.7 – Exponential Linear Unit (ELU) . 61

3.5.8 – Softmax Function . 62

3.6 – Loss Functions . 62

3.7 – Regularization . 62

3.7.1 – L1 Norm . 63

3.7.2 – L2 Norm . 63

3.7.3 – Dropout . 63

3.8 – Constraints . 64

3.9 – Optimization Heuristics . 64

3.10 –Bias and Variance Trade-off . 65

4 – Natural Language Processing 68

4.1 – Discrete Representations . 69

4.2 – Word Embeddings . 70

4.3 – Unsupervised Learning in NLP . 71

4.3.1 – Singular Value Decomposition . 71

4.3.2 – Neural Networks Initial Layer . 72

4.3.3 – Negative Sampling . 72

4.3.4 – Noise Contrastive Estimation . 72

4.4 – Character level encoding . 74

5 – Novel ANN Architecture . 76

5.1 – Sparse Feedforward Models . 76

5.2 – Tree inspired approach . 79

5.3 – Hypercube motivated architecture 82

CONTENTS xxi

5.3.1 – Naive Hypercube . 82

5.3.2 – Hypercube of cliques . 82

6 – Dataset Analysis . 88

6.1 – Open Source Projects . 88

6.2 – Case Study Data . 91

7 – Implementation and Results . 95

7.1 – Python Implementation . 96

7.2 – Deep Story Estimation Baseline Comparison 97

7.2.1 – Results Reproduction . 101

7.3 – Case Study Results . 108

8 – Conclusions . 112

8.1 – Work Overview . 112

8.2 – Improvements Outlines . 112

8.3 – Future Works . 113

Bibliography . 115

Appendix A – Linear Algebra foundations for ANN . . . 123

A.1 – The Sparse Synaptic Weights Matrix 123

Annex A – t-SNE Visualization 125

A.1 – Dimensional Decomposition . 125

1 Introduction

In this introductory chapter, a historical background of artificial intelligence research

is presented in order to contextualize the natural language processing (NLP) problem

motivation and definition in the Scrum environment, which are explained in sequence. It

is also important to note the transferability of those definitions to other domains in NLP

as a generalization of sentiment analysis.

Following the problem definition, the proposed solution is briefly described as a deep

neural network model, accompanied by the objectives and contributions of this work. For-

mally, the work organization is lastly exposed, which succinctly enumerates and discloses

the chapters of this thesis.

1.1 Research Context

Even though the idea of mechanical mens and the principles of logic may be dated

back to antiquity with Aristotle, Greek mythology and other philosophers, the term of

“Artificial Intelligence” (AI) was coined in 1956 by John McCarthy and Marvin Minsky

at the Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI). By this

time, both Claude Shannon and Alan Turing had already published their work on a chess

playing computer programs and the question whether can machines think, respectively.

For the next decade, there was continuous improvements and the expectations grew larger

as the American Government embodied by ARPA (Advanced Research Projects Agency)

expanded its funding in AI. Fulfilling those expectations would require the development

of new techniques and much more processing power than was available at the time, thus

there was a stagnation on its popularity and a cut on the fundings known as the “AI

Winter”.

At the 80’s, a new wave of research in AI was reborn as expert systems gained popular-

ity and parallel computers were developed for Symbolic AI. The Japanese Fifth Generation

Computer Project was also another great exponent for the ambitions pursued at the time.

But again the expectations were unmet and the area was faced with another AI Winter.

CHAPTER 1. INTRODUCTION 23

In the age of Big Data and with more available processing power, AI research, spe-

cially the field of Machine Learning (ML), was able to thrive once again, becoming the

cornerstone for innumerous significant applications, including product recommendations,

language translation, speech recognition, search engines, image detection, autonomous

vehicles and many others. Andrew Ng (2017) emphasizes the rapid progress that such ap-

plications may provide to start-ups and established companies driven by data availability

and computational scale of contemporary advancement.

In this context, just like electricity have revolutionized the world a century ago, the

technology for Artificial Intelligence is potentially transforming every sector in the econ-

omy with an estimate of over $10 trillion in GDP growth accumulated by 2030 (NG, 2018).

Besides being already employed and crucial for the technology giants such as Facebook,

Tencent, Google, Baidu and Microsoft to keep their competitive advantage, there is still

much innovation and applicability outside of the software developing domain. Ng (2018)

notes five principles for organizations that want to create an Artificial Intelligence Strat-

egy, those are the execution of pilot projects in order to gain momentum and experience in

the development and deployment of such systems, the formation of an in-house AI team,

the broad AI training administered to all personnel, the design of an AI strategy aligned

with the “Virtuous Circle of AI” positive-feedback loop and, finally, the development of

internal and external communications in the field.

It is important to note that this “Virtuous Circle of AI” is characterized by its positive-

feedback loop in the sense that a good AI application will result in more users which, in

turn, will provide more data to the system, increasing its training database and potentially

its quality. Such virtuous circle may be observed in Figure 1.1 depicting the Japanese

strategy for developing AI countrywide as a multipurpose service (JAPAN, 2017).

In the international context, the American Government has recognized the tremendous

potential that Artificial Intelligence possesses to benefit its people, which is demonstrated

by the extensive value already noted in the White House AI Summit by enhancing their

national security and by growing their economy (USA, 2018). Is was expressed that AI

will effectively be employed a tool to empower the workers, compelling advances in the

business, and enhancing the quality of life for its citizens. These benefits are declared

in the American National AI Strategy, in which high-level authorities across the Federal

Government recognize the critical nature of this issue and emphasize the dedication to

leveraging AI techniques across agencies tasks (USA, 2018). Therefore The United States

of America aims to continue its global leadership even though the recent advancement of

China in AI threatens that objective in an AI Arms Race (MELO et al., 2019).

The designation of Artificial Intelligence as an R&D priority by the White House re-

inforces the importance that this area has for the coming years, stating that “we are on

the verge of new technological revolutions that could improve virtually every aspect of

CHAPTER 1. INTRODUCTION 24

FIGURE 1.1 – Japanese artificial intelligence technology strategy development phases.
Source: (JAPAN, 2017).

our lives, create vast new wealth [. . .], open up bold, new frontiers in science, medicine,

and communication” (USA, 2018, p.2). In order to fulfill those objectives, they acknowl-

edge that it is necessary engagement with the private sector, academia and their agency

partners by informing their policies, funding and supporting AI related projects.

Those main strategies may be summed up as the prioritized funding for AI fundamental

research and development including autonomous systems, computing hardware infrastruc-

ture and machine learning; the removal of regulatory barriers to the implementation and

deployment of technologies powered by artificial intelligence consequently enabling more

innovation; mass education for the workforce by teaching the skills necessary to flourish

in the new economy; leveraging a military advantage using AI in an asymmetrical and

technological warfare implemented by the Department of Defense; the improvement of

government services by applying AI in order to facilitate and to speed up the provision of

public services; and, finally, the international leadership in AI negotiations by promoting

G7 Innovation and Technology Ministerials by working with allied countries in order to

influence them in recognizing the potential benefits of AI and promoting AI R&D (USA,

2018).

Although several countries have already published their National Artificial Intelligence

Strategies, the Brazilian Government is yet to develop its own strategy. A research project

is currently being conducted and some essential points based on others strategies and in

CHAPTER 1. INTRODUCTION 25

the Brazilian particularities have been proposed (MELO et al., 2019). The innovations

brought by this technology may characterize the leapfrogging needed to accelerate the

economy of developing countries, specially Brazil, by skipping obsolete infrastructure and

by directly deploying the most advanced ones.

A variety of perspectives may be expressed about the issue of using AI for military

applications. While the USA is indubitably interested in employing this new technology

directly at the theater of war by using Lethal Autonomous Weapons Systems (LAWS)

(DOD, 2019), Brazilian intends to develop dual applications that could be used for both

civilians and armed forces. As such, systems that could automate a range of administrative

and bureaucratic assignments are the main ambition for the Brazilian Armed Forces,

freeing thousands of military personal from office work and increasing the efficiency of

public services. Another non-combative usage is for gathering intelligence from terabytes

of unstructured data, as done in Project Maven by the Department of Defense (DoD)

Algorithmic Warfare Cross-Functional Team.

Detect Errors

Send Error Report

Identify Data/ Relabel

Retrain

Reintegrate Binaries

GPU Resources

Cloud Computing

Commercial Algorithms

Open Source Algorithms &
Data

User Engagement

Metadata Removal
Randomization
Human Review

CTR
Labeling
(General)

GOV
Labeling
(Expert)

Job 1: Object Classification
Job 2: Bounding Box
Job 3: Refined Classification

Labeled
Data

 EO IR WAMI Still
Build Test Accredit

DATA ACQUISITION,
PROCESSING & LABELING

ALGORITHM DEVELOPMENT ALGORITHM INTEGRATION

FIELDING & FINE TUNING

Labeled
Data

DATA LABELING

Built to POR
Reqs

Sensor
Calibration

Software
Mods Bench Test

Flight Test

Final
Integration

Test
IATT

IATO

ATO

P
R

O
G

R
A

M
 P

R
O

T
E

C
T

IO
N

AWCFT Pipeline

Algorithm
Test, Validation

& Evaluation Model Accuracy

Initial Model

Improved Model

IOC
Model

FIGURE 1.2 – Department of Defense (DoD) Algorithmic Warfare Cross-Functional Team
(Project Maven) development pipeline. Source: (SHANAHAN, 2018).

Additionally to using natural language processing machine learning models to au-

tomate office work, convolutional neural networks are already employed by the Under

Secretary of Defense for Intelligence (USDI) Warfighter Support in order to centralize

existing algorithmic technology efforts and advance artificial intelligence efforts across the

Defense Intelligence Enterprise (SHANAHAN, 2018). As examples, there are field AI for

Processing, Exploitation, and Dissemination (PED) of Tactical Unmanned Aerial Vehicles

(TUAV), medium altitude, and Wide-Area Motion Imagery Full Motion Video (FMV).

The first algorithms were deployed in operation at the end of calendar year 2017. Its

CHAPTER 1. INTRODUCTION 26

development pipeline is depicted in Figure 1.2, one that would seemingly be noted as a

civilian application if it weren’t for its contractors and label classes.

From this perspective, the Department of Defense Artificial Intelligence Strategy states

the American ambition to use this contemporary technology in order to “support and

protect their servicemembers” and civilians around the world, to create an efficient and

streamlined organization and to “become a pioneer in scaling AI” across a global enter-

prise. They aspire to “anticipate the implications of those novel methodologies on the

battlefield”, rigorously defining the military problems to be anticipated in future conflict,

and to stimulate a culture of “calculated risk-taking” and innovation. As such, the de-

liverance of AI-enabled capabilities capable of surmounting crucial challenges is key to

those aspirations, potentialised from scaling its impact across their agencies through a

prevalent authority for distributed innovation and development (DOD, 2019). And more-

over, conjointly, they emphasizes the necessity to cultivate a leading AI workforce and

to interplay with academic, commercial and international partners while maintaining the

lead in military ethics and AI safety.

In a declaration that states the clear importance of having a AI leadership from an

economic and military perspective, the American strategists weights the costs of a disre-

gard for this technology, resulting in legacy systems that will be unable to defend their

nation from uniques asymmetric adversaries (DOD, 2019). For that reason, there would

be an erosion between their allies and an impairment of their influence around the world,

resulting in a fall in the standard of living and diminishing prosperity as other competi-

tors would take the lead. Nevertheless, despite the risk of growing inequalities, AI has

the potential to increase global prosperity and to free human labor from tiresome tasks.

1.2 Motivation

The Aeronautics Computing Center in São José dos Campos (Centro de Computação

de Aeronáutica – CCA-SJ) employs the Scrum agile methodology in order to manage and

develop its in-house software projects. For this reason, it is remarkably important to make

reasonable story points estimations in the interest of prioritizing and allocating resources

for the software production.

According to Erdogan et al. (2018), one of the most common shortcomings in compar-

ing the process and product quality is the lack of measurements. As such, a more effective

and more predictive planning for the next sprints could be achieved by employing statis-

tical analysis in the various metrics and data generated by the agile methodologies. As

a novel tool in these processes, the machine learning model would support this objective

by enabling the achievement of the quality target and key performance indicators while

CHAPTER 1. INTRODUCTION 27

also maintaining the collaboration and interactions that exists in the agile framework.

Central to the Scrum framework are its core values derived from de Agile Manifesto

(BECK et al., 2001) which can be summed up as focus, respect, courage, commitment

and openness. Based on these values, there are the following fundamental concepts

for this methodology: iterative development, time-boxing, context, transparency, self-

organization, empirical process control, collaboration, value-base, scrum master, product

owner and experimentation.

It has been noted by Rubin (2012) that, since its creation in 1993 by Jeff Suther-

land and his associates at the Easel Corporation, those organic principles, in conjunction

with software process and productivity research, has guided the Scrum application. This

methodology can be observed as an iterative process on Figure 1.3 in which others smaller

dynamic procedures happen.

FIGURE 1.3 – The entirety of a Scrum sprint in conjunction with its smaller cycles
depicting the framework. Source: (RUBIN, 2012).

In comparison to classical software development methodologies such as the waterfall

model, as reported by Rubin (2012), the Scrum application was able to reduce tenfold

the effort required to produce the specified computer program. It was also noted that the

duration needed to deliver the application was decreased by a proportion of seven, thus

being able to produce sevenfold more functions in the same time internal while employing

a smaller team. From a customer’s relation perspective, there is a closer approximation

to the expectations characterized by a better alignment of their goals.

Therefore, it is important to note that Scrum administers and systematizes the team-

work in an organic way, not being a closed recipe in which a sequence of steps must be

rigorously followed in order to achieve its goals of producing a excellent software within

the resources constraints of time and money (RUBIN, 2012). From this point of view,

CHAPTER 1. INTRODUCTION 28

the empowerment of its members allow a better cooperation in those projects, boosting

the confidence and respectability the team has in itself and encouraging the focus and

innovation essential for the agile development.

This way of organizing the team may be summed up as an integration between the de-

velopment team, responsible for implementing and delivering results, the Product Owner

(PO) who is the stakeholder in charge of expressing the requirements and priorities, and

the Scrum Master (SM) accountable for applying the framework, protecting and helping

the team. The genesis of this process comes from the Product Backlog in which the PO

manages and determines the work that should be done in a priority queue. This collection

of tasks must then be understood by the team and be assigned a value that correspond to

its perceived difficulty. Namely, these are the user story, the requirements expressed in the

end-user perspective, and the story points that convey the demanded effort’s magnitude.

The collection of those user stories are assigned to a sprint which is a fixed time

interval, typically between two to four weeks, whose work should create an incremental

value tangible to the Product Owner. As show in Figure 1.3, the Sprint Planning marks

the sprint’s beginning when the three roles should gather together in order to define the

goals for the sprint. A Kanban is employed in the sprint’s execution, keeping track of the

“to do, doing and done” possible states and allowing transparency of who is doing what

to the team.

Additionally, there is a short daily meeting where the members ought to expose their

challenges and accomplishments, sharing experiences to the team so that a solution may

be found collaboratively. It is crucial to keep in mind the time constraints of this meeting

not to waste precious developer’s time. Finally, the value added in the sprint to the

product should be reviewed and adapted. These are performed in the sprint review and

retrospective activities providing a product and process analysis.

Motivated by the statistical work performed by Erdogan et al. (2018) in which the cor-

relation between relative effort estimation made by the team (story points) and the actual

effort measured in work-hours. The Figure 1.4 depicts this strongly positive Spearman

correlation of approximately 0.79 for the range from zero to twenty-one in a Fibonacci

scale. Therefore, based on the capacity that a human has to estimate the effort it was

feasible that a machine learning system could have a performance better than random

guess. Even further, such estimation system could also assist the planning poker activity

in which the team gather together to make appropriate guesses until the consensus is

reached by participating in the first round.

Another interesting point to mention from Figure 1.4 is the distribution of outliers

that happens most frequently in the unitary story points estimation and the non-linear

relation between the two variables at the lower and higher end of the graph. Such non-

CHAPTER 1. INTRODUCTION 29

FIGURE 1.4 – Boxplot of actual effort in hours given its initial estimate in story points.
Source: (ERDOGAN et al., 2018).

linearity could be easily explored by an artificial neural network given enough data which

would result in better estimations than a linear model.

1.3 Problem Statement

It is desirable to have a initial estimation that could be automatically produced while

using software developing manager tools such as Jira, Redmine, Github or Gitlab issues

tracking. This initial estimate would be used as a baseline for the planning poker guesses

and other processes that would require effort estimation, leveraging the Product Owner’s

capabilities.

The problem this work aims undertaking is to estimate the story points from a user

story’s textual description of a given project that is inserted in the Scrum development

framework. Given the specificities that different teams may have, it should be also pos-

sible to provide features that characterize the project and its team, this is being able to

effectively calibrate the model to local data.

Given sufficient data for its training, more than ten thousand non-labeled user stories

and more than one thousand labeled user stories with the actual story points the model

should perform better than random guessing and average estimation. Thus, it is crucial

to gather the most data as possible in order to reach these thresholds and increase the

model’s performance even further.

CHAPTER 1. INTRODUCTION 30

1.4 Proposed Solution

The proposed solution is to utilize artificial neural networks using deep learning tech-

niques in order to develop a natural language processing model capable of estimating

the story points from the user stories’ textual descriptions. Recurrent neural architec-

tures such as Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU) are

employed, as well as a novel sparse architecture based on hypercubes.

The first and most essential step is to assemble the dataset and preprocess with the

intention of creating a robust collection of user stories sampled from the true data dis-

tribution. Open source projects such as those found in the Apache issues tracking in

Jira are leveraged as a means to compare the proposed architecture with the literature

that had used the same dataset. A case study is conducted in the Aeronautics Center

of Computation in São José dos Campos (CCA-SJ) whose data was collected from their

Redmine issue tracking server.

Subsequently, a variety of hyperparameters that defines the architecture are evaluated

in the test and validation datasets. Unique combinations formed by feedforward, sparse,

GRU and LSTM networks are also assessed on those datasets. The selected model should

then be evaluated only once in the test set not to compromise the unbiased estimation of

its performance.

Finally, gradient based and black-box techniques are employed in an effort to create

an explainable system. Thus, the end-user may take notice of the key features used by the

neural network while making his decision. An explainable AI also inspires more confidence

aggregating more value than a completely opaque model.

1.5 Objectives

The main objective is to develop a machine learning based computer program whose

input is the textual description of a user story in the Scrum framework context and whose

output is a story point estimate associated with it. This estimation should be more precise

than random guess, average estimates and at least similar to other models presented in

the literature.

As such, another objective concerning the case study is to assemble and organize the

project management data from CCA-SJ, creating a better understanding and retrospective

analysis of the processes employed. This work should also be an instrument to increase

the data awareness and the importance of developing an Artificial Intelligence Strategy

in order to apply this technology effectively and to increase overall productivity.

CHAPTER 1. INTRODUCTION 31

1.6 Contributions

The development of an application that could be integrated with project management

tools such as Redmine or Jira to estimate story points given its user story in the central

contribution of this paper.

A mathematical survey and development of a novel sparse architecture for neural

networks is another important subsidy this work has to offer.

The appeal for developing an AI strategy and the endowment for an AI based culture

is also a secondary contribution presented.

1.7 Outline

The present work is divided into: a bibliographical survey in Chapter 2; the mathemat-

ical foundations for deep learning in Chapter 3; the presentation and theoretical mathe-

matical formulation of a natural language processing model in Chapter 4; the proposition

of a new architecture that uses fewer parameters for neural networks in Chapter 5; a

survey and characterization of the data, whether for the pre-training, training, validation

and testing set in Chapter 6; the results obtained from the evaluation of the proposed

model in the test set and its analysis in Chapter 7; and, finally, the final considerations

of this paper in Chapter 8, along with suggestions for future research.

2 Literature Review

In addition to the applications of deep learning in software engineering, this chapter

introduces an exploratory literature review focused on addressing the most recent and

key researches developed in the artificial neural network and natural language processing

fields. A brief presentation on Artificial Intelligence is also conducted in the first section

to ensure an adequate background for understanding the later definitions.

2.1 Artificial Intelligence

There is not a unique definition for Artificial Intelligence (AI) that encompass all

nuances concerning the term. Overall, there are four main conceptualizations that inde-

pendently refers to the action exhibited by the system which may be to act or to think

and the characteristics associated with these actions either rationally or humanely

(RUSSELL; NORVIG, 2009).

Thereby, the first possible combination of those attribute is a machine capable of

acting rationally. This concept motivates the clarification of an agent, an entity capable

of interacting with its environment and, in this first case, maximizing its objectives given

the data and capabilities it possesses. In contrast, the second combination would be a

machine that acted like a human. This definition is directly connected with the Turing

Test in which human examiners could not be able to differentiate the behavior of a human

in comparison to a machine. In its weakest form, the interaction between test subjects

and examiners is constrained by text.

The third possibility is a system that thinks rationally. This approach is based on

the field of logics wherein a machine is able to derive truthful conclusions given a set of

premises and the initial states concerning these premises. Lastly, the fourth most accepted

definition is that of an artificial agent that thinks as a human does. This other agent could

have a general capacity to solve a wide range of problems as humans do. These distinct

approaches for artificial intelligence are tailored accordingly to different goals a researcher

or a developer may have: to model the behavior or the thinking, and to be based on an

ideal standard or on humans (RUSSELL; NORVIG, 2009). A generalized conception of a

CHAPTER 2. LITERATURE REVIEW 33

learning agent is show on Figure 2.1.

FIGURE 2.1 – The generalized design of a machine capable of learning. Adapted from:
(RUSSELL; NORVIG, 2009)

A more informal approach to the definition of AI concerns the existential and utilitarian

view on its employment. The artificiality characterizes a man-made, directly or indirectly

(machine-made), product and its intelligence is a condition necessary for it to work. In

this sense, a machine that couldn’t work would be simply defined as unintelligent or,

more informally, as dumb. This classification is, of course, dependent of the desired work

specification, namely, the technical parameters of functionality. As such, the field of AI

seeks the development of more capable agents, able to perform its task more efficiently.

Given this aspiration, its is central to AI the distinction between strong and weak

AI. The first, also known as Artificial General Intelligence (AGI), is capable of solving

problems that it was not initially programmed (or trained) to solve. In this context,

a strong AI would have the capability of executing any intellectual task a human can

perform. On the other hand, a weak AI can only solve the specific problems it was designed

to determine. There are currently no AGI systems implemented, and its development is

an open research question. As such, all AI created so far is characterized as weak, for

example, a chess AI can only perform well in that game, not being able to do other tasks

such as generating text.

An important subfield of Artificial Intelligence is that of Machine learning (ML), also

know as statistical pattern recognition (BISHOP, 1995). In this subfield, the agent is capa-

CHAPTER 2. LITERATURE REVIEW 34

ble of inferring structure from the data given during its training. In contrast to classical

IA systems that requires an expert to explicitly program the rules, actions and states that

such machine obeys, a ML approach is able to program itself just from observing examples

of what is supposed to do. Its great challenge is to minimize the amount of data required

and the computational resources employed, namely the problem of generalization.

Concerning the performance of such models, Wolpert (1996) has stated what is today

know as The No Free Lunch Theorem of Machine Learning. In asserts that there

are no a priori distinctions between models resulted from a statistical pattern recognition

process for every possible problem. An application of this theorem is to extrapolate data

given a finite set of prior points. There are infinitely many functions that could be a

perfect fit for the prior points resulting in infinitely many possible and feasible extrapo-

lations. If the error were to be computed in the entirety of such sets the result would be

indistinguishable between different learning algorithms. In reality, the data distribution

in the natural world favors some functions over others, enabling the effectiveness of more

complex statistical pattern recognition models.

As the ambitions for developing an AGI system grows, Pearl (2019) brings seven in-

struments observed in human inference of causality. In this way, a machine learner should

be able to understand the idea of causal relationship between connected events in order

to exhibit the generalized aimed behavior. In the implementation order, those rules of

cause and effect should be attainable by encoding the causal requirements in a model that

permits transparency and testability, so that experts may understand and correct devia-

tions; the so called “do-calculus” and the “control of confounding” or unobserved causes,

estimating the consequences of changes in policies; the “algorithmitization of counterfac-

tuals”, that is to estimate the probability of an event happening had another parameter

been different; mediation analysis in order to predict the variation in the consequences

when perturbing its cause and the assessment of its direct and indirect effects; domain

adaptability, sample selection bias in order to ensure robustness to changes in the envi-

ronment and external validation of its performance; be able to recover the consistency of

estimation from missing data; and finally, “causal discovery”, in other words, to unveil the

relationship that certain occurrences have on others (PEARL, 2019).

2.2 Deep Learning

The development of artificial neural networks has a long history dating back from 1943

when Warren McCulloch and Walter Pitts introduced the first model of such system. In

1949 Donald O. Hebb stated the prominent Hebbian Rule postulating that neurons firing

together wire together, although this principle turned out to be unstable. By 1957, Frank

CHAPTER 2. LITERATURE REVIEW 35

Rosenblatt and Charles Wightman created the Perceptron model, and soon publishing

theirs learning algorithm capable of linear separation. At the time, great elaborations

were made about this model even about differentiating military tanks from civilian buses

which turned out to be simply because of the images’ brightness as the tanks’ pictures

were taken on a cloudy day. Marking the first disillusion on neural networks, Seymour

Papert and Marvin Minsky’s 1969 work demonstrated the mathematical limitations that

constrained the Perceptron Model. Following the reduced fund for AI research, by the

80’, John Hopfield created his own network architecture to model associative memory, the

Neocognitron was also presented by Fukushima, Miyake and Ito which would be similar to

the coming Convolutional Neural Networks (CNN), and the backpropagation algorithm,

also priorly developed by Paul Werbos, was published by Rumelhart, Hinton and Williams

(KRIESEL, 2007). As a result, this research field is an particular application of machine

learning that has gained popularity due to its increasing effectiveness when dealing with

high amounts of data.

Zurada (1992) suggested that the development in this field was also fueled by the

interdisciplinary nature of the area, attracting engineers, technologists, physicians and

scientists from a wide range of disciplines. Mathematicians were inspired by the opti-

mization problems and the modeling of complex systems while computer scientists were

marveled by the parallel computing, supercomputing, networks and even more applica-

tions. Neuroscientists are also attracted by the biological networks models that may be

simulated and artificially constructed together with psychologists that tries to understand

the high-level processing that occurs in human brains. Also computer and electrical engi-

neers use signal processing applied to artificial neural networks and develop neuromorphic

computers.

Those shallow artificial neural networks architecture were the foundation to develop

the deep networks existent at the present moment. The main differentiation is simply

the greater number of hidden layers that the latter have. Naively increasing the number

of layers in shallow networks may result in poor performance in case clever initialization

and training techniques aren’t employed. The creation of such techniques encourages the

advances in deep learning.

Fast-forwarding to the most recent research, Zilly et al. (2016) proposed an architec-

ture for a Recurrent Highway Neural Network (HRN). This approach was inspired on

the Gershgorin’s Circle Theorem which states the square matrix property of its eigen-

values positions, namely, its spectrum. Thereby, the Long-Short Term Memory (LSTM)

architecture is extended in order to allow transitions made stepwise on deeper models.

The final proposition is to build RHN layers consisting of multiples Highways feedforward

layers in the transitions of the recurrent states.

Another recent and interesting architecture is the Ordinary Differential Equations

CHAPTER 2. LITERATURE REVIEW 36

(ODE) networks. This approach was inspired in the residual networks (Res-nets) which

directly summed the activation of posterior layers to anterior ones as this operation re-

sembled an Euler numeric integration. As such, a large amount of res-nets layers may

be substituted by one layer followed by a ODE-solver. The result was a faster model

with fewer parameters that performed almost as good as a deeper res-net with a order

of magnitude more parameters (CHEN et al., 2018). Another interesting point to note is

that the discrete amount of residual layers were replaced by a continuous interpolation of

integrated states as if it were a real valued depth with latent time variable.

FIGURE 2.2 – A information plane depicting the training phases from bottom to up the
drift phase until the green point that indicates the beginning of the diffusion phase, for
three training samples with more data to the right. Source: (SHWARTZ-ZIV; TISHBY, 2017)

In contrast to proposing new architectures, Shwartz-Ziv e Tishby (2017) investigated

the black-box nature that neural networks seems to exhibit due to its lack of immediate

explainability. An information theory approach is presented in which the evolution of

layers if analyzed in the information plane for various experiments, as shown in Figure

2.2. It was shown that there are two different phases of Stochastic Gradient Descent

Optimization (SGD), namely the drift, characterized by gradients larger than the their

standard deviations resulting in a more deterministic behavior, and diffusion in which

there is a high stochasticity caused by the lower gradients. The main aspect of SGD

stated was the “compression by diffusion” property that generates appropriates internal

representations and that this learning algorithm optimizes the Information Bottleneck for

each layer between precision and compression.

In this context, Arpit et al. (2017) observe what generalization capabilities and ro-

bustness a deep neural network may possess in face of its memorization behavior. Even

though such model is able to learn from random noises, i.e., memorize, it is stated that its

first optimization strategy concerns the patterns that are most basic and require the least

complex representation. The usage of dropout for increase robustness in a noise dataset

is also utilized without compromising its performance suggesting that the training data

is important to access the level of memorization such model may exhibit as much as

CHAPTER 2. LITERATURE REVIEW 37

its architecture. This result of first fitting to the simpler pattern reinforces the results of

Shwartz-Ziv e Tishby (2017) which justified this phenomenon in face of the drift behavior.

Yet trying to explain the effectiveness behind deep neural networks is Mehta e Schwab

(2014) with its research that links in a one-to-one relationship a quantum physics com-

plex systems to deep learning. This is the renormalization group (RG) physics theory,

a iterative methodology that allows the extraction of various features at distinct scales

from a physical system. It is suggested that the circumstances in which deep learning

is effective could be explained by the employment of a generalizes renormalization group

methodology. An interpretation is that the emergence of qualitative properties is a result

of universal interaction at various scales, as those occurring in the natural world in a mi-

croscopic to macroscopic level, that is captured by the hierarchical displacement of neural

networks architectures.

FIGURE 2.3 – Architecture overview of the Face Swapping Generative Adversarial Net-
work and a example of its application. Source: (NIRKIN et al., 2019)

Observing recent applications, Nirkin et al. (2019) presented a novel face transfer and

swapping technique called Face Swapping Generative Adversarial Network (FSGAN), an

improvement over the DeepFakes model. Being subject agnostic is the greatest advance-

ment over the later technique, as it is applicable to untrained pairs of faces, resulting in

a lower computational requirement and immediate execution. Not only limited to static

images, it can also generate video output with temporal coherence by using an interpola-

tion method of barycentric coordinates and Delauney Triangulation. The main network

architecture is observed in Figure 2.3. It is noticeable the definition of two innovative

loss function for this problem: the new face integration via Poisson blending loss and the

progressive puppeteering provided by a stepwise consistency loss. Its approach is first

CHAPTER 2. LITERATURE REVIEW 38

constructed by the “recurrent reenactment generator” (Gr) for estimating the new face

in parallel to its hair and face segmentation generator (Gs) in the target image. These

encodings are then fed to the in-painting generator (Gc) responsible for predicting the

final pose which is then combined by the blending generator (Gb) as shown in Figure 2.3.

Focusing in another problem that is the search for an optimal policy that an agent

may utilized in order to maximize its reward in an environment, namely Reinforcement

Learning (RL), there is the state-of-the-art work from Baker et al. (2019) in collaboration

with OpenAI. In this research, a hide-and-seek goal was set in a multi-agent environment

resulting in the emergence of six different strategies seen in Figure 2.4. The first and most

basic strategy (a) was the coordination of movement having the seekers running towards

the hiders which in turn tried to escape their visual range. The emergent tools started

appearing at the second phase (b) when the hiders learned to block entrances and to

construct forts around themselves giving a huge advantage over the seekers. This strategy

race continues as the seeks utilizes ramps (c) but soon after are neutralized by blocking

the ramps (d), followed by an exploitation of the physics engine (e) defended by blocking

all objects available (f). It is important to note that all the cited behavior was learned by

self-playing, not being coded by a human.

FIGURE 2.4 – Emergent strategies generated by a deep reinforcement learning model.
Source: (BAKER et al., 2019)

As the final application presented in this section, Payne (2019) has developed a fasci-

CHAPTER 2. LITERATURE REVIEW 39

nating implementation of a music generator supported also by OpenAI based on a trans-

former artificial neural network called Musenet. This foundation of GPT-2 is discussed

in more details in the next section, but it is able to estimate the next sequence of musical

notes given a prior context. In this way, the model is able to produce and blend distinct

music styles, just as the DeepFakes did for faces swapping. Novel rhythms and melodies

are also generated based no famous composers and on different instruments. The model

captures long term structure using 24 attention heads in a 72 layered network trained on

a MIDI dataset collected from the web.

2.3 Natural Language Processing

As stated by Manning e Schütze (1999), natural language processing (NLP) is the

characterization of linguistic observations, identifying patterns that occurs in its usage as

summed by rules or statistical inference. Two main approaches to language are prominent:

the rational and the empirical methodologies. While the first claims that most knowledge

from a language is determined in advance (“innate language faculty”) the second argues

that is the cognitive capacity that enables de construction of language (“tabula rasa”). In

this context, linguists aims not only to determine the origin of natural language knowledge

but to also understand how information is conveyed through language and how those

structures are connected to the real world.

While not leveraging the computational capabilities or artificial neural networks, the

NLP field was limited to rule based and frequency analysis approaches. Its initial am-

bitions stated at the Automatic Language Processing Advisory Committee (ALPAC) in

the 60’s was to build a translation machine, but it was ultimately abandoned in favor of

basic research in the area. As described by Mitkov (2003) those subfield includes phonol-

ogy, morphology, lexicography, syntax, semantics and discourse. In the distributed sense

of a ANN, all those fields are interconnect indistinguishably through the network, being

trained end-to-end.

There are many problems in NLP that may vary from learning language representation

to understanding visual inputs and expressing that knowledge by generating text, such as

in image captioning. It is important to capture the meanings from different languages not

only to make effective machine translation possible but also to have a compact word em-

bedding, enabling document understanding, summarization, sentiment analysis, named

entity recognition, sensitive information detection, question answering, lexical analysis,

parsing, knowledge graph, procedural generation of stories, social computing and opti-

mization of the interface between speech and text. These research questions allow the

expansion from spatial relations and humans interactions to a new level of technological

CHAPTER 2. LITERATURE REVIEW 40

advancements, breaking the language barrier in a multilingual world by using methods

that easily support new languages. As the field progresses, office work that may have re-

quired hours of typing and tedious translations from structured data to natural language

will be efficiently automated, freeing man-hours to more overall efficiency and productiv-

ity.

For this work, the main focus is a variation of sentiment analysis characterized not by

evaluating if a sentence is negative or positive but what level of human effort is expressed

in its meaning. Liu (2012) expresses this field, also known as opinion mining, as an

evaluation of attitudes toward entities, namely, appraisals of linguistic attributes. The

emergence of this area was mainly due to the vast data available from social networks and

product reviews given in on-line shopping websites as both platforms desired to create a

better model of its costumers. Although there are different levels on analysis, those being

document, sentence and entity or aspect, the main scale of this research is focused on

the mid-document sentence level, namely, short documents or long sentences. There are

also other aspects studied such as regular to comparative sentences, explicit or implicit

opinions, rational or emotional evaluations and idiosyncratic attributes to the writer.

Moving to more recent approach to NLP, Deng e Liu (2018) considers deep learning as

the most fruitful methodology to tackle these problems given enough data and processing

power, the so called third wave of natural language processing. It has provided a more

solid background which resurrects the empiric ideals of learning from scratch like a human

child would do. Five main points for advancements in NLP were proposed: firstly meta-

learning, commonly known as learning-to-learn, where previous knowledge is utilized with

a reduced new data in order to succeed in a novel task (approaching the AGI); leveraging

multitask learning as well as multimodal in sparse cost systems from simultaneous tasks;

developing foundations to integrate symbolic computation to ANNs; advancing the studies

in episodic memory models as seen on humans; and finally, better paradigms for generative

and unsupervised learning that allows a more effective utilization of available information.

Radford et al. (2018) work has surprised an amount of NLP researchers for its capacity

in generating cohesive and consistent stories while also being able to perform relatively well

on a wide range of NLP tasks such as reading comprehension, translation, summarization

and question answering. It was demonstrated that these task can be learned with no

explicit supervision given a sufficient amount of data which, in the paper, was about

40GB of raw text. The final architecture had over one and a half billion parameters

and was called GPT-2 and it is based on Transformers Neural Networks (VASWANI et al.,

2017). The following excerpt is a textual generation from this model, given a small seed

text about the Muslim rule in Spain. It is also remarkable that the code and parameters

for this model were not fully released by the time this dissertation was written, as the

perceived dangers and its implications of such powerful text generator had led to a slow

CHAPTER 2. LITERATURE REVIEW 41

and gradual release of the work.

The Reconquista (literally, The return to the country) of 1092 and
1095 saw the establishment in the Iberian peninsula of a united king-
dom of Castile and Aragon in which a Muslim dynasty would exist.
This was the last time in Europe where Muslim rule would be con-
sidered ”native” and the last occasion where Christian-inflamed and
organized conflicts would make themselves known in Europe. The
reign of Muslim Moors in Spain is often re- ferred to, especially among
non-Muslims, as the Conquest of Granada and Spain is sometimes re-
ferred to as Spain in Granada. The last years of Muslim rule were
followed by the Spanish Reconquista where the Muslims were driven
or compelled out of the Iberian Peninsula with the victory of Ferdi-
nand IX. in the Battle of Poitiers in March 1189 and the conquest of
Jerusalem in 1187 by Saladin.

(RADFORD et al., 2018, p. 15)

Another important approach from (GRAVE et al., 2018) who utilizes word embeddings

to leverage and identify 157 different languages. The data was based on Wikipedia articles

as they had many languages available even though some had much more data than others

such as English. It is remarkable that those word embeddings are employed in state-of-the-

art models as initial layers in order to reduce the input dimensionality and even though

they were initially trained in an unsupervised way it may be adjusted in the supervised

step of learning. These 157 word embeddings are also used as a mean to identify the

language from a text and to make analogies between them.

2.4 Story points estimation

Li et al. (2018) reviewed the recent applications of deep learning in the Software Engi-

neering (SE) field. It was stated that those neural network architectures were integrated

over forty SE tasks including requirements, design, development, testing, maintenance

and management activities from numerous industrial practitioners besides academic re-

searchers. Most of those assessed papers were found to utilize standard DL models, with

initially little variation from the already existing but in novel applications. Data collection

has been found to be a great challenge in some cases that requires specific frameworks

such as agile ones.

In the context of software engineering, Choetkiertikul et al. (2017) and Choetkiertikul

et al. (2018) have developed deep learning models for predicting the delay of programming

implementations and for estimating the delivery capability in agile frameworks.

Satapathy e Rath (2017) used story points in order to make an empirical survey of

machine learning techniques in effort estimation tasks in an agile framework context.

CHAPTER 2. LITERATURE REVIEW 42

The results from story points evaluated by the team was used as a input to the model

which could predict the normalized effort (in man-hours or man-months) to complete

such task. Although shallow neural networks were also compared to other methods, the

authors did not employ DL architectures, limiting the methodological scope to classical

ML approaches.

On the other hand, Panda et al. (2015) employed ANNs to also propose a solution

to the same problem of estimating effort (in man-hours) from actual story points. Its

work was also limited by the availability of data with both attributes, constraining the

developed network’s size. The less usual architectures of Group Method of Data Handling

(GMDH) a self-organizing model, Probabilistic Neural Networks (PNN) and four layered

General Regression Neural Networks (GRNN) were employed and compared.

Porru et al. (2016) was the first author to publish a model that estimates story points

from user stories given its textual description. Nevertheless, neither deep learning nor

shallow neural networks were employed in this work which in turn utilized the Term Fre-

quency Inverse Document Frequency transformation (TF-IDF). The dataset was mainly

based on open source projects from different organizations whose software management

happened on the Jira platform. Therefore, given its performance of a Mean Magnitude of

Relative Error (MMRE) that varied from 0.16 to 0.61, it was demonstrated the feasibility

of using a machine learner to assist humans making effort estimations.

The most remarkable and recent work found in this specific problem was from Choetkier-

tikul et al. (2019). The Figure 2.5 shows the architecture developed by those researchers

for this task of using natural language as input in order to estimate story points. Their

results were significantly better than random guessing and average estimation, having also

more precision than Porru et al. (2016) in most cases. Thereby it sets a milestone in which

this dissertation tries to improve upon by using another deep neural network architecture

and more daring techniques while constrained by the reduced dataset size.

The first layer of the referred model is an Word Embedding that is trained in an

unsupervised manner using user stories that did not have an user point assigned to them

in the dataset. The second layer is composed from Long-Short Term Memory (LSTM)

cells whose time distributed output is pooled using simply the mean sample of its values.

A Recurrent Highway Network is then employed, characterizing more layers to a deeper

network and refining the estimation that is finally output by a regression as noticed in

Figure 2.5. In the supervised learning step, the model is trained end-to-end using root

mean squared backprogation gradient descent (RMSProp) with mini-batches, implying

in a stochastic nature of its training also reinforced by the random initializations in the

weights.

CHAPTER 2. LITERATURE REVIEW 43

FIGURE 2.5 – The Deep-SE architecture proposed by Choetkiertikul et al. (2019) for
estimating story points given its textual description. Source: (CHOETKIERTIKUL et al.,
2019)

2.5 AI safety

Another important topic in AI research concern the guarantees for its safe utilization,

namely the potential impacts that artificial intelligence may have on society as a whole.

From a technical perspective, this impact is studied as the possibles accidents and misbe-

haviors that may occur from poorly designed AI models (AMODEI et al., 2016). The main

causes for concern are the definition of a wrong objective function, reward hacking, lack

of scalable supervision and hazardous exploration while training. Several possible solu-

tions have been proposed to mitigate and access those risks, including model lookahead,

trip wires, supervised reward learning, distant supervision, simulated exploration, human

oversight, impact regularizers and other tools.

Leike et al. (2017) proposed a GridWorld to tackle those problems. Several scenarios

were constructed in such a world with two reward functions: one which the agent tried

to maximize and another not known to it but that evaluated its real performance. The

problems of safe interruptibility, avoiding side effects, absent supervisor, reward gaming,

CHAPTER 2. LITERATURE REVIEW 44

self-modification, distributional shift, robustness to adversaries and safe exploration were

analyzed have each one of those its unique environment.

In an application to natural language processing (NLP), there are AI safety techniques

that aim to filter racial, gender, cultural biases and other prejudices from the language

models trained in web based content. As there exists many websites which hosts offensive

texts that may indiscriminately be used for trained, the machine learner eventually picks

some of this inappropriate information, causing a risk for its future operations. In the

context of word embeddings, a renormalization trick may be employed by subtracting

the undesired components from the vectors and scaling it to maintain the same norm,

although the model’s accuracy may be degraded.

3 Deep Learning

The development of Artificial Intelligence was mainly in the area of Machine Learning

(ML), specifically using Deep Neural Networks (DNN). In contrast to expert systems that

use inference from a knowledge base by applying first-order logic rules, neural networks are

characterized as connectionist artificial intelligence, building an internal representation of

input data. Specially, deep learning is characterized by computing such representations

in terms of the previous ones, composing a function of greater complexity that can obtain

better results (GOODFELLOW et al., 2016). This chapter is a expansion of the under-

graduation work written in Portuguese developed simultaneously to this research (MELO,

2019).

In this context, neural networks can be interpreted not only as universal approxima-

tors of functions, but also as transformations applied in the input data space capable of

progressively separating representations and finding latent variables (MELO et al., 2019, no

prelo). In other words each layer of a neural networks may be interpreted as successive

applications of functions in which there must be agreement of data representation between

each layer as show in Equation 3.1.

activation = σ

(
bias +

N∑
i=1

wixi

)
(3.1)

The basic processing unit of artificial neural networks is the artificial neuron, which

canonically performs a linear combination of its inputs weighted by their synaptic weights

followed by an activation function (MELO, 2019). Its mathematical formulation can be

CHAPTER 3. DEEP LEARNING 46

written as a matrix multiplication according to Equation 3.2.

activation = σ

[
w0 w1 w2 w3 w4 w5 . . . wn

]

1

x1

x2

x3

x4

...

xn

(3.2)

Although inspired by biology, the artificial neural network models and its learning

techniques, in reality, is an optimization of parameters, are distant from natural processes

and the neuronal organization of biological networks, and their similarities are widely

debated (MELO et al., 2019, no prelo). Matrix algebra and multivariate calculus are the

main tools for the construction, analysis and optimization of neural networks, and the

biological analogy is convenient for its interpretation (NIELSEN, 2015). Thus, its math-

ematical formulation for multiple neurons, characterizing a layer of the neural network,

can be observed in Equation 3.3.

A =

a1

a2

a3

a4

...

ad

= σ

w10 w11 w12 . . . w1n

w20 w21 w22 . . . w2n

w30 w31 w32 . . . w3n

...
...

...
. . .

...

wd0 wd1 wd2 . . . wdn

1

x1

x2

x3

x4

...

xn

(3.3)

Thus, the design of a neural network represents major engineering challenges, the

estimation of control hyperparameters and the architecture and topology of the network

itself. Like aeronautical engineering in the early twentieth century with vehicles heavier

than air, its parameters were estimated by empirical equations, due to the complexity

and intractability of analytical and even numerical solutions, the development of deep

learning techniques also finds in its infancy (MELO et al., 2019, no prelo), with great

advances, although based on empirical methodology (LECUN et al., 2015). A numerical

CHAPTER 3. DEEP LEARNING 47

example of your application is represented below in Equation 3.4.

A(1) = W (1)X =

a
(1)
1

a
(1)
2

a
(1)
2

 = ReLU

w

(1)
10 w

(1)
11 w

(1)
12

w
(1)
20 w

(1)
21 w

(1)
22

w
(1)
30 w

(1)
31 w

(1)
32

1

x1

x2

x3

 (3.4)

3.1 Shallow Neural Networks

The basic computing unit of a neural network is the neuron, terms that were inspired

by biology. A linear combination of the neuron inputs occurs whose output signal is mod-

ulated by a nonlinear activation function. For a neuron, the input signals are represented

by a vector of the anterior layer output signals, as observed in Figure 3.1. The mathemat-

ical representation is indicated by Equation 3.2, where a indicates the resulting activation

of the neuron, σ is the activation function, xi is the i-th input, wi is the weight associated

with the i-th input, and b is the bias of the neuron bias (MELO, 2019). Already in terms of

layers, there is a matrix multiplication of the activations of the previous layers, as exposed

by Equation 3.5.

A(2) = W (2)A(1)
[
a

(2)
1

]
= ReLU

[w(2)
10 w

(2)
11 w

(2)
12

] 1

x1

x2

 (3.5)

Σ σ
a

x1

x2

xn

x3

...

w1

w2

w3

wn

1
w0

×

×

×

×

×

Activation
Function

Sinaptic
Weights

Inputs

Activation

FIGURE 3.1 – Artificial neuron modeled as a linear combination. Adapted: (MELO, 2019)

The complete representation is given by the matrix that represents the weights of each

CHAPTER 3. DEEP LEARNING 48

layer. Thus, the computation of a L − 1 index layer with 3 neurons to another of a L

index index with 4 neurons can be written by the Equation 3.8. In this mathematical

formulation, A(N) represents the activations of the Nth layer neuron, w
(N)
ij represents the

synaptic weight between the neurons i and j da layer N, b
(N)
i represents the polarization

threshold of the n-th layer N neuron and σ is the activation function that must be applied

to each element of the matrix (MELO et al., 2019, no prelo).

It is important to note that the computational power of the neural network occurs

through the nonlinearity of the activation function since the linear combination of linear

functions would also be a linear function, which would restrict the neural network to linear

regressions only. An abstraction of this phenomenon is to conceive nonlinearity as an IF-

ELSE rule of imperative programming, something that is clear in the ReLU Rectified

Linear Unit activation functions (MELO, 2019), which have a signal check, that is, defined

by Equation 3.35. Another commonly used activation function is sigmoid, defined by

3.31, which maps values between 0 and 1. Finally, there is a graphical representation of

an artificial neural network in Figure 3.2.

Σ σ

...

x1

x2

xn

y
a1

am

...

FIGURE 3.2 – Artificial neural network representation and its basic unit.

The objective function defines the cost, how far the result is and whose purpose of

optimization is that it should be minimized. This characterizes what is called supervised

learning, ie when the agent is trained with input values already mapped to known output

values. Thus the cost function (also called loss, cost, objective) has as input values the

weights and thresholds that define the network and has as fixed parameters the training

cases. The equation 3.6 defines a cost representation as the mean square error, that is,

the mean between the squares of the differences between the expected output value and

the predicted output value a(L) in the set of N training cases (MELO, 2019). Cost thus

becomes a function of the neural model W and B parameters, which represent the neural

CHAPTER 3. DEEP LEARNING 49

weights and biases. Again, the result of a layer can be exposed in the Equation 3.7.

C = (a(L) − y)2 (3.6)

a(L) = σ(z(L)) (3.7)

Thus, learning simply consists of decreasing this cost function. The Gradient Descent

method is first-order in contrast to Levenberg-Marquardt, Quasi-Newton, and other al-

gorithms that, while converging on fewer iterations by calculating the second derivative,

take more time and spend the square of space, which makes intractable optimization for

deep networks (MELO et al., 2019, no prelo). In the case of only one layer, its behavior

can be expressed by Equation 3.8.

z(L) = W (L)A(L−1) (3.8)

Mini-batch allows for better treatability, as well as giving a stochastic nature to train-

ing, which contributes to the optimization not being trapped in minimal locations. There

are heuristics that improve your performance, with adaptive learning rates and calculating

the amount of movement of the function. In addition to SGD Stochastic Gradient Descent

there are other heuristics such as RMSProp, SGD-Nesterov Momentum, AdaDelta, Ada-

Grad and Adam. Equation 3.9 indicates the mathematical formulation of the Descending

Gradient, in which the weights are updated proportionally to the cost gradient (MELO,

2019).

∆W = −α∇WC (3.9)

Thus, for training it is necessary to find which partial derivative of the cost function

with respect to the weight to be maintained. This question is informally expressed by

Equation 3.10, where Λ is the unknown variable.

∂C

∂w
(L)
ij

= Λ (3.10)

System optimization, that is, learning, takes place through a peculiar kind of gradient

descent: backpropagation. It is a method that calculates the partial derivatives of the

cost function with respect to the synaptic weights. The advantage of backpropagation

is the reduction in the amount of computation and space required, since the change in

weight of a layer is calculated only as a function of the previous layer, which accumulates

CHAPTER 3. DEEP LEARNING 50

the recursive calculations as indicated in Equation. 3.11.

∂C

∂Z(K−1)
=

∂C

∂Z(K)

∂Z(K)

∂A(K−1)

∂A(K−1)

∂Z(K−1)
(3.11)

3.2 Convolutional Neural Networks (CNN)

The convolutional neural networks is a particular feedforward neural network in which

the synaptic weights are interpreted as kernels for co-convolutions operations. In practice,

it is widely used for image related task by learning filters.

This operation is effectively a weigh sharing technique and also a sparse architecture

as the number of parameters is order of magnitude lower compared to a fully connected

neural network. Besides bi-dimensional kernels that make filters for images, there are

one-dimensional kernels used in another architecture called “Transformer” employed in

natural language processing, as shown in the literature review chapter for GPT-2.

The backpropagation occurs similarly as the gradients linearly combined and the

weights are updated accordingly to its average and combination between activations.

These operations are more efficiently performed by a GPU, which may also leverage its

texture’s hardware.

3.3 Recurrent Neural Networks (RNN)

The Recurrent Neural Network (RNN) model provides an architecture that encapsu-

lates temporal information. This is suitable for hydrological time series prediction as it

is based on the previous values of the series depending on the number of memory com-

ponents. There are feedback loops in the neurons of an RNN, which can generically send

signals in any direction to and from all layers (LECUN et al., 2015). Thus, the network

output depends not only on the external inputs it receives, but also on the state of the

network in the previous period of time, observed in Equation 3.12.

y = f(X) = σ(w1x1 + · · ·+ wnxn + b+ ωy(t− 1)) (3.12)

The Back-Propagation Through Time algorithm considers partial derivatives not only

related to input at the same instant of time as output, but also to all past derivatives, as

represented by the Equation 3.13 (HOCHREITER; SCHMIDHUBER, 1997) and also in Figure

3.3.

CHAPTER 3. DEEP LEARNING 51

y(0) y(1) y(2) y(3) y(4)

ŷ(5)

FIGURE 3.3 – Design of a neuron in a recurrent network

∂ 33 (t− q)
∂ 3u (t)

=
n∑

l1=1

· · ·
∑
lnq−1=1

q∏
m=1

f ′lm(netlm(t−m))wlmlm−1 (3.13)

The Figure 3.4 illustrates how the recurring model can be unfolded in the temporal

dimension. Thus, the recurrent network can be characterized as a deep network, but with

equal weights between the temporal layers. (SCHMIDHUBER, 2015).

x

a

xt xt+1 xt+2

at at+1 at+2

unfold

Wax
Waa

+ + + +

Wax Wax Wax

Waa Waa

FIGURE 3.4 – Design of a neuron in a recurrent network. Adapted: (MELO et al., 2019,
no prelo)

Thus, as specific architectures of the recurring model, we can cite LSTM and GRU

as their most notorious representatives. These special recurrent network models were de-

signed to try to model a longer-term dependency, since the training and operation of the

simplest model could not properly adjust the initial weights as the gradient backpropa-

gation signal decreased with each layer. .

CHAPTER 3. DEEP LEARNING 52

3.3.1 Long-Short Term Memory (LSTM)

LSTMs were initially proposed by Hochreiter e Schmidhuber (1997) as a first solution

to their long-term dependencies. The essence of LSTM operation is in an additional state

which is the cell state, which is virtually unchanged in the unit iteration process. There are

three different types of gates: input gate, output gate and forget gate. Its representation

can be seen in Figure 3.5.

The forget gate is responsible for erasing the cell state, for this it uses a sigmoid

activation function (its image is between 0 and 1) whose output directly multiplies the

cell state, which will be updated to a value less than or equal to previous value. Already

the input port is responsible for summing the current value of the input in the cell state,

making use of a sigmoid activation function and a hyperbolic tangent.

ht

output
σ

Long-Short Term Memory

*

* +

σ
input

tanh

ht-1

xt

ot

ct
~

ct-1

σ
forget

tanh

itft

*

ct

FIGURE 3.5 – Long-Short Term Memory (LSTM) cell inner architecture. Adapted:
(MELO et al., 2019, no prelo)

In the last step of LSTM characterization, there is the output port, which represents

the influence of cell state and input values on the unit output value. In relation to the

cell state, a sigmoid activation function is used, while in relation to the input, there is a

hyperbolic tangent.

In mathematical terms, the following equations model the behavior of an LSTM cell,

which can be interpreted as a set of neurons with a very characteristic topology, defined by

CHAPTER 3. DEEP LEARNING 53

the set of states represented by the equation 3.14 (HOCHREITER; SCHMIDHUBER, 1997).

hjt = ojt tanh(cjt)

ojt = σ(Woxt + Uoht−1 + Voct)

cjt = f jt c
j
t−1 + ijt c̃

j
t

c̃jt = tanh(Wcxt + Ucht− 1)

f jt = σ(Wfxt + Ufht−1 + Vfct−1)

ijt = σ(Wixt + Uiht−1 + Vict−1)

(3.14)

3.3.2 Gated Recurrent Unit (GRU)

Similarly, the Gated Recurrent Unit (GRU) has been proposed as an improvement

of LSTM computational efficiency through simplifications, although with no performance

losses (CHUNG et al., 2014). The GRU unit has only two ports and does not display cell

status. It is the reset gate and update gate that characterize this model, as shown in

Figure 3.6.

tanh

σ
reset

ht

update
σ

Gated Recurrent Unit

*

* +

~

ht-1

xt

rt

ht
~zt

FIGURE 3.6 – Gated Recurrent Unit (GRU) inner architecture. Adapted: (MELO et al.,
2019, no prelo)

The upgrade port plays the role simultaneously of what would be the forgetting and

entry ports in the LSTM. The intuition is that forgetting a previous state should also

include a new state, and that is in just one step. The restart door, on the other hand,

also resembles the oblivion door, but it has a hyperbolic tangent activation function. This

way, there is no need for an output port, since there is no cell state, just its own output.

CHAPTER 3. DEEP LEARNING 54

The definitions of their states are expressed in Equation 3.15 (CHUNG et al., 2014).

hjt = (1− zjt)h
j
t−1 + zjt h̃

j
t

zjt = σ(Wzxt + Uzht−1)

h̃jt = tanh(Wxt + U(rt � ht− 1)

rjt = σ(Wrxt + Urht−1)

(3.15)

3.4 Backpropagation

The training of an artificial neural network is characterized by the minimization of an

objective function. For commonly used architectures, synaptic weights are the parameters

to be optimized in the training process. Thus, using iterative methods, one must determine

whether a given weight should be positively or negatively disturbed in order to reduce the

model error.

Performing such variations for each of the synaptic weights, reevaluating network per-

formance at each step would be impractical for a large number of parameters and training

set. In this context, the backpropagation method solves this problem by calculating such

updates for all weights in only one evaluation of the network.

Thus, given the calculation of the activation of the neurons in the direct propagation

step in order to calculate the output of the network, the output error is first calculated

and then propagated in the reverse direction of this error signal. . The synaptic weights

are updated to minimize the error signal of the next iteration, taking into account the

activation of the neuron connected in the anterior layer and the error signal of the neuron

in the next layer.

A mathematical demonstration of the formulas involved in backpropagation is given

below (MELO, 2019).

First, we calculate the partial derivative of the cost function with respect to the acti-

vation of the last layer neuron, as indicated by Equation 3.16.

∂C

∂a(L)
= 2(a(L) − y) (3.16)

Then, using the chain rule, the partial derivative of the cost function with respect to

the synaptic weight is calculated in view of the previous derivative. Thus, the equation

3.17 represents such a formulation.

∂C

∂w
(L)
ij

=
∂C

∂z(L)

∂z(L)

∂w
(L)
ij

=
∂C

∂a(L)

da(L)

dz(L)

∂z(L)

∂w
(L)
ij

(3.17)

CHAPTER 3. DEEP LEARNING 55

Again, performing one more step of the chain rule and one more substitution of the

previous results, we present the Equation 3.18.

∂C

∂w
(L)
ij

=
∂C

∂z(L)

∂z(L)

∂w
(L)
ij

=
∂C

∂z(L)
a

(L−1)
j (3.18)

Finally, we have the expected result for the synaptic weight gradient of the last layer.

As a result of replacing the previous equations we get to Equation 3.19.

∂C

∂w
(L)
ij

= 2(a(L) − y)σ′(z(L))a
(L−1)
j (3.19)

As a prelude to the generalization of this result to be applied to earlier layers of

the artificial neural network, the partial derivative of the cost with respect to the linear

combination of the inputs of the last layer, as expressed by the Equation 3.20, is calculated.

∂C

∂z(L)
=

∂C

∂a(L)

da(L)

dz(L)
(3.20)

Thus, in order to obtain a formulation that can be recursively applied, the following

question is asked: how to calculate the partial derivative of the cost function with respect

to the linear combinations of the previous layer inputs. In mathematical terms, such

notation is realized in the Equation3.21.

∂C

∂z(L−1)
= Λ (3.21)

In view of Equation 3.22, we derive it in order to apply its result in the next step.

a(L−1) = σ(z(L−1)) (3.22)

Because the activation function is real, having only one input and one-dimensional

output, instead of partial derivatives we have the total derivative, according to the Equa-

tion3.23

da(L)

dz(L)
= σ′(z(L)) (3.23)

Again, using the definition of the linear combination of the back layer inputs, given in

the Equation 3.24, we have a function of the activations of the previous layers.

z(L) = W (L)A(L−1) (3.24)

CHAPTER 3. DEEP LEARNING 56

Thus, the partial derivative of the linear combinations of the posterior layer with

respect to the activations of the anterior layers is simply the matrix of synaptic weights,

expressed by the Equation 3.25.

∂z(L)

∂A(L−1)
= W (L) (3.25)

At this juncture, one of the last terms to replace in the expansion of the chain rule is

the partial derivative of the linear combination of inputs by a synaptic weight of index ij,

given by the Equation 3.26.

∂z(L)

∂w
(L)
ij

= a
(L−1)
j (3.26)

This result can also be expressed in matrix form, characterized in Equation 3.27. It is

important to remember that the activation function derivative is applied to each element

of the matrix.

dA(L−1)

dZ(L−1)
= σ′(Z(L−1)) (3.27)

Therefore, by applying the string rule expressed in Equation 3.28, it is sufficient to

perform the substitutions of the terms previously found.

∂C

∂z(L−1)
=

∂C

∂z(L)

∂z(L)

∂A(L−1)

dA(L−1)

dZ(L−1)
(3.28)

Finally, a general result is demonstrated and it can be applied recursively: given the

error signal of a later layer it is possible to calculate the error signal of its previous

layer. The mathematical expression that summarizes this result is given in Equation 3.29.

Having the results of all error signals and all activations, to calculate the error gradient

in relation to the synaptic weights simply make your product.

∂C

∂z(L−1)
=
(
W (L)

)T ∂C

∂z(L)
� σ′(Z(L−1)) (3.29)

3.5 Activation Functions

Nonlinear activation functions enable each layer to perform nonlinear transformations

on the vector space represented by the activations of the previous layer, distorting the

space and creating a representation that separates classes better. Thus, it is fundamental

to choose the nonlinearities that can best represent the data relations.

CHAPTER 3. DEEP LEARNING 57

3.5.1 Heaviside Step Function

The step activation function was one of the first nonlinear activation functions to

be used. However, since its derivative is zero throughout its domain, unless it has a

discontinuity origin, it cannot be used in gradient descent training. Point 0 can be set

to 1 or 0.5. Equation 3.30 represents a definition used in which point 0 presents uniform

convergence for the sigmoid function in the case where parameter a tends to infinity. The

Figure 3.7 graphically represents this function.

U(z) =

0, z < 0

1
2
, z = 0

1, z > 0

(3.30)

−8 −6 −4 −2 0 2 4 6 8

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

z

U
(z

)

FIGURE 3.7 – Heaviside step function and its derivative.

3.5.2 Sigmoid Function

The sigmoid function is a continuous function that resembles the step function in

that it is limited between 0 and 1, tending to these values for a sufficiently negative or

positive input respectively. This function that has no discontinuities in its derivatives.

Its mathematical formulation is represented by the equation 3.31, which is graphically

observed in Figure 3.8.

σ(z) =
1

1 + e−az
(3.31)

CHAPTER 3. DEEP LEARNING 58

−8 −6 −4 −2 0 2 4 6 8

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

z

σ
(z

)

FIGURE 3.8 – Sigmoid activation function and its derivative.

3.5.3 Hyperbolic Tangent

The hyperbolic tangent function is similar to the sigmoid but with values between -1

and 1, as shown in Figure 3.9. Thus it can be interpreted as double the sigmoid function

minus 1, a property observed in Equation 3.32.

tanh(z) =
1− e−2z

1 + e−2z
(3.32)

−8 −6 −4 −2 0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

1.5

z

ta
n

h
(z

)

FIGURE 3.9 – Hyperbolic tangent activation function and its derivative.

CHAPTER 3. DEEP LEARNING 59

3.5.4 Linear Activation

In contrast to nonlinear activation functions, it is necessary to have more parsimony

in their use since the linear combination of linear functions is also a linear function, which

generates no capacity gain with more than one linear layer. Therefore, such activation can

be understood as a neutral element to the composition of functions, as if there were simply

no activation. Its mathematical formulation is given by the identity function exposed in

Equation 3.33 and whose polarization graph can be observed in Figure 3.10.

f(z) = z (3.33)

The derivative of this linear function is simply the unitary constant, expressed in

Equation 3.34. This value ensures that the gradients will be backpropagated without any

attenuation or gain, allowing the early layers to be trained faster. Therefore, a class of

ANN known as residual networks employs skip-layers connections (a connection that jump

other layers) with linear activations to achieve state-of-the-art accuracy in many areas.

f ′(z) = 1 (3.34)

Although its usage as an activation for hidden layers increases the computing power

required and does not offer a gain in the model’s capacity, this function may be readily

employed at the output layer in regression models.

−8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

10

z

f
(z

)

FIGURE 3.10 – Linear activation function and its derivative.

CHAPTER 3. DEEP LEARNING 60

3.5.5 Rectified Linear Unit (ReLU)

This is an activation function that deals with the problem of the small gradients that

accumulate in the sigmoid function in deep networks. Since its derivative is 1 for positive

input values, the error signal that will be multiplied by this derivative will not be atten-

uated with the sigmoid function. The Equation 3.35 and the Figure 3.11 mathematically

and graphically represents this function.

ReLU(z) =

0, z < 0

z, z ≥ 0
(3.35)

−8 −6 −4 −2 0 2 4 6 8

0

2

4

6

8

z

R
eL
U

(z
)

FIGURE 3.11 – Rectified linear unit activation function and its derivative.

3.5.6 Leaky ReLU (LReLU)

In contrast to the ReLU, the Leaky ReLU (LReLU) function is conceived as a ReLU

which instead of being zero for negative numbers, which leaves the neuron completely

inactive, gives a slight inclination, which still allows some learning. The Equation 3.36

and the Figure 3.12 mathematically and graphically represents this function.

LReLU(z) =

az, z < 0

z, z ≥ 0
(3.36)

CHAPTER 3. DEEP LEARNING 61

−8 −6 −4 −2 0 2 4 6 8

0

2

4

6

8

z

L
R
eL
U

(z
)

FIGURE 3.12 – Leaky ReLU activation function and its derivative.

3.5.7 Exponential Linear Unit (ELU)

Like ReLU’s leaky modification, the ELU activation function is similar to ReLU, but

is smooth (no discontinuity in the first derivative) and tends a − 1 for very negative

input values. Thus, the Equation 3.37 and Figure 3.13 represent this activation function

mathematically and graphically.

ELU(z) =

ez − 1, z < 0

z, z ≥ 0
(3.37)

−8 −6 −4 −2 0 2 4 6 8

0

2

4

6

8

z

E
L
U

(z
)

FIGURE 3.13 – Exponential linear unit activation function and its derivative

CHAPTER 3. DEEP LEARNING 62

3.5.8 Softmax Function

Unlike other activations presented, softmax is a function that maps the output space

to probabilities, as indicated by Equation 3.38. This normalization occurs by taking the

penultimate outputs as logarithmic scale values. Thus such values are treated as the

exponents of the softmax function, which still normalizes its sum to be equal to 1.

σ(z1, z2, . . . , zN)i =
ezi∑N
k=1 e

zk
(3.38)

3.6 Loss Functions

Besides the already explained mean squared error, there are many different loss func-

tions, but the most used are the squared hinge, mean absolute error, cross entropy,

kullback-leibler and cosine proximity (EPELBAUM, 2017).

The Equation 3.39 indicates the mathematical formulation that the cross entropy has

given C output classes, y the empirical distribution and p the predicted probability.

L = −
C∑
i=1

yi log(pi) (3.39)

3.7 Regularization

Often in which the amount of parameters to be trained is orders of magnitude above

the available data, or when there is enough data redundancy and few standards to be

learned, the model continues to decrease the training error while the validation error.

increases. In this case, the artificial neural network is said to be overfitting.

One of the clearest perceptions of this phenomenon happens in the interpolation of

functions of only one variable. Thus, while a parable can fit perfectly to three points, or

even a fifth-order polynomial to six points, the most reliable relationship between such

data is simply linear. In this context, it is observed that functions with more parameters

to be adjusted (in the case of polynomials are their coefficients) suffer more severely from

the presence of disturbances, that is, noise present in the data or even the stochastic

nature of the process than those.

CHAPTER 3. DEEP LEARNING 63

3.7.1 L1 Norm

The L1 norm is a penalty of parameters that inhibits excessive increase in synaptic

weights. Thus, we add to the cost function to be minimized the sum of the norm of all

these synaptic weights weighted by the penalty rate calculated in Equation 3.40, where

C represents the total cost. , E the approximation error, γL1 the penalty parameter and

wi an index on all N weights.

C = E + γL1

N∑
i=0

‖wi‖ (3.40)

3.7.2 L2 Norm

The L2 norm, like the L1 norm, is also a penalty for parameters that reach even

higher values. Because it is quadratic, its derivative approaches zero smoothly near its

zero input, ie parameters with values close to zero will hardly be penalized. Its mathe-

matical formulation is indicated in Equation 3.41, where C represents the total cost, E

the approximation error, γL2 the penalty rate and wi an index on all N pesos.

C = E + γL2

N∑
i=0

w2
i (3.41)

In short, its difference with the L2 standard is the change from a sum of absolute values

to a sum of quadratic values. It is important to note that the L1 standard favors the more

frequent appearance of null weights in contrast to L2, which facilitates the construction of

sparse nets. This is justified by the presence of a beak in the standard function f(x) = ‖x‖
in contrast to the smoothness of the quadratic function f(x) = x2 around the null point.

3.7.3 Dropout

Dropout is a technique that has recently become popular due to its effectiveness.

It consists essentially of the random deactivation of neurons during the training phase.

Later, in the execution of the model all neurons operate normally, performing a linear

adjustment of their activations in order not to change their average in relation to the

training phase.

CHAPTER 3. DEEP LEARNING 64

3.8 Constraints

It is common to have constrains in neural networks so that the number of trainable

parameters is diminished and a prior expert knowledge is inserted into the network. The

most fundamental example of this phenomena is the Convolutional Neural Network (CNN)

in which a fully connected becomes a filter that executes a convolution operation because

its weights were constrained to be spatial equivariant.

3.9 Optimization Heuristics

Besides simply updating the synaptic weights with a gradient proportional perturba-

tion by the α learning rate, there are other methods. One of the most popular heuristics

has been the Adam Optimizer, a first-order gradient-based optimization algorithm for

stochastic objective functions, by calculating individual adaptive learning rates for differ-

ent parameters from first and second-moment estimations as shown in Table 3.1. gradients

(CHOLLET et al., 2015). The training parameters were those recommended by the original

article and implemented by default by the Keras library learning rate 0.001 and decay of

the null learning rate. Hyperparameters represent, respectively, the decay rates of first

and second order moments, and the minimum value to avoid division by zero.

As an optimization strategy, the adaptive moment estimation (Adam) (KINGMA; BA,

2015) has been selected due to its efficiency and robustness provided by the estimates

of the average first moment and second moments of the gradients. In other words, this

estimation combines the momentum of the gradient, defined as its exponentially weighted

sum (exponential moving average) observed in the equation 3.42, and also the normaliza-

tion factor that is the momentum of the square of the gradient (element-wise) observed

in the Equation 3.43. Its hyper-parameters are the learning rate α, whose initial value

was set as 0.01; β1, the smoothing factor for the first moment, with default value 0.9;

β2, the smoothing factor for the second moment, with default value 0.999; and ε, a small

constant that guarantees numeric stability in the update equation’s denominator, seen in

Equation 3.44, avoiding division by zero.

In the Equations 3.42, 3.43, 3.44, W denotes the weight vector that represents all

TABLE 3.1 – Synaptic weight update algorithms. Adapted: (MELO, 2019)

Algorithms Hyper-parameters
Descending Gradient Learning Rate

Nesterov Moment Learning Rate, Moment, Decay
Adam Learning Rate, Moment, Decay, Mitigation

RMS-Prop Learning Rate, Mitigation

CHAPTER 3. DEEP LEARNING 65

trainable parameters in the neural network, V is the exponentially weighted sum from

the gradient and S is from the square (element-wise) of the gradient. These equations are

evaluated at every mini-batch iteration in the training phase, as the gradients estimates

are evaluated.

Vupdated = β1V + (1− β1)∇W (3.42)

Supdated = β2S + (1− β2)(∇W)2 (3.43)

Wupdated = W − α Vupdated√
Supdated + ε

(3.44)

3.10 Bias and Variance Trade-off

One of the fundamental aspects during the training of any machine learning model is

the observation of how well the model is performing in the training and validation sets by

executing a comparative analysis between those data (NG, 2017). From this investigation,

we can outline the next steps to be taken to improve the model, whether by collecting

more data, introducing knowledge directly by architecture, adjusting the regularization

factors.

It is crucial to note that for a final evaluation of the model in which the result is not

biased, another data set should be used whose elements are not present in the training

or validation sets. In addition, it is necessary that such a test set be sampled from the

same distribution as the actual data, ie the actual operation in which the model will be

employed. Thus, the average of the metric that has been optimized tends to the expected

value of this same metric during the actual operation of the model, as observed in Figure

3.14. The yellow line indicates the error for the validation set and the green line is the

training error.

In simply terms, the bias of a model refer to how well it performs on the training set

whereas its variance comes from its error metrics in the validation set. While the usage of

those terms is not precise to its statistical definition, it gives a sense whether the machine

learner has oversimplified the training points, trying to fit a curve much less complex than

necessary to correctly classify the points, as if it couldn’t have a good estimation for the

mean of the data, resulting in a high bias towards a wrong mean.

From the variance perspective of the machine learner, having learned correctly to

estimate the mean of the data distribution, the model will make predictions centered on

this mean point. Therefore, the sum of the square of the differences between the actual

and the predicted values will be mathematically equals to the variance of the residuals.

CHAPTER 3. DEEP LEARNING 66

Epochs

E
rr

o
r

M
e
tr

ic

Overfitting

Low Bias

High Variance

Medium Bias

Lower Variance

High Variance

High Bias

FIGURE 3.14 – Bias variance trade-off that may result in overfitting for large epochs.
Adapted: (MELO, 2019)

CHAPTER 3. DEEP LEARNING 67

As shown in Figure 3.14, starting from a random initialization in epoch zero, as the model

learns the most basic properties from the data, both the variance and bias decreases until

it hits a threshold were the variance starts to increase. This phenomenon is known as

overfitting and results in a worse performance to new, unseen data.

4 Natural Language Processing

Natural language neural models have become the state-of-the-art technique for NLP

(LIU, 2012) (MITKOV, 2003).

Based on Deng e Liu (2018) work, the methodology proposed in this paper consists of

the following key stages:

• Determination and selection of input variables.

• Identification of the structure of neural networks for the natural language model.

• Determination of neural network parameters.

Each of the system-system research steps defines a methodology applicable to any

natural language model it performs, which may be interpreted as an encoder-decoder

architecture which observed in Figure 4.1.

GRU

GRU

...

... ...

...

General Model
(encoder)

...

......

decoder

FIGURE 4.1 – Embedding model able to encode word features. Source: (MELO; TASI-

NAFFO, 2019)

CHAPTER 4. NATURAL LANGUAGE PROCESSING 69

4.1 Discrete Representations

The most common representation of meaning by linguistics is the denotational seman-

tics, that is the usage of a symbol, namely the signifier, in order to represent a signified,

e.g. an idea or an object. The motivation for this concept may be even found in the

dictionary definition of the word meaning, defined as the representation of ideas using

word, signs and phrases or even as the expression of artistic of scientific works (MANNING;

SCHüTZE, 1999).

This rational approach to language may be directly programmed into synonym sets or

even hypernyms, which states the is-a relationships of words. This classical solution has

the WordNet as a viable example, it is a dictionary of synonyms, a thesaurus, that contains

the whole formal language explicitly assigned to semantics and syntax sets. The Natural

Language Processing Toolkit (NTLK) provides those tools in an open-source environment

including WordNet (LOPER; BIRD, 2002) in the Python programming language.

In this regard, word are treated as tokens, discrete symbols. In analogy to a dictio-

nary, each of them may receive its unique number for identification, namely a localist

representation. Although simply stored in the form of an integer, this number can also be

interpreted as an index in a M-dimensional vector where all dimensions are null except for

the one addressed by the index. The Figure 4.2 exemplifies such representation, having

M = 28976 words and a identification taken directly from the dictionary’s order. The

third word is “Abandon” whose one hot encoding is a 28976 dimensional vector with its

third position set to one while the rest is null.

Those discrete symbols produces the property of orthogonality for those vectors. In

simpler terms, there is no prior notion of similarity between different words. This outcome

is better than just assuming the index given by the alphabetic order as a feasible repre-

sentation and using regression techniques for NLP problems because the regression loss

would penalize more the error between the words “human” and “person” whose dictionary

distance is 2971 than between “human” and “huge” that as a distance of 4. Using the

one-hot representation assumes the same distance between every word pair and converts

the regression problem into a classification one.

Using such techniques allows directly solving some problems concerning keyword search-

ing, spell checking and synonyms finding. The problem rises when those mechanical tasks

evolves to document parsing as ambiguities lurks in sentences and the number of edge

cases starts to rise exponentially. Translations requires even more effort as not only syn-

tactic structures may change but also the context dependency becomes more apparent.

Other difficult tasks include question answering, co-reference and semantic analysis.

Besides this range of task hardly tractable by those tools, there are some limitations

CHAPTER 4. NATURAL LANGUAGE PROCESSING 70

00001. A
00002. Aback
00003. Abandon

13467. Quote
13468. Quotidian

28975. Zoomlens
28976. Zucchini

...
...

W3 = [0, 0, 1, 0,, 0, 0,, 0, 0]

Abandon

W28976 = [0, 0, 0, 0,, 0, 0,, 0, 1]

Zucchini

Dictionary

Vocabulary

One-hot encoding

FIGURE 4.2 – One-hot encoding example given its vocabulary.

including the subjectivity experienced by the experts and programmers of those tools,

the informal language and its new creations and meanings, low precision when computing

word similarities (MANNING; SCHüTZE, 1999). Besides, they are human labor intensive to

adapt and to program. The solution to part of those problems is presented in the next

section as using the vectors themselves to encode similarity.

4.2 Word Embeddings

As a means to solve some limitations of the classical rule based methods in NLP, word

embeddings try to capture the lexemes’ meaning through their context. This methodology

is also known as distributional semantics and it is the foundation for more elaborate

techniques. Word embeddings are also known as word vectors or even word representations

and their primary intuition is that each dimension should carry an attribute (or a linear

combination of them) that should characterize the meaning such as gender, size, color,

taste, goodness, hardness, liveness and others. Differently from one-hot encodings, each

dimension in those distributed word representations is a real value, not just zeros and one

(MIKOLOV et al., 2013).

CHAPTER 4. NATURAL LANGUAGE PROCESSING 71

The main concept behind its training is that the context words, that is the nearby

words in the sentence, should construct the meaning of the center word. Thus, the dense

vector should have a high similarity relative to its context vectors as seen on Figure 4.3.

man

boy

woman

girl
father

mother

son

daughter

Brazil

Brasília

USA

Washington

UK

London

China

Beijingx

y

z

FIGURE 4.3 – Word vector visualization with similar meanings and analogies.

4.3 Unsupervised Learning in NLP

There are many approaches to the unsupervised learning in natural language process-

ing from we which the most commonly used are briefly explained bellow.

4.3.1 Singular Value Decomposition

In this method the do-occurrence matrix is decomposed as the multiplication of three

other matrices which are the solution for the Singular Value Decomposition (SVD).

The most prominent publicly available word embedding that employs this method is

the Global Word Vectors (Glove) which uses a least squares objective function.

CHAPTER 4. NATURAL LANGUAGE PROCESSING 72

4.3.2 Neural Networks Initial Layer

A naive approach to full a softmax was originally employed in the early 90’s work of

Hilton.

Those classical approaches, as exemplified before, uses words as tokens in order to

model its sequence, given its context as a set of cardinality N called N-gram.

There are two main approaches for learning unsupervised word vectors in artificial

neural networks: skip-gram and continuous bag of words.

In the model introduced by Mikolov et al. (2013), the skip-gram method is employed

in order to learn a compact vector for every word in the vocabulary. While the skip-gram

tries to predict the center word given its context, the continuous bag of words does the

reverse by predicting the context given a center word.

For instance, the Equation 4.1 defines the loss function for the skip-gram technique in

a sequence of words w1, w2, w3, · · · , wR.

L(θ) =
1

R

R∑
r=1

∑
−t≤i≤t,i 6=0

log(p(wr+i,θ|wr,θ)) (4.1)

Therefore, given the context of size 2t, also called as the window that defines the

N-grams, the loss functions is calculated as product of all those cumulative conditional

probabilities. As a simplification, it is common to take the log of this product and trans-

form it to a sum of log probabilities. As such, the optimizable parameter θ is iteratively

tunned for each training case given the center word wr and its context wr+i.

For the continuous bag of words based model in which instead of predicting the context

given the center, the objective is to predict the center given the context. Its loss function

equation is somewhat similar to the skip-gram model.

4.3.3 Negative Sampling

In contrast, a more efficient methodology is to take pairs of words (bigrams) and train

the neural network model to answer whether they belong or not to the same context.

The most known and used word embedding of this kind is the Word2vec.

4.3.4 Noise Contrastive Estimation

Noise Contrastive Estimation (NCE) is a especial case of negative sampling. The

following structure was used, where P h is the probability of a given pair of words being

CHAPTER 4. NATURAL LANGUAGE PROCESSING 73

sampled from the same context D = 1|w given the word embedding θ, which may be

rewritten as the of founding this word P h
θ (w) instead of the random distribution kPn(w).

This whole task is considered by a logistic regression in which the sigmoid activation

function σ is used, as depicted in Equation 4.2

P h(D = 1|w, θ) =
P h
θ (w)

P h
θ (w) + kPn(w)

= σ(∆sθ(w, h)) (4.2)

This approach learns faster from true data distribution than if a full softmax function

were to be employed in a vocabulary of V words.

As the classic word embedding learning method was based on a linear combination

followed by a softmax over all words from the vocabulary for calculating the probability

of a given word being a center or context, the computational cost for finding the gradients

was linear with respect to the size of the vocabulary. This amount is generally about tens

of thousands of words up to millions of tokens.

The faster technique proposed by Gutmann e Hyvärinen (2010), also known as negative

sampling, defines a probability metric that resembles the Monte Carlo Method for pairs

of words. As such, its mathematical definition is expressed in Equation 4.3.

log(P (wa|wb)) = log (σ (〈wa〉)) +
r∑
i=1

log (σ (−〈wb〉))
∣∣∣∣
wi∼Pn(w)

(4.3)

It is important to note that a noise distribution P is required in order to make samples

not only from the true distribution (or even a skewed one that favors less frequent words)

but also from a “wrong” distribution of word pairs. Therefore, the negative cases will

be calculated as a penalty for the neural network that is crucial for its learning (MNIH;

KAVUKCUOGLU, 2013).

The idea for looking inside the words was also inspired by another approach Bojanowski

et al. (2016). For the tasks presented in NLP, this represents a gain over larger vocabularies

as the amount of characters is much lower than words. This approach was originally

proposed for binary analysis project in the graduation Course in collaboration with Vitor

Pimenta dos Reis Arruda.

In simply terms, all its need to be done is to have a Word Embedding that will be

trained for calculating the internal product of two vectors, feeding the result to a logistic

regression that will tell whether those two words belongs to the same context. The great

difference between other negative sampling methods is in how the Monte-Carlo based

choice of those words is done.

CHAPTER 4. NATURAL LANGUAGE PROCESSING 74

4.4 Character level encoding

Another contribution of this dissertation is a character level word encoding, observed

in the Figure 4.4. It was originally proposed as a solution to a problem presented in

a graduation course for binary analysis from compiled programs. Even though there

already exists character level NLP models and encodings, the usage of multi-frequency

LSTM was not known to this task. In other works, several layers of LSTM were used but

they operated at the same frequency.

...

...

...

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

...

...

...

Internal Product

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

sigmoid

FIGURE 4.4 – Negative sampling for skip-gram learning in the character based encoding.

Utilizing the character-level word embedding, a recurrent neural network will be ef-

fectively divided as a dual-frequency sampler, as there will be memory cells operating at

distinct time steps as indicated in Figure 4.5.

CHAPTER 4. NATURAL LANGUAGE PROCESSING 75

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

...

...

...

...

...

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M...

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

...

...

...

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

...

...

...

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

...

...

...

ReLU

ReLU

(Lower frequency LSTM layer)

High
frequency

embedding

(feedforward final layers)

..
.

FIGURE 4.5 – Hierarchical LSTM placement for different sampling frequencies: character
and word based.

5 Novel ANN Architecture

In this dissertation, a novel artificial neural architecture is proposed: The Hypercube

of Cliques. The main aim was to keep the same level of learning capacity while diminishing

the number free trainable parameters and potentially the amount of computation required

to train and run the model. Therefore, a sparse structure was chosen as the foundation

to develop this new architecture. This chapter presents the ideas behind the so called

hypercube of cliques and similar works done as the Radix-Net, a tree-inspired approach.

5.1 Sparse Feedforward Models

A sparse neural network is characterized mainly for the absence of synapses between

every pair of neurons in two consecutive layers. For instance, considering a 16-neuron layer

as displayed in Figure 5.1, the first set consisting of three neurons connects only to other

three in the next layer despite the existence of 12 other neurons. This naive approach

was the first investigated in this dissertation that divided de N neurons in N
log(N)

cliques

with size log(N), resulting in only Nlog(N) weights per layer. As evident in Figure 5.1,

the cliques are disconnected of each other, so that the neural network behave as several

networks executed in parallel, drastically decreasing its capacity.

There are two main approaches for sparse neural networks: the first is based on pruning

the weights of an already fully connected neural network while the second focus on de-

veloping structures before the training, potentially decreasing the time during that stage.

In a literature review, Elizondo e Fiesler (1997) cited the potential advantages of such

architectures as an improved generalization capabilities, faster training and execution.

There were methods for “weight dilution”, which consisted of randomly cutting synapses

give a distribution, simulation of neuronal biological networks, variational connectivity,

geometrical relationships, local or shared weights (such as CNNs) and ontogenic methods

such as genetic algorithms based hyper-parameters.

Other works present in the literature, such as Bourely et al. (2017), utilized random

and even bipartite graph topologies in order to achieve the desired sparsity in their ar-

chitectures while arguing that dense layers have unnecessary redundancies and that the

CHAPTER 5. NOVEL ANN ARCHITECTURE 77

log(n)

n
log(n)

FIGURE 5.1 – Neural clique model proposed to increase structural sparsity.

performance of those sparse networks depended much in its connectivity.

The SqueezeNet (IANDOLA et al., 2016) is a five hundred times smaller model than the

AlexNet Convolutional Neuron Network (CNN) that performs similarly by using model

compression techniques such as filter dimensionality reductions, downsampling and de-

creasing the number of input channels. As it was based on an already trained CNN, its

performance suggests the ability to create more efficient connections while maintaining

the error metrics.

The two approaches presented before may also be integrated by learning not only the

weights but also the connections at the training stage (HAN et al., 2015). This approach

trains a fully connected model while also learning the importance of each synapses which,

in a later stage, are pruned using a three-step method. This technique, while still not

useful for decreasing the training time, allows for more efficient embed devices execution.

Similarly, Lin et al. (2017) proposed a framework that prunes the neural networks

at runtime in a dynamic manner. They calculate the probabilities for a reward action

of removing or adding weights by using a Markov Chain decision model, as in the Q-

learning technique. Therefore, for each training step, a set of greedy actions are evaluated

and executed, dynamically updating the structure. Although this tailors the pruned

architecture for to have a similar performance (in means of its error metrics) and faster

execution time, the training phase actually gets slower, as more computation is required

for those procedures.

While testing the performance of those two approaches, Alford et al. (2018) observed

that pruning may also act as a regularization technique, improving even the error metrics

in cases of overfitted models or near this threshold. It was also noted that an excessive

CHAPTER 5. NOVEL ANN ARCHITECTURE 78

increase in sparsity may result in less stable training initializations, affecting the model’s

convergence, drastically changing its accuracy for small variations in the weight matrix.

Another approach, the HashedNets (CHEN et al., 2015) constructs the synaptic con-

nections by using a simple hash function in order to cluster different randomly selected

neurons in a hash bucket. In this way, a weight sharing technique is employed among

those neurons, as shown in Figure 5.2, where a stored weight matrix is expanded to a

virtual dense matrix. The gradients over those shared weights are computed as the sum

of each individual component, just as in CNNs. Furthermore, by carefully choosing a

hash function and picking appropriate number of neurons, one may emulate a CNN in a

densely connected layer. One claimed benefit with this hashing method is that there is no

additional memory overhead. Nevertheless, the number of calculations performed is still

the same as a densely connected network. A small reduction in the training time may be

attributed to the lower memory bandwidth requirement if the training dataset were to be

small enough to fit in the cache memory.

FIGURE 5.2 – The HashedNet functioning as a densely connected layer that share most
of its weights across distinct neurons. Source: (CHEN et al., 2015).

By using a hierarchical structure that employs H − matrices (FAN et al., 2018) and

H2−matrices (FAN et al., 2019), these authors developed a N and Nlog(N) sparse archi-

tecture respectively, and somewhat resembles the tree and tree-inspired approaches that

this dissertation offers. Nevertheless, the multiscale decomposition is done by rewriting

the hierarchical matrix into three different networks applied sequentially. Those are the

restriction, the kernel and the interpolation linear networks constructed from an SVD

(Singular Value Decomposition). The kernel may be substituted for a non-linear ANN

that is translation invariant for several frequencies, resulting in a more robust model.

CHAPTER 5. NOVEL ANN ARCHITECTURE 79

5.2 Tree inspired approach

Based on a simple binary tree, the connections of 2N neurons may be arranged in N

layers, each one having half the number of neurons on the previous. This structure is

shown in Figure 5.3 at the dark green neurons and weights, which starts with 8 in the

bottom layer and finished with a single one in the topmost layer.

It is important to note that the stride doubles every layer, in other words, the difference

between neurons that connect to the same destination increases. By repeating this pattern

over the next layers just by shifting this mask the neural network is constructed. This

is represented by the other colors such as red and yellow for the representation in the

second hidden layer. Four other combinations emerges from the last layer as the later

activations are cyclically operated even though their inputs are the same for the case were

the number of neurons is a power of 2. Other combinations of bases may be also tried,

such as having a fan-in of 3 and increasing the strides three-fold for each layer.

n

log(n)

FIGURE 5.3 – Tree-based approach for sparse neural network having fixed fan-in.

Although this direct tree mapping was created in this dissertation unknowingly to the

work of X-Nets by Robinett e Kepner (2018) and RadiX-Nets by Robinett e Kepner (2019)

which has the same architecture as presented on Figure 5.3. Their construction was based

on Kronecker products while this dissertation’s used simply a geometric progression of

strides modulo the number of layers, as shown on the layer mask created in the Listing

5.1. While this mask is useful for studying its graph properties, the computation on

the forward and backward pass should be done as a the mask’s construction with 2N

CHAPTER 5. NOVEL ANN ARCHITECTURE 80

operations, not as a matrix multiplication. For a more immediate application, the Python

3 programming language together with its Numpy matrix library were employed in those

listings.

Listing 5.1 – Direct tree mapping to neural networks.

1 import numpy as np

2

3 def t r e e s p a r s e w e i g h t s (input dim , output dim , base) :

4 mask = np . z e ro s ((input dim , output dim))

5 for i in range (input dim) :

6 mask [i] [i ∗base%output dim] = 1

7 mask [i] [(i+i)∗ base%output dim] = 1

8 return mask

The main limitation for this direct tree mapping is the relatively high correlation

between closer neurons, which limits the model performance significantly. This behavior

may be observed not only on the first layers which there is a spatial correlation with

the input but also on the latter layer where many neurons may share the same input

combination, as shown on Figure 5.3.

A solution was to increase the fan-in of every neuron by a factor of log(N) as if the

whole tree was compressed into a single layer. Therefore, while strides were doubling in

different layers, with this new increase in parameters the strides become a single operator

over the as shown in the first layer of Figure 5.4. The colors were preserved in order to

facilitate a closer inspection of the strides: the green represents a stride of 1, the blue is

2 and the red is 4.

Therefore, there are 2Nlog(N) weights represented in a single layer, as expressed on its

mask in the Listing 5.2 which returns its adjacency matrix. As part of the implementation,

self-connections was allowed contributing to more N weights which resulted in a total of

(2log(N) + 1)N weights considering N a power of 2.

CHAPTER 5. NOVEL ANN ARCHITECTURE 81

Listing 5.2 – Condensed tree mapping to neural networks.

1 def condens ed t r e e spa r s e we i gh t s (input dim , output dim , base) :

2 mask = np . z e ro s ((input dim , output dim))

3 connec t ions = [base ∗ 2∗∗ i for i in range (math . c e i l (

4 math . log2 (output dim)))]

5 for i in range (input dim) :

6 mask [i] [i%output dim] = 1

7 for j in connec t ions :

8 mask [i] [(i+j)%output dim] = 1

9 mask [i] [(i−j)%output dim] = 1

10 return mask

This tree inspired approach is very similar to the Radix-Net while the doubling stride

technique was also employed at WaveNet for speech detection in several frequencies.

Even though the layer condensation was supposed to build more parameters, it was

noted that an order of Nlog(N) parameter for each layer was still significantly behind

the best models performance that used densely connected layers, especially in wide ANN,

with more than one thousand neurons per layer.

n

log(n)

FIGURE 5.4 – Adaptable fan-in for more connectivity in the last model.

Therefore, another model that had somewhat more parameters per amount on neurons

was needed for those tasks. Some graph topologies were investigated such as Hamming

CHAPTER 5. NOVEL ANN ARCHITECTURE 82

Graphs, especially hypercubes, which were found to have a proportional quantity of pa-

rameters and similar properties.

5.3 Hypercube motivated architecture

5.3.1 Naive Hypercube

In its simplest form a Hypercube Graph is a Hamming Graph in which by representing

every vertex as a binary encoded number, there will be an edge connecting all other

vertices that differs by only one bit, in other words, that has a Hamming Distance of one.

Therefore, a fast implementation of this operation is depicted in the Listing 5.3 where a

bitwise exclusive-or is performed. Having an amount of parameters directly proportional

to Nlog(N), as observed for N = 16 in Figure 5.5, this direct mapping to a neuron network

still suffers a severe performance drop for a wide (more than one thousand neurons) layer.

Listing 5.3 – Naive Hypercube.

1 def mask hipercubo (input dim , output dim , dobro =0):

2 mask = np . z e ro s ((input dim , output dim))

3 for i in range (input dim) : # input dim > output dim

4 mask [i , i] = 1

5 for j in range (int (math . log2 (output dim))) :

6 mask [i , (i ˆ(1<< j)) % output dim] = 1

7 return mask

Another approach similar to this naive hypercube was shown by using crossbar switches,

and guaranteeing five properties such as “pre-determined connectivity, uniform and high

path diversity, full connectivity, and an efficient hardware implementation” (ISAKOV;

KINSY, 2018).

5.3.2 Hypercube of cliques

As the largest value proposition for this dissertation, the idea of a hypercube of cliques

came as a solution for having an amount of parameters proportional to Nlog2(N), as

noted by the two loops in the Listing 5.4 that process log(N) weights per step. Therefore,

a clique (densely connected group) of log(N) neurons is placed at each vertex, having

log2(N) connections between themselves. The old edges give place to a group of log2(N)

CHAPTER 5. NOVEL ANN ARCHITECTURE 83

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

FIGURE 5.5 – Naive hypercube architecture for 16 neurons forming a tesseract.

edges resulting in the numbers presented in Equation 5.1.

Eo = Nolog(No)

N = Nolog(No)

E = Eolog
2(No) + log2(No)

(5.1)

By expressing the old number of edges Eo and neurons No in terms of the new N ,

there is the approximate result demonstrated in Equation 5.2.

eN = eNoNo

E = (Eo + 1)log2(No) = (N + 1)log2(No) ≈ Nlog2(N)
(5.2)

The simple tesseract has now transformed into a more complex, yet not fully connected,

graph shown in Figure 5.6. As No = 16, there are now N = 64 in this new architecture.

Their edges have been made wider in order to represent them not as a single connection

but as a bus of edges. While giving more flexibility for the reader, the topmost-left group

of neurons had three of their buses expanded to the elementary connections.

CHAPTER 5. NOVEL ANN ARCHITECTURE 84

FIGURE 5.6 – Hypercube of clique architecture.

Listing 5.4 – Hypercube of cliques.

1 def mask hypercube c l iques (input dim , output dim , dobro =0):

2 mask = np . z e ro s ((input dim , output dim))

3 l 2 e = int (round(math . log2 (input dim)))

4 qe = input dim // l 2 e

5 for i in range (qe) : # input dim > output dim

6 mask [(i ∗ l 2 e) : ((i +1)∗ l 2 e) , (i ∗ l 2 e) : ((i +1)∗ l 2 e)] = 1

7 for j in range (qe) :

8 mask [i ∗ l 2 e : (i +1)∗ l2e ,

9 l 2 e ∗(i ˆ(1<< j)) : l 2 e ∗ ((i ˆ(1<< j))+1)] = 1

10 return mask

While the l2e size of each cluster may be also defined as log(N) as in Listing 5.4

having a bigger size, the Equation 5.2 presents another smaller solution yet larger than

log(N
log(N)

). While this bigger counterpart allows for exact mapping when N = 22a , the

smaller one has a exact solution when N = a2a where a is a positive integer. Both may

be implemented using block matrices representations.

To put this proposition in perspective by comparing the different approaches re-

searched and developed so far, the Figure 5.7 depicts, in a linear scale, the number of

CHAPTER 5. NOVEL ANN ARCHITECTURE 85

trainable weights each architecture presents for a given amount of neurons on a single

square layer interface. There are small “bumps” in the sparse graphs caused mainly by

the addition of a new bit such as from 511, represented as 111111111 in binary, to 512,

which is 1000000000.

0 200 400 600 800 1000
Number of neurons

0

200000

400000

600000

800000

1000000

Nu
m

be
r o

f w
ei

gh
ts

Dense
Direct Tree
Condensed Tree
Hypercube
Hypercube of cliques

FIGURE 5.7 – Comparison of the free trainable weights amount between the developed
sparse models.

A more detailed view on those sparse matrix as well as a new product definition can

be found in Appendix A. Essentially, a sparse matrix may be represented in a compact

manner occupying only a space proportional to its non-zero possible elements without

using a linked list approach, but another essentially small dense matrix with log(N) or

log2(N) columns and N rows.

CHAPTER 5. NOVEL ANN ARCHITECTURE 86

Listing 5.5 – Hypercube of cliques scattered.

1 def mask hypercube2 (input dim , output dim) :

2 mask = np . z e ro s ((input dim , output dim))

3 for i in range (input dim) : # input dim > output dim

4 mask [i] [i] = 1

5 for j in range (int (math . log2 (output dim))) :

6 for k in range (j) :

7 mask [i] [(i ˆ((1<< j))|(1<<k))] = 1

8 return mask

While this sparse architecture has a small loss in capacity for the same number of

neurons, as observed in Figure 5.8 for the N2 amount, a modest increase on this hyper-

parameter may recover this metric. For many practical applications, depending on the

dataset and on the task being performed, this decrease in capacity could have a beneficial

impact on the generalization accuracy provided the original hyper-parameters were close to

the overfitting region. It is important to note that while the Figure 5.7 was constructed

using real data by effectively running the presented listings, the Figures 5.8 and 5.9

represents a conceptual analysis on the model complexity based on empirical evidence.

A more formal definition for the model capacity is expressed through the Vapnik–

Chervonenkis dimension (VC) measure. For a machine learning model this metric may be

expressed as the maximum amount of arbitrary points that a model may classify correctly.

Other definitions of capacity could also be explored, such as the Rademacher complexity,

although it would require a more detailed analysis and a comprehensive study.

Nevertheless, the benefits of this proposition is better observed on Figure 5.9 in which

not the width of the layer but its total amount of parameters is expressed. This relation

is made possible by the result already shown in Figure 5.7 where the number of trainable

weights is related to the quantity of neurons by a factor of n2 for the densely connected

architecture in comparison to its nlog2n sparse counterpart.

This significant decrease in the parameters’ count is made evident by the negative cur-

vature of those functions despite its strictly monotonic increasing characteristic. Another

interesting observation to be made is the similar behavior that those functions have for

small networks, as the sparse distribution inevitably becomes a densely connected one

when n = 2.

CHAPTER 5. NOVEL ANN ARCHITECTURE 87

Capacity

Number of neurons

x x

dense sparse

N2 N1Small loss in capacity

Recommended width increase

FIGURE 5.8 – Comparison of the neuron’s quantity between a sparse model capacity and
its dense counterpart.

Model capacity

Number of parameters

xx
dense

sparse

N2N1

Large parameters amount decrease

(same capacity)

FIGURE 5.9 – Comparison between a sparse model capacity and its dense counterpart in
terms of its amount of trainable parameters.

6 Dataset Analysis

In this chapter a preliminary analysis is presented on the data that were used to train

the machine learning models. For the sake of comparison between the performance of

past models, publicly available data from a wide range of open source projects developed

by different organizations were processed as inputs for the neural networks models pro-

posed and also to architectures reproduced from the literature. The Jira Software, a web

framework that tracks issues and is utilized in agile project management, was the main

source of this data.

A case study was also performed in the CCA-SJ, where they employed the Redmine as

their issue tracker platform Even though the data is another language, namely, Portuguese,

the only difference on its treatment was the tokenizer, which had to be specifically tailored

for the language. Unfortunately, due to the sensitive nature of the information present

in this dataset, it couldn’t be made available. Nevertheless, this case study provides an

evaluation of the proposed model to new, unseen, datasets that are present in closed

organizations.

6.1 Open Source Projects

As nowadays there are many open source projects available in conjunction with its

development planning data. This gives a reasonable amount of user stories or even just

issues to analyze and study and also enables the use of more complex machine learning

models such as deep neuron networks.

The following organizations were had its Jira management website employed Apache,

Appcelerator, Atlassian, DuraSpace, LSST Corporation, Moodle, MuleSoft, Spring, Tal-

endForge.

The Figure 6.1 shows a user story in its original Jira project managing environment,

namely for the Mesos project in the Apache repository. It is observed that the issue

MESOS-9843 is actually an user story, even thought it is not written in its canonical

format, that requires the programmer undertaking this task to implement test for the

CHAPTER 6. DATASET ANALYSIS 89

container. It was given the value of three story points and had a simple title and de-

scription text. Other data such as the priority, which as marked as Major, labels, status,

sprint and resolution were not gathered even though it could be useful as most of the

older issues in other projects hadn’t those fields.

FIGURE 6.1 – Apache Mesos Jira website example with an user story.

This resulted in the following projects being raised Appcelerator Studio, Aptana Stu-

dio, Bamboo, Clover, Data Management, DuraCloud, Jira Software, Mesos, Moodle, Mule,

Mule Studio, Spring XD, Talend Data Quality, Talend ESB, Titanium SDK/CLI, User-

grid.

The table 6.1 depicts the main metrics from those datasets. The CSV (Comma Sepa-

rated Values) files were obtained from Choetkiertikul et al. (2019) so that a fair comparison

using the same data could be made between the models. The unique identification of the

issue, as well as its title, description and story points are present in each line of the data

files, separated by commas.

As a surprise during the evaluation of this data in the validation subset, the literature

model was performing much better than the proposed one. After a thoroughly review of

the results, activations and error distribution, it was found that the not only the literature

model’s predictions but also the data itself was altered to a maximum value for the 10%

percentile, presented in Table 6.2.

Therefore, for each project and user story, it parametrized value was defined as maxi-

CHAPTER 6. DATASET ANALYSIS 90

TABLE 6.1 – Statistical analysis of the main metrics present in the dataset versioned as
presented by Choetkiertikul et al. (2019).

Project Repository Mean Median Autocorr. Count Std. Min. Max.

Mesos Apache 3.09 3.00 0.18 1680 2.42 1 40
Usergrid Apache 2.85 3.00 0.12 482 1.40 1 8
Appcelerator Studio Appcelerator 5.64 5.00 0.26 2919 3.33 1 40
Aptana Studio Appcelerator 8.02 8.00 0.23 829 5.95 1 40
Titanium SDK/CLI Appcelerator 6.32 5.00 0.21 2251 5.10 1 34
DuraCloud DuraSpace 2.13 1.00 0.24 666 2.03 1 16
Bamboo Atlassian 2.42 2.00 0.15 521 2.14 1 20
Clover Atlassian 4.59 2.00 0.39 384 6.55 1 40
Jira Software Atlassian 4.43 3.00 0.35 352 3.51 1 20
Moodle Moodle 15.54 8.00 0.16 1166 21.65 1 100
Data Management LSST Corporation 9.57 4.00 0.40 4667 16.60 1 100
Mule MuleSoft 5.08 5.00 0.17 889 3.50 1 21
Mule Studio MuleSoft 6.40 5.00 0.08 732 5.39 1 34
Spring XD Spring 3.70 3.00 0.25 3526 3.23 1 40
Talend Data Quality TalendForge 5.92 5.00 0.16 1381 5.19 1 40
Talend ESB TalendForge 2.16 2.00 0.24 868 1.50 1 13

TABLE 6.2 – Statistical analysis of the main metrics present in the clipped dataset.

Project Maximum Cliped Story point Count Cliped Mean Std.

Mesos 5.00 122 2.75 1.43
Usergrid 5.00 12 2.78 1.19
Appcelerator Studio 8.00 173 5.23 2.20
Aptana Studio 13.00 56 7.30 4.02
Titanium SDK/CLI 13.00 142 5.81 3.63
DuraCloud 4.00 63 1.84 1.05
Bamboo 5.00 17 2.22 1.28
Clover 13.00 17 3.87 3.71
Jira Software 8.00 22 4.00 2.34
Moodle 40.00 57 12.73 12.48
Data Management 21.00 463 6.51 6.43
Mule 8.00 57 4.69 2.62
Mule Studio 13.00 32 5.86 3.63
Spring XD 8.00 107 3.48 2.29
Talend Data Quality 13.00 61 5.51 3.95
Talend ESB 3.00 85 1.89 0.85

CHAPTER 6. DATASET ANALYSIS 91

mum value between the real value and the clipping constant, as formalized by Equation

6.1.

Y ri = max(Yi,MCS) (6.1)

As a means to easily identify the story points’ distribution across all of those presented

projects, the Figure 6.2 brings and unnormalized box-plot colored differently for each

project. It is noticeable that while Moodle and Data Management have the most elongated

distribution with a tail up to one hundred story points, the largest amount of the other

projects are located under 20 story points. On the other hand of this specter, DuraCloud,

Bamboo and Talend ESB story points are cramped under the value of five.

Mesos
Usergrid

Appcelerator Studio

Aptana Studio

Titanium SDK/CLI

DuraCloud
Bamboo

Clover

Jira Software
Moodle

Data Management
Mule

Mule Studio

Spring XD

Talend Data Quality

Talend ESB

0

20

40

60

80

100

FIGURE 6.2 – Box-plot for the story points distribution in each project.

6.2 Case Study Data

The dataset was initially collected from SQL queries into a Comma Separated Values

(CSV) file in which each row of the table represents a data point and each column is

CHAPTER 6. DATASET ANALYSIS 92

delimited by commas. The file consisted of four columns, the first being the number that

uniquely identifies the issue, the second is its title, the third is its textual description,

and the fifth is the amount of hours actually spent on the task. As ordered by the

literature, the user stories are sequentially displaced according to its creation time, that

is its sequential ID.

The initial processing of this file is tokenization of strings using the SpaCy library in

order to properly identify compound words, so a string is transformed into a list of elemen-

tary strings, which are the words , eliminating the spaces but preserving the punctuation,

as if it were words.

Then all string lists are traversed by counting the number of tokens, storing the result

in a dictionary. Finally, IDs are mapped to tokens sequentially from number two in

descending order of their count. Thus, words with more occurrence will have smaller IDs,

which facilitates later filtering of words with low occurrence. After this step, we have

a mapping of words (strings) into numbers (IDs) defined by a dictionary, and the word

sequences are converted to a number sequence.

For pre-training, the maximum vocabulary size is defined, ie how many different words

can exist in order to limit the size of the input layer. This way, words with an ID above

this number will map to an ID equal to zero, which represents all words that are outside

the vocabulary.

It was also important to properly escape newline characters and other special punctu-

ation, favoring the UTF-8 encoding. If the wrong encoding were to be employed, the tok-

enizer could wrongly break accentuated words apart. This would take up more space in the

dictionary and potentially produce senseless word embeddings for the broken phonemes.

As depicted in Figure 6.3, the Redmine project management environment is similar to

Jira’s, presenting the same basic data extracted from the open source projects although

its API is different.

For a more detailed analysis and precise visualization of the data, Figure 6.4 shows the

histogram of the CCA-SJ story points distribution. A gaussian kernel density estimation

is depicted in the dashed yellow line whose fit was made in the log-scale of the real

distribution.

It is important to observe that most of the story points are concentrated in integers

numbers as expected for the Fibonacci sequence, with the number one being the most

common estimation. As such, the spikes in 1, 2, 3, 5, 8, 13 and 21 are noticeable.

Nevertheless, there were a significant amount of user stories with fractional value less

than one and even intermediate values such as 2.5. This further supports the fact that

some of these issues doesn’t truly represent and agile framework, but in certain cases,

simply tasks measured in hours.

CHAPTER 6. DATASET ANALYSIS 93

FIGURE 6.3 – CCA-SJ Sigadaer Redmine example with an user story.

Another characteristic of this dataset is that it follows a rapidly decaying density

function, that resembles a Paretto distribution displaced one unit to the left and clipped

to a lower value. However, the its favor over integer values makes its maximum likelihood

fit difficult for those common distributions.

Even with this mixture of management techniques, the machine learner is expect to

discern between those different data distributions, being able to perform better than

random estimators or null models. It is also important to note that the data given to the

models were also clipped to 12.5 story points, following the same procedure employed by

the literature as those models are unable to estimate high values for their occurrence is

very scarce.

CHAPTER 6. DATASET ANALYSIS 94

0 5 10 15 20 25 30
Story Points

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

CCA-SJ Dataset

FIGURE 6.4 – CCA-SJ story points distribution.

7 Implementation and Results

In this chapter, implementations details are discussed and the results are analyzed.

In the first place, a baseline from the literature was obtained in order to establish a

baseline for comparison of the proposed model error metrics. Not only the original results

are reported but also the in loco reproduction from end-to-end training to evaluation as

preprocessed in the Listing 7.1. Other baselines such as a model that randomly sampled

the estimated story point from its training distribution or always predicted the mean or

the median from the data were also employed.

For the proposed model, a preliminary masking technique was employed in order to

implement it in the existing Frameworks without needing to program low level hardware

API such as in CUDA or SIMD assembly instructions. Nevertheless, it is imperative as

a future work to code in those languages in order to achieve the desired and predicted

reduction of training and execution time. The randomly weights’ initialization should be

also studied especially while using ReLU activation functions as there were many times

in which the network “died”, that is, the activations of the hidden neurons were zero and

the training was unable to continue due to the zero derivatives.

Listing 7.1 – User stories description and title readings from csv file and tokenization.

1 def r e a d c s v t o k e n i z e (f i l e p a t h , t o k e n i z e r) :

2 data tab l e = pd . read csv (f i l e p a t h)

3 t i t l e s = data tab l e . va lue s [: , 1] . astype (’ s t r ’)

4 seps = np . f u l l (len (t i t l e s) , ’ . ’)

5 desc = data tab l e . va lue s [: , 2] . astype (’ s t r ’)

6 va lue s = data tab l e . va lue s [: , 3] . astype (’ f l o a t 3 2 ’)

7 concat = [a + b + c for a , b , c in zip (t i t l e s , seps , desc)]

8 token ized = [[w. t ex t . s t r i p () . lower () for w in t o k e n i z e r (

9 sentence) i f not w. text . i s s p a c e ()] for sentence in concat]

10 return tokenized , va lue s

CHAPTER 7. IMPLEMENTATION AND RESULTS 96

7.1 Python Implementation

Guided by a careful benchmark of the available frameworks (SHI et al., 2016) the Theano

was choosen (LAMBLIN et al., 2016) having Keras (CHOLLET et al., 2015) as its front-end

high-level programming interface. While some of code snippets will be shown as listings,

most of the scripts won’t be directly reproduced in this dissertation for the sake of its

size as all the code developed in this dissertation is fully available at the Github Reposity

gabrui/estimar-pontos-estoria. As discussed in the Data Chapter, the preprocessing steps

for tokenization and dictionary creation is shown in the Listing 7.2 in which the least

frequent tokens are discarded in order to produce a lighter embedding and given that

training words embeddings with lower than five occurrences is very difficult.

Listing 7.2 – Dictionary generation and vocabulary truncation for the most frequent to-

kens.

1 def g e n e r a t e d i c t (t o k e n s l i s t , max vocab =2000):

2 counts = d e f a u l t d i c t (int)

3 for tokens in t o k e n s l i s t :

4 for token in tokens :

5 counts [token] += 1

6 orderned = sorted (counts . i tems () , key=lambda x : x [1] ,

7 r e v e r s e=True)

8 IDs = { ’EOF VALUE ’ : 0 , ’UNK VALUE’ : 1}
9 for i in range (min(max vocab , len (orderned))) :

10 IDs [orderned [i] [0]] = i + 2

11 return IDs

As described by the previous chapters, a sequential language model was built using

a word embedding that was unsupervised trained on user stories or reported issues that

had no effort metric associated with them. Every word was expressed in its lowercase

format and a dictionary was constructed whose order was given by the frequency. The

size of this dictionary was limited to 2000 tokens that included not only words but also

punctuations, numbers and two special symbols that denoted an empty or an unknown

token. The conversion of those tokens represented as list of strings to a list of integer is

shown on the Listing 7.3. The dimension for this embedding was set to 64, a compromise

given the modest amount of data available. Following this word vectorization, a 64 LSTM

layer was also applied which processed the whole sequence (that was limed to 250 words

during training) resulting in a 64 dimensional vector that was then fed to a feedforward

sparse layers. The training objective was the mean average error (MAE).

CHAPTER 7. IMPLEMENTATION AND RESULTS 97

A custom class that extended the base Layer Keras class was programmed. The meth-

ods to its initialization, calculation and output shapes were also implemented. Because

there is no implementation for the compact sparse matrix multiplication operator, the

results were computed by using the canonical matrix multiplication between the masked

weights and the activations of the latter layer. Those masked weights were computed

as the elementwise multiplication between the dense weight matrix and the adjacency

matrix.

Listing 7.3 – Dictionary substitution and train/validation/test split sequentially.

1 def c o n v e r t t r a i n (t o k e n l i s t , dic , s p l i t r a t i o , max len =256):

2 data = np . z e r o s ((len (t o k e n l i s t) , max len) , dtype=’ in t16 ’)

3 for i , tks in enumerate (t o k e n l i s t) :

4 compri = min(max len , len (tks))

5 data [i , : compri] = [(d i c . get (tks [i]) or 1) for i in

6 range (compri)]

7 t ra in , val , t e s t = q u a n t s p l i t (len (t o k e n l i s t) , s p l i t r a t i o)

8 return data [: t r a i n] , data [t r a i n :− t e s t] , data [− t e s t :]

Therefore, this simple implementation could not compare the gain in training and ex-

ecution time for using sparse matrix nor the memory usage as a full matrix multiplication

was being performed even though most of the elements were just zeros. Nevertheless,

if instead of using the existing tensor libraries for-loops as shown in the Listings 5.4 or

5.5 were employed for both models the performance difference would likely be noticeable.

As a future work, the implementation of those sparse product operations is intended, en-

abling developers, machine learning practitioners and researchers to easily efficiently this

architecture.

7.2 Deep Story Estimation Baseline Comparison

The code available at the Github repository SEAnalytics/datasets was employed to

reproduce the work from Choetkiertikul et al. (2019). It was necessary to beware of

newline characters \n as the tokenizer in the preprocess stage will join all the text with

this newline character and the call an external Pearl script to split the whole string in

a sequences of words: the Moses Tokenizer. As this external resource reads from the

stdin and expects each input to be in a single line. Therefore, its is crucial for the

correct execution from this code to sanitize all data, replacing the newline character with

another whitespace symbol. For the CCA-SJ dataset, a blank space was used to make

this replacement.

CHAPTER 7. IMPLEMENTATION AND RESULTS 98

The results presented in the Table 7.1 are those initially obtained from the literature,

exactly as it was reported in the original paper. A more careful analysis reveals that

the Mean Classifier (Mean-C) performs much more poorly than initially expected by

the standard deviation (Std.) in Table 6.1 as in the case of the Usergrid project whose

standard deviation is 1.40 story points but the Mean Classifier reports a Mean Average

Error of 1.48. This fact raises some concerns whether the data originally employed in the

article is the same available in its code repository.

As expected for the Mean Absolute Error (MAE) metric, the Median Classifier (Median-

C) has a lower error than the Mean, as it is a value that mathematically has the lowest

MAE from a distribution. Except for the Mule and Mule Studio projects, the Deep Story

Estimation model (Deep-SE) is, as stated in its paper, statistically significant better than

those baselines.

100 75 50 25 0 25 50 75 100

100

50

0

50

100

150

200

250

apache-cassandra-3.7.0.jar

it

out

when
easy

hard

instance

source

1

20

from

endpoint

end

issuein
cassandra

xmlns

would

problem

bug

project

do
wsdl

xs

client
schema

execute

http

code column
apache

add

broker

sequence

version

package

build

other consider infojava
string class

soap

activemq

information

now

done

0
1
2
3
4
5
6
7
8
9

FIGURE 7.1 – t-SNE plot for the originally reported Deep-SE word embedding.

The word embeddings for each open source repository was available in the Deep-SE

reproduction package and it was utilized as a starting point for its reproduction as the

freshly trained word vectors had a somewhat worse accuracy. A technique for visualizing

high dimensional data is the t-SNE, as it tries to preserver clusters as shown on Figure

7.1. Though there are some similar words together as in code, xmlns and string, many

CHAPTER 7. IMPLEMENTATION AND RESULTS 99

words doesn’t seen to have a very consistent position in comparison to later works.

Listing 7.4 – Baseline generation for mean, median and random estimators.

1 def b a s e l i n e z e r o (d a t a f i l e p a t h , max value =999999 ,

2 t e s t f r a c t i o n = 0 . 2) :

3 s t o r y p o i n t s = pd . read csv (d a t a f i l e p a t h) [’ s t o rypo in t ’] .

4 va lue s . c l i p (0 , max value) . astype (’ in t32 ’)

5 num test = int (round(len (s t o r y p o i n t s) ∗ t e s t f r a c t i o n))

6 count t ra in = np . bincount (s t o r y p o i n t s [:− num test] ,

7 minlength=s t o r y p o i n t s .max())

8 count t ra in = count t ra in /np .sum(count t ra in)

9 coun t t e s t = np . bincount (s t o r y p o i n t s [−num test :] ,

10 minlength=s t o r y p o i n t s .max())

11 coun t t e s t = count t e s t /np .sum(c ount t e s t)

12 count = np . dot (count t ra in . reshape ((−1 ,1)) ,

13 coun t t e s t . reshape ((1 , −1)))

14 random mae = 0

15 for i in range (1 , count . shape [0]) :

16 random mae += i ∗ (count . t r a c e (i) + count . t r a c e (− i))

17 median mae = np . mean(np . abs (np . median (s t o r y p o i n t s

18 [:− num test]) − s t o r y p o i n t s [−num test :]))

19 median mdae = np . median (np . abs (np . median (s t o r y p o i n t s

20 [:− num test]) − s t o r y p o i n t s [−num test :]))

21 median sa = (1 − median mae/random mae) ∗ 100

22 mean mae = np . mean(np . abs (np . mean(s t o r y p o i n t s

23 [:− num test]) − s t o r y p o i n t s [−num test :]))

24 mean mdae = np . median (np . abs (np . mean(s t o r y p o i n t s

25 [:− num test]) − s t o r y p o i n t s [−num test :]))

26 mean sa = (1 − mean mae/random mae) ∗ 100

27 return [mean mae , mean mdae , mean sa , median mae ,

28 median mdae , median sa]

CHAPTER 7. IMPLEMENTATION AND RESULTS 100

TABLE 7.1 – Results directly extracted from the Choetkiertikul et al. (2019) article.

Project Database Classifier Mean AE Median AE Gain over Random

Mesos Deep-SE 1.02 0.73 59.84
Mesos Mean-C 1.64 1.78 35.61
Mesos Median-C 1.73 2 32.01
Usergrid Deep-SE 1.03 0.8 52.66
Usergrid Mean-C 1.48 1.23 32.13
Usergrid Median-C 1.6 1 26.29
Appcelerator Studio Deep-SE 1.36 0.58 60.26
Appcelerator Studio Mean-C 2.08 1.52 39.02
Appcelerator Studio Median-C 1.84 1 46.17
Aptana Studio Deep-SE 2.71 2.52 42.58
Aptana Studio Mean-C 3.15 3.46 33.3
Aptana Studio Median-C 3.71 4 21.54
Titanium SDK/CLI Deep-SE 1.97 1.34 55.92
Titanium SDK/CLI Mean-C 3.05 1.97 31.59
Titanium SDK/CLI Median-C 2.47 2 44.65
DuraCloud Deep-SE 0.68 0.53 69.92
DuraCloud Mean-C 1.3 1.14 42.88
DuraCloud Median-C 0.73 1 68.08
Bamboo Deep-SE 0.74 0.61 71.24
Bamboo Mean-C 1.75 1.31 32.11
Bamboo Median-C 1.32 1 48.72
Clover Deep-SE 2.11 0.8 50.45
Clover Mean-C 3.49 3.06 17.84
Clover Median-C 2.84 2 33.33
Jira Software Deep-SE 1.38 1.09 59.52
Jira Software Mean-C 2.48 2.15 27.06
Jira Software Median-C 2.93 2 13.88
Moodle Deep-SE 5.97 4.93 50.29
Moodle Mean-C 10.9 12.11 9.16
Moodle Median-C 7.18 6 40.16
Data Management Deep-SE 3.77 2.22 47.87
Data Management Mean-C 5.29 4.55 26.85
Data Management Median-C 4.82 3 33.38
Mule Deep-SE 2.18 1.96 40.09
Mule Mean-C 2.59 2.22 28.82
Mule Median-C 2.69 2 26.07
Mule Studio Deep-SE 3.23 1.99 17.17
Mule Studio Median-C 3.3 2 15.42
Spring XD Deep-SE 1.63 1.31 46.82
Spring XD Median-C 2.07 2 32.55
Talend Data Quality Deep-SE 2.97 2.92 48.28
Talend Data Quality Median-C 3.87 4 32.43
Talend ESB Deep-SE 0.64 0.59 69.67
Talend ESB Mean-C 1.14 0.91 45.86
Talend ESB Median-C 1.16 1 44.44

CHAPTER 7. IMPLEMENTATION AND RESULTS 101

7.2.1 Results Reproduction

As a surprise, the reproduced results for the Mean and Median classifiers, reported in

the Tables 7.2 and 7.3 respectively, were significantly better than those reported on the

Deep-SE paper. With those new results the statistical significance calculated previously

could be contested as the distance between the deep learning model and a simpler one is

reduced.

TABLE 7.2 – Reproduced results for the Mean Baseline Classifier using the Deep-SE
dataset.

Project Mean MAE Mean MdAE Mean SA

Mesos 1.11 0.78 27.78
Usergrid 1.09 0.76 19.48
Appcelerator Studio 1.43 0.28 37.14
Aptana Studio 3.01 2.45 30.80
Titanium SDK/CLI 2.46 2.03 32.25
DuraCloud 0.72 0.87 29.65
Bamboo 0.93 1.00 25.90
Clover 2.80 2.93 21.27
Jira Software 1.67 1.13 31.43
Moodle 10.32 11.14 14.84
Data Management 4.81 4.55 25.12
Mule 2.21 2.77 24.56
Mule Studio 3.24 2.30 22.03
Spring XD 1.89 1.53 22.82
Talend Data Quality 3.93 4.08 11.75
Talend ESB 0.71 0.91 21.66

Except for the Mesos, Aptana Studio and DuraCloud projects, the Median Classifier

was superior the the Mean one. This small discrepancy between the statistical prevision

of a better Median-C is due to the fact that the training and testing distributions may

differ, especially because these sets were constructed by separating the user story creation

time.

The reproduced results for the Deep Story Estimation model in the literature’s dataset

is presented in Table 7.4. Although there are many similar metrics in comparison to the

reported in Table 7.1, there are also many discrepancies that overall favors the published

paper.

For Mesos, Usergrid, Titanium SDK/CLI and Appcelerator Studio there was a dif-

ference only about 0.02 story points but for Aptana Studio the paper was favored by a

margin of 0.6, a value that represents about one quarter of the reported error.

For the Bamboo, Talend Data Quality, DuraCloud and Mule Studio projects the re-

CHAPTER 7. IMPLEMENTATION AND RESULTS 102

TABLE 7.3 – Reproduced results for the Median Baseline Classifier using the Deep-SE
dataset.

Project Median MAE Median MdAE Median SA

Mesos 1.12 1.00 27.61
Usergrid 1.03 1.00 23.88
Appcelerator Studio 1.28 0.00 43.98
Aptana Studio 3.08 3.00 29.13
Titanium SDK/CLI 1.95 2.00 46.24
DuraCloud 0.74 1.00 27.72
Bamboo 0.76 1.00 39.44
Clover 2.31 1.00 35.02
Jira Software 1.36 1.00 44.29
Moodle 6.46 5.00 46.71
Data Management 4.28 3.00 33.44
Mule 2.20 3.00 25.17
Mule Studio 3.14 3.00 24.34
Spring XD 1.68 2.00 31.24
Talend Data Quality 3.13 3.00 29.74
Talend ESB 0.70 1.00 23.06

production performed slighter better than the original results, and while this difference

was just about 0.06 story points, it represented almost 8% of the Bamboo mean.

The largest mismatch was in the Moodle project in which not only the deep learning

model was originally reported to have performed about 2 story points better than the re-

production but also the baseline was distorted. Either some modified dataset was utilized

by the authors or some mistake was committed in the original paper while preprocessing

the story points. From the perspective of this dissertation, not only the results were dou-

ble checked and the replication packaged code was utilized, but also a simple inspection

on Table 6.2 reveals standard deviations lower than some mean MAE. For instance, the

Talend ESB project with its values clipped has a standard deviation of 0.85, while the

reported MAE for the mean and median classifiers are about 1.15 in contrast with the

0.71 average absolute error found in the reproduction.

Even though the word embeddings were also distributed pretrained in the Deep-SE

repository, the weights for the end-to-end trained neural networks were not. This raises

some concerns on the actual reproducibility and verifiability over the originally reported

error metrics. Nevertheless, it is known that the random initialization of the weights that

an ANN is subject heavily influences its performance as, in the cases of low dimensionality

or fewer data points, its optimization heuristic may get stuck in a local minimum. As an

example of this phenomena, Figure 7.2 show the evolution for the training and validation

error metrics in the Usergrid dataset while depicting a plateau at its final epochs.

CHAPTER 7. IMPLEMENTATION AND RESULTS 103

0 5 10 15 20 25 30 35 40
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
A

ve
ra

ge
 E

rr
or

Usergrid

Training
Validation

FIGURE 7.2 – Training and validation error progression for the proposed model in the
Usergrid dataset.

For the sake of exemplification and visualization of at leas one of these results, Figure

7.3 depicts a regression plot for the DataManagement project from the Atlassian repos-

itory. Even though the problem was defined as a regression task, most of the true story

points are concentrated in numbers that belongs to the Fibonacci sequence which could

be more easily segmented. Nevertheless, the regression gives more flexibility during eval-

uation and a clearer error derivative during training as a mistake from one to thirteen

would be more penalized than if it were just a class cross-entropy error as a difference

from the class one to the class two would be the same as the class thirteen.

As a better visualization for the prediction and real values relation, the Figure 7.4

depicts a confusion matrix for the rounded ceiling values.

A more detailed investigation reveals a residual distribution with most of its values

within a unitary distance from zero and a longer tail at the negative error, favoring some

underestimation as shown in Figure 7.5.

As the sames datasets were used for both the reproduction as well for the novel model,

its results are presented on Table 7.5 and its also comparable to the reproduction.

CHAPTER 7. IMPLEMENTATION AND RESULTS 104

TABLE 7.4 – Reproduced results for the Deep-SE neural model in its own dataset.

Project Mean Average Error Median Average Error Gain over Random

Mesos 1.04 0.74 32.72
Usergrid 1.04 0.98 23.29
Appcelerator Studio 1.40 0.90 38.78
Aptana Studio 3.33 3.32 23.31
Titanium SDK/CLI 2.09 1.71 42.37
DuraCloud 0.61 0.47 40.23
Bamboo 0.82 0.70 34.78
Clover 2.31 1.20 35.10
Jira Software 1.40 1.15 42.53
Moodle 7.96 7.40 34.34
Data Management 3.77 2.12 41.33
Mule 2.43 2.25 17.35
Mule Studio 3.18 2.59 23.48
Spring XD 1.63 1.24 33.27
Talend Data Quality 2.81 2.85 36.90
Talend ESB 0.64 0.59 29.13

5 10 15 20
Predicted Story Points

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Tr
ue

 st
or

y
po

in
ts

 c
lip

pe
d

FIGURE 7.3 – Regression plot that compares the neural predicted story points to their
real clipped value for Data Management repository.

For the project Mule, Moodle, Bamboo, Titanium SDK/CLI, Aptana Studio, Appcel-

erator Studio the proposed model performed slightly better, whereas to Mesos, Usergrid,

Clover, Spring XD, MuleStudio it performed similarly compared to the reproduced model.

CHAPTER 7. IMPLEMENTATION AND RESULTS 105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Predicted rounded story point

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
Tr

ue
 st

or
y

po
in

t

0

15

30

45

60

75

FIGURE 7.4 – Confusion matrix that compares the neural predicted story points to their
real clipped value for Data Management repository.

The worst case comparatively was in the DuraCloud, in which the reproduced model had

an mean average error of only 0.61 against the 0.74 from the proposed.

This problem was due to the fact that the instances trained on the DuraCloud dataset

simply “died”. The activations coming from the inner layers were completely zeroed. This

phenomenon occurred during the firsts batches in the first epoch as the backpropagated

error decreased the positive weights and the ReLU function saturated in a negative value.

A bi-dimensional t-Distributed Stochastic Neighbor Embedding (t-SNE) plot is shown

in Figure 7.6 the 64-dimensional embedding trained on the Apache repository. The points

were colored according to ten clusters obtained from the K-Means algorithm applied over

the bi-dimensional data for a clearer visualization.

The topmost right cluster numbered as 6 represents XML obtained from the POM

(Project Object Model) as Apache Mesos is programmed in Java and many developers

CHAPTER 7. IMPLEMENTATION AND RESULTS 106

20 10 0 10 20
Story Points Error

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Fr

eq
ue

nc
y

FIGURE 7.5 – Distribution for the prediction errors in the Data Management repository.

TABLE 7.5 – Proposed model results compared in the same dataset.

Project Mean Average Error Median Average Error Gain over Random

Mesos 1.05 0.84 32.07
Usergrid 1.04 1.01 23.08
Appcelerator Studio 1.33 0.14 41.87
Aptana Studio 3.12 3.10 28.09
Titanium SDK/CLI 1.96 2.03 45.87
DuraCloud 0.74 1.00 27.64
Bamboo 0.77 0.96 38.58
Clover 2.35 1.24 33.82
Jira Software 1.42 0.83 41.84
Moodle 7.79 5.41 35.69
Data Management 4.11 2.29 36.12
Mule 2.20 2.99 25.18
Mule Studio 3.22 2.85 22.46
Spring XD 1.67 1.39 31.79
Talend Data Quality 3.18 3.02 28.70
Talend ESB 0.75 0.60 16.57

paste sections of its code in the user stories’ description. Other semantic groups such as

the zero represents database like definitions, such as cassandra (the NoSQL management

system) and column. Overall, words with similar meaning in fact got euclidean close

vectors. More details on this dimensionality reduction technique useful for visualizing

CHAPTER 7. IMPLEMENTATION AND RESULTS 107

60 40 20 0 20 40

60

40

20

0

20

40

60

80

out

when

easyhard

instance

source
1 20

from

endpoint

end

issue

in

's

java.lang.thread.run(thread.java:745
sharedpool

cassandra

xmlns

would
problem

bug

project
do

wsdl

xs

client

schemaexecute

http

code
column

apache

add

broker

sequence

versionpackage

build other
consider

info

java

string
class

soap

activemq

information

now done

0
1
2
3
4
5
6
7
8
9

FIGURE 7.6 – Bi-dimensional t-Distributed Stochastic Neighbor Embedding plot for the
64-dimensional embedding trained on the Apache repository.

high-dimensional data is present in Annex A.

CHAPTER 7. IMPLEMENTATION AND RESULTS 108

7.3 Case Study Results

Similarly to the Apache’s repository embeddings, ten clusters have been highlighted

using the K-means method on Figure 7.7. It was even more evident the grouping of related

words such as the organizations IFI, GAV, DIRAP, COMAR, CCASJ that were closely

related in the 8th cluster. At the topmost right, there is also words that denote code such

as false, null, error and English lexemes separated from the Portuguese ones.

At the center, near the null vector, colored as the 9th cluster, there were words con-

sidered neutral to the description of a user story such as quando (when), onde (where),

como (how), mesmo (even). It was remarkable that such vectors that did not convey any

specific meaning had a lower absolute value.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

aeronave

unidade

at

caixa

ifi

usuários

to
delete

1

setor

imagem

encaminhar onde

anexo

protocolar

impressão

error

ofício

como

selecionar

dados

login sigadaer
ccasj

null

exercício
cenário

gav

comar

falsewhere

servidor
java

abaabrir
documento

arquivos
dirap

missão

build

campo assinaturavisualização

alteração

mesmo
quando

necessário

executar

0
1
2
3
4
5
6
7
8
9

FIGURE 7.7 – Bi-dimensional t-Distributed Stochastic Neighbor Embedding plot for the
64-dimensional embedding trained on the CCA-SJ test dataset.

The word embedding matrix stores each word representation in a line. The number

of this line correspond to the word’s index in the dictionary. Therefore it is extremely

important to preserve the matrix alignment as well as the dictionary enumeration. For

instance, during the t-SNE plot elaboration, a bug had occurred in which the dictionary

built from one repository was accidentally used in another’s embedding, resulting in a

CHAPTER 7. IMPLEMENTATION AND RESULTS 109

random plot for the words’ positions. As the problem was resolved, the plot became

much more clearer for having similar semantic words grouped together.

Finally, the models reproduced and developed in this chapter are evaluated on the

CCA-SJ Dataset, with the results described in Table 7.6. The baseline estimators were

significantly surpassed by its deep learning counterparts by a margin approximately of

10%. While the random, the mean and the median classifiers were able to achieve respec-

tively 4.35, 3.70 and 3.60 mean average error in story points, the deep learners were below

the 3.35 threshold.

In comparison to the literature Deep Story Estimation, the novel proposed model had

a slighter better accuracy. While in terms of the mean average error this difference seems

close for just 0.11 story points, the 0.17 value for the median average error is relatively

greater. Nevertheless, given the results in the open source dataset, those models are

expected to have a somewhat similar accuracy for other projects.

TABLE 7.6 – Evaluation for the CCA-SJ Dataset.

Method Mean Average Error Median Average Error Gain over Random

Random 4.35 4.42 0.00
Mean 3.70 3.07 15.59
Median 3.60 2.00 18.00
Deep-SE 3.34 1.92 23.84
Proposed 3.23 1.75 25.83

It is also important to note the distribution of the residuals shown in Figure 7.8 and its

confusion matrix in Figure 7.9 characterizes better the results also found for the literature

model.

Those models were unable to predict accurately the high effort story points even when

clipped to a 90% threshold. This would require more data as this 10% is scarce for the

training and the model tries to learn statistical correlations and does not employ any kind

of causal relationship.

CHAPTER 7. IMPLEMENTATION AND RESULTS 110

15 10 5 0 5
Story Points Error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

FIGURE 7.8 – Distribution for the prediction errors in the CCA-SJ test dataset.

CHAPTER 7. IMPLEMENTATION AND RESULTS 111

1 2 3 4 5 6 7 8 9 10 11 12 13
Predicted rounded story point

1
2

3
4

5
6

7
8

9
10

11
12

13
Tr

ue
 st

or
y

po
in

t

0

10

20

30

40

50

FIGURE 7.9 – Confusion matrix for the proposed model evaluated in the CCA-SJ test
dataset.

8 Conclusions

8.1 Work Overview

Deep neural networks architectures were developed in order to estimate story points

given the textual input from user stories, a specific application for text regression, that is

to extract a quantitative measure from text. Thus, this was a natural language processing

task that resembles sentiment analysis as it tries to predict a value associated with its

text.

Issue reports and user stories from Open Source projects were utilized for training

and comparing results from the literature. Using the Portuguese language, a case study

was performed in CCA-SJ, aggregating data from past projects in which the SCRUM

methodology wasn’t fully deployed. Nevertheless it was possible to extract the effort

estimation from the tasks’ descriptions.

It was noted that the estimatives are project dependent, and thus, require calibration

and retraining in order to use on other projects. This observation is consistent with the

fact that distinct teams may have various scales and values for the story points even for

similar user stories.

The model represents an improvement over other works by reducing the number of

parameters required, namely from Choetkiertikul et al. (2019), presenting an statistically

significant result in most of the datasets employed that it has a similar accuracy. In

the later, it was discovered a data clip that made the results better than reality, as it

excluded the high value story points. The inability to differentiate between those models’

performances in some projects was mainly due to datasets that had less user stories than

the average, namely, fewer than one thousand data points.

8.2 Improvements Outlines

For the scientific community:

CHAPTER 8. CONCLUSIONS 113

• a bibliographic review of the state-of-the-art ANN techniques;

• the sparse architecture proposition for hypercubes;

• improvements in performance over other related works;

The social values that were generated are the following:

• an increased awareness for the AI Culture and its implications for economical de-

velopment;

• a comprehensive introduction to artificial intelligence and deep learning;

• potential commercial applications for effort analysis from natural language;

For the Brazilian Air Force (FAB):

• a novel tool for CCA-SJ in order to assist agile teams in estimating story points;

• the data aggregation and analysis from past projects;

• personnel qualification in NLP and Deep Learning, with ramifications that may aid

the development of automated administrative tools;

8.3 Future Works

The frontier for Artificial Intelligence is expanding in an accelerated pace, with many

innovations being published while this dissertation was being developed. Many of those

new techniques have rapidly been incorporated in this work, but some open questions

remains:

• Utilize the complete GPT-2 model as a the initial layers for encoding: only half

of the GTP-2 parameters were released by the time this work was finished. Hav-

ing more encoding capacity pretrained on a 30GB corpus may increase the model

understanding of the natural language resulting in better accuracy.

• Enhance the explainability and interpretability the deep neural network may have

as a natural language interface, that is to have a text output explaining to the users

the most probable reasons behind the prediction.

• Propose a robust initialization for sparse networks that use the ReLU activation:

during the training, there were many runs in which the neurons died, that is, pre-

dicted only a constant value.

CHAPTER 8. CONCLUSIONS 114

• Build a dataset focused on experienced SCRUM teams: As CCA-SJ had just im-

plemented this methodology, its usage was still at its infancy when the data was

gathered. I the following years, more stable and consistent estimations will be pro-

duced by the agile teams, improving the machine learner capability.

• Deploy the model for commercial usage: create a plugin for Jira and/or Redmine

and advertise it, empowering an user base that will contribute with data, improving

the model.

• Pave the way for causal models: in order to have consistent estimates for user stories

with high story points a model not only for the language but also for the “world” is

needed, understanding the causality between actions and events. In order words, a

more generalist machine learning model is needed.

Bibliography

ALFORD, S.; ROBINETT, R. A.; MILECHIN, L.; KEPNER, J. Pruned and
Structurally Sparse Neural Networks. Ithaca, NY: The Computing Research
Repository (CoRR), 2018. Available at: http://arxiv.org/abs/1810.00299. Accessed on:
14 Mar. 2019.

AMODEI, D.; OLAH, C.; STEINHARDT, J.; CHRISTIANO, P.; SCHULMAN, J.;
MANÉ, D. Concrete Problems in AI Safety. Ithaca, NY: Cornell University, arXiv,
The Computing Research Repository (CoRR), 2016. Available at:
https://arxiv.org/pdf/1606.06565.pdf. Accessed on: 10 Jul. 2019.

ARPIT, D.; JASTRZEBSKI, S.; BALLAS, N.; KRUEGER, D.; BENGIO, E.;
KANWAL, M. S.; MAHARAJ, T.; FISCHER, A.; COURVILLE, A.; BENGIO, Y.;
LACOSTE-JULIEN, S. A closer look at memorization in deep networks. In:
Proceedings of the 34th International Conference on Machine Learning -
Volume 70. JMLR.org, 2017. (ICML’17), p. 233–242. Available at:
http://dl.acm.org/citation.cfm?id=3305381.3305406. Accessed on: 08 May 2019.

BAKER, B.; KANITSCHEIDER, I.; MARKOV, T.; WU, Y.; POWELL, G.; MCGREW,
B.; MORDATCH, I. Emergent Tool Use From Multi-Agent Autocurricula.
Ithaca, NY: Cornell University, arXiv, The Computing Research Repository (CoRR),
2019. Available at: http://arxiv.org/abs/1909.07528. Accessed on: 01 Oct. 2019.

BECK, K.; BEEDLE, M.; BENNEKUM, A. van; COCKBURN, A.; CUNNINGHAM,
W.; FOWLER, M.; GRENNING, J.; HIGHSMITH, J.; HUNT, A.; JEFFRIES, R.;
KERN, J.; MARICK, B.; MARTIN, R. C.; MELLOR, S.; SCHWABER, K.;
SUTHERLAND, J.; THOMAS, D. Manifesto for Agile Software Development.
2001. Available at: http://www.agilemanifesto.org/. Accessed on: 25 Feb. 2019.

BISHOP, C. M. Neural Networks for Pattern Recognition. Oxford, England:
Oxford University Press, 1995.

BOJANOWSKI, P.; GRAVE, E.; JOULIN, A.; MIKOLOV, T. Enriching Word
Vectors with Subword Information. Ithaca, NY: Cornell University, arXiv, The
Computing Research Repository (CoRR), 2016. Available at:
https://arxiv.org/pdf/1607.04606.pdf. Accessed on: 2 Jul. 2019.

BOURELY, A.; BOUERI, J. P.; CHOROMONSKI, K. Sparse Neural Networks
Topologies. Ithaca, NY: Cornell University, arXiv, The Computing Research
Repository (CoRR), 2017. Available at: http://arxiv.org/abs/1706.05683. Accessed on:
09 Mar. 2019.

http://arxiv.org/abs/1810.00299
http://dl.acm.org/citation.cfm?id=3305381.3305406
http://arxiv.org/abs/1909.07528
http://www.agilemanifesto.org/
http://arxiv.org/abs/1706.05683

BIBLIOGRAPHY 116

CHEN, T. Q.; RUBANOVA, Y.; BETTENCOURT, J.; DUVENAUD, D. K. Neural
ordinary differential equations. Curran Associates, p. 6571–6583, 2018. Available at:
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf. Accessed
on: 11 Jul. 2018.

CHEN, W.; WILSON, J. T.; TYREE, S.; WEINBERGER, K. Q.; CHEN, Y.
Compressing neural networks with the hashing trick. In: Proceedings of the 32Nd
International Conference on International Conference on Machine Learning -
Volume 37. JMLR.org, 2015. (ICML’15), p. 2285–2294. Available at:
http://dl.acm.org/citation.cfm?id=3045118.3045361. Accessed on: 22 Mar. 2019.

CHOETKIERTIKUL, M.; DAM, H. K.; TRAN, T.; GHOSE, A. Predicting the delay of
issues with due dates in software projects. Empirical Software Engineering, v. 22,
n. 3, p. 1223–1263, Jun 2017. Available at: https://doi.org/10.1007/s10664-016-9496-7.
Accessed on: 11 Aug. 2019.

CHOETKIERTIKUL, M.; DAM, H. K.; TRAN, T.; GHOSE, A.; GRUNDY, J.
Predicting delivery capability in iterative software development. IEEE Transactions
on Software Engineering, v. 44, n. 6, p. 551–573, June 2018.

CHOETKIERTIKUL, M.; DAM, H. K.; TRAN, T.; PHAM, T.; GHOSE, A.; MENZIES,
T. A deep learning model for estimating story points. IEEE Transactions on
Software Engineering, v. 45, n. 7, p. 637–656, July 2019.

CHOLLET, F.; RAHMAN, F.; LEE, T.; MARMIESSE, G. de; ZABLUDA, O.;
PUMPERLA, M.; SANTANA, E.; MCCOLGAN, T.; SNELGROVE, X.;
BRANCHAUD-CHARRON, F.; OLIVER, M.; VIJAY, P. Keras. 2015. Available at:
https://keras.io.

CHUNG, J.; GÜLÇEHRE, Ç.; CHO, K.; BENGIO, Y. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. Ithaca, NY: Cornell
University, arXiv, The Computing Research Repository (CoRR), 2014. Presented at the
Deep Learning workshop at NIPS2014. Available at: https://arxiv.org/abs/1412.3555.
Accessed on: 05 Jan. 2018.

DENG, L.; LIU, Y. Deep Learning in Natural Language Processing. Singapore,
Singapore: Springer Nature, 2018.

DOD. SUMMARY OF THE 2018 DEPARTMENT OF DEFENSE
ARTIFICIAL INTELLIGENCE STRATEGY: Harnessing AI to Advance
Our Security and Prosperity. DEPARTMENT OF DEFENSE, Defense Pentagon,
Washington DC, USA, February 2019. Available at: https://media.defense.gov/2019-
/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF. Accessed
on: 14 Apr. 2019.

ELIZONDO, D. A.; FIESLER, E. A survey of partially connected neural networks.
International journal of neural systems, v. 8 (5–6), p. 535–58, 1997.

EPELBAUM, T. Deep learning: Technical introduction. Ivry-sur-Seine, France:
[s.n.], 2017. ArXiv:1709.01412.

http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045361

BIBLIOGRAPHY 117

ERDOGAN, O.; PEKKAYA, M. E.; GOK, H. More effective sprint retrospective with
statistical analysis. Journal of Software: Evolution and Process, v. 30, n. 5, p.
e1933, 2018. E1933 JSME-17-0071.R1. Available at:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1933. Accessed on: 14 May 2019.

FAN, Y.; FELIU-FABÀ, J.; LIN, L.; YING, L.; ZEPEDA-NÚÑEZ, L. A multiscale
neural network based on hierarchical nested bases. Research in the Mathematical
Sciences, v. 6, n. 2, p. 21, Mar 2019. Available at:
https://doi.org/10.1007/s40687-019-0183-3. Accessed on: 28 Mar. 2019.

FAN, Y.; LIN, L.; YING, L.; ZEPEDA-NUNEZ, L. A multiscale neural network based
on hierarchical matrices. arXiv e-prints, p. arXiv:1807.01883, Jul 2018.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge,
Massachusetts: MIT Press, 2016. Available at: http://www.deeplearningbook.org.
Accessed on: 22 Feb. 2018.

GRAVE, E.; BOJANOWSKI, P.; GUPTA, P.; JOULIN, A.; MIKOLOV, T. Learning
word vectors for 157 languages. In: Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC-2018). Miyazaki,
Japan: European Languages Resources Association (ELRA), 2018. Available at:
https://www.aclweb.org/anthology/L18-1550. Accessed on: 05 May 2019.

GUTMANN, M.; HYVäRINEN, A. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In: TEH, Y. W.; TITTERINGTON, M.
(Ed.). Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010.
(Proceedings of Machine Learning Research, v. 9), p. 297–304. Available at:
http://proceedings.mlr.press/v9/gutmann10a.html. Accessed on: 06 May 2019.

HAN, S.; POOL, J.; TRAN, J.; DALLY, W. J. Learning both weights and connections
for efficient neural networks. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1.
Cambridge, MA, USA: MIT Press, 2015. (NIPS’15), p. 1135–1143. Available at:
http://dl.acm.org/citation.cfm?id=2969239.2969366. Accessed on: 15 Mar. 2019.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Comput.,
MIT Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735–1780, nov. 1997. Available at:
http://dx.doi.org/10.1162/neco.1997.9.8.1735. Accessed on: 10 Jul. 2018.

IANDOLA, F. N.; MOSKEWICZ, M. W.; ASHRAF, K.; HAN, S.; DALLY, W. J.;
KEUTZER, K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. The Computing Research Repository (CoRR), abs/1602.07360,
2016. Available at: http://arxiv.org/abs/1602.07360. Accessed on: 13 Mar. 2019.

ISAKOV, M.; KINSY, M. A. Closnets: a priori sparse topologies for faster DNN
training. The Computing Research Repository (CoRR), abs/1802.03885, 2018.
Available at: http://arxiv.org/abs/1802.03885. Accessed on: 11 Mar. 2019.

JAPAN. Artificial Intelligence Technology Strategy. Strategic Council for AI
Technology, 2017. Available at: https://www.nedo.go.jp/content/100865202.pdf.
Accessed on: 15 Apr. 2019.

http://www.deeplearningbook.org
http://proceedings.mlr.press/v9/gutmann10a.html
http://dl.acm.org/citation.cfm?id=2969239.2969366
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1802.03885

BIBLIOGRAPHY 118

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. In:
Proceedings of the 3rd International Conference on Learning
Representations (ICLR). [S.l.: s.n.], 2015.

KRIESEL, D. A Brief Introduction to Neural Networks. New York, NY: Cornell
University, 2007. Available at: http://www.dkriesel.com/en/science/neural networks.
Accessed on: 12 Jan. 2019.

LAMBLIN, P.; AL-RFOU, R.; ALAIN, G.; ALMAHAIRI, A.; ANGERMUELLER, C.;
BAHDANAU, D.; BALLAS, N.; BASTIEN, F.; BAYER, J.; BELIKOV, A.;
BELOPOLSKY, A.; BENGIO, Y.; BERGERON, A.; BERGSTRA, J.; BISSON, V.;
Bleecher Snyder, J.; BOUCHARD, N.; BOULANGER-LEWANDOWSKI, N.;
BOUTHILLIER, X.; BRÉBISSON, A. de; BREULEUX, O.; CARRIER, P.-L.; CHO,
K.; CHOROWSKI, J.; CHRISTIANO, P.; COOIJMANS, T.; CÔTÉ, M.-A.; CÔTÉ, M.;
COURVILLE, A.; DAUPHIN, Y. N.; DELALLEAU, O.; DEMOUTH, J.;
DESJARDINS, G.; DIELEMAN, S.; DINH, L.; DUCOFFE, M.; DUMOULIN, V.;
Ebrahimi Kahou, S.; ERHAN, D.; FAN, Z.; FIRAT, O.; GERMAIN, M.; GLOROT, X.;
GOODFELLOW, I.; GRAHAM, M.; GULCEHRE, C.; HAMEL, P.; HARLOUCHET,
I.; HENG, J.-P.; HIDASI, B.; HONARI, S.; JAIN, A.; JEAN, S.; JIA, K.; KOROBOV,
M.; KULKARNI, V.; LAMB, A.; LARSEN, E.; LAURENT, C.; LEE, S.;
LEFRANCOIS, S.; LEMIEUX, S.; LÉONARD, N.; LIN, Z.; LIVEZEY, J. A.; LORENZ,
C.; LOWIN, J.; MA, Q.; MANZAGOL, P.-A.; MASTROPIETRO, O.; MCGIBBON,
R. T.; MEMISEVIC, R.; MERRIËNBOER, B. van; MICHALSKI, V.; MIRZA, M.;
ORLANDI, A.; PAL, C.; PASCANU, R.; PEZESHKI, M.; RAFFEL, C.; RENSHAW,
D.; ROCKLIN, M.; ROMERO, A.; ROTH, M.; SADOWSKI, P.; SALVATIER, J.;
SAVARD, F.; SCHLÜTER, J.; SCHULMAN, J.; SCHWARTZ, G.; SERBAN, I. V.;
SERDYUK, D.; SHABANIAN, S.; SIMON, E.; SPIECKERMANN, S.;
SUBRAMANYAM, S. R.; SYGNOWSKI, J.; TANGUAY, J.; TULDER, G. van;
TURIAN, J.; URBAN, S.; VINCENT, P.; VISIN, F.; VRIES, H. de; WARDE-FARLEY,
D.; WEBB, D. J.; WILLSON, M.; XU, K.; XUE, L.; YAO, L.; ZHANG, S.; ZHANG, Y.
Theano: A Python framework for fast computation of mathematical expressions. arXiv
e-prints, abs/1605.02688, maio 2016. Available at: http://arxiv.org/abs/1605.02688.
Accessed on: 14 Feb. 2018.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, p. 436, May
2015. Available at: https://doi.org/10.1038/nature14539. Accessed on: 07 Jun. 2018.

LEIKE, J.; MARTIC, M.; KRAKOVNA, V.; ORTEGA, P. A.; EVERITT, T.;
LEFRANCQ, A.; ORSEAU, L.; LEGG, S. AI Safety Gridworlds. Ithaca, NY: Cornell
University, arXiv, The Computing Research Repository (CoRR), 2017. Available at:
http://arxiv.org/abs/1711.09883. Accessed on: 10 Jul. 2019.

LI, X.; JIANG, H.; REN, Z.; LI, G.; ZHANG, J. Deep Learning in Software Engineering.
arXiv e-prints, p. arXiv:1805.04825, May 2018.

LIN, J.; RAO, Y.; LU, J.; ZHOU, J. Runtime neural pruning. In: GUYON, I.;
LUXBURG, U. V.; BENGIO, S.; WALLACH, H.; FERGUS, R.; VISHWANATHAN, S.;
GARNETT, R. (Ed.). Advances in Neural Information Processing Systems 30.
Curran Associates, 2017. p. 2181–2191. Available at:
http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf. Accessed on: 14 Mar.
2019.

http://www.dkriesel.com/en/science/neural_networks
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1711.09883
http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf

BIBLIOGRAPHY 119

LIU, B. Sentiment Analysis and Opinion Mining. San Rafael, California: Morgan
& Claypool Publisher, 2012.

LOPER, E.; BIRD, S. Nltk: The natural language toolkit. In: Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics - Volume 1.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2002. (ETMTNLP
’02), p. 63–70. Available at: https://doi.org/10.3115/1118108.1118117. Accessed on: 10
Sept. 2019.

MAATEN, L. van der; HINTON, G. Visualizing data using t-SNE. Journal of
Machine Learning Research, v. 9, p. 2579–2605, 2008. Available at:
http://www.jmlr.org/papers/v9/vandermaaten08a.html. Accessed on: 17 Aug. 2019.

MANNING, C. D.; SCHüTZE, H. Foundations of Statistical Natural Language
Processing. Cambridge, MA, USA: MIT Press, 1999. ISBN 0-262-13360-1.

MEHTA, P.; SCHWAB, D. J. An exact mapping between the Variational
Renormalization Group and Deep Learning. Ithaca, NY: Cornell University,
arXiv, 2014. Available at: http://arxiv.org/abs/1410.3831. Accessed on: 15 Mar. 2019.

MELO, G. A. de. Utilização de aprendizado profundo para estimar esforço de
desenvolvimento de software. 103 p. Monografia (monography) — Instituto
Tecnológico de Aeronáutica (ITA), Trabalho de Conclusão de Curso (Graduação em
Engenharia de Computação), São José dos Campos, 2019.

MELO, G. A. de; NETO, L. B. da C.; OLIVEIRA, G. S. N. de; CAMARGO, W. P. de;
TOSO, G. D.; NASCIMENTO, M. A. do. A corrida armamentista pela inteligência
artificial. In: Anais do 16o Congresso Acadêmico sobre Defesa Nacional
(CADN). Rio de Janeiro, RJ: Escola Naval, 2019. Available at:
https://www.defesa.gov.br/arquivos/ensino e pesquisa/defesa academia/cadn/artigos-
/xvi cadn/a corrida armamentista pela inteligencia artificial.pdf. Accessed on: 30 Aug.
2019.

MELO, G. A. de; SUGIMOTO, D. N.; TASINAFFO, P. M.; SANTOS, A. H. M.;
CUNHA, A. M. da; DIAS, L. A. V. A new approach to river flow forecasting: LSTM
and GRU multivariate models. IEEE Latin America Transactions, 2019, no prelo.

MELO, G. A. de; TASINAFFO, P. M. Gated recurrent unit hierarchical architecture
forfundamental stock analysis and forecast. In: Workshop of Artificial Intelligence
Applied to Finance (WAIAF 2019). São José dos Campos, SP: Instituto
Tecnológico de Aeronáutica, 2019. Available at:
http://www.comp.ita.br/labsca/waiaf/papers/GabrielMelo paper 13.pdf. Accessed on:
30 Jul. 2019.

MIKOLOV, T.; CHEN, K.; CORRADO, G.; DEAN, J. Efficient estimation of word
representations in vector space. In: BENGIO, Y.; LECUN, Y. (Ed.). 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Workshop Track Proceedings. [s.n.], 2013. Available at:
http://arxiv.org/abs/1301.3781. Accessed on: 05 May 2019.

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1410.3831
http://www.comp.ita.br/labsca/waiaf/papers/GabrielMelo_paper_13.pdf
http://arxiv.org/abs/1301.3781

BIBLIOGRAPHY 120

MITKOV, R. The Oxford Handbook of Computational Linguistics (Oxford
Handbooks in Linguistics S.). New York, NY, USA: Oxford University Press, 2003.
ISBN 0198238827.

MNIH, A.; KAVUKCUOGLU, K. Learning word embeddings efficiently with
noise-contrastive estimation. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2. USA:
Curran Associates Inc., 2013. (NIPS’13), p. 2265–2273. Available at:
http://dl.acm.org/citation.cfm?id=2999792.2999865. Accessed on: 06 May 2019.

NG, A. Y.-T. Machine Learning Yearning. San Francisco, California: DeepLearning
AI, 2017. Available at: https://www.deeplearning.ai/machine-learning-yearning/.
Accessed on: 06 Feb. 2019.

NG, A. Y.-T. AI Transformation Playbook: How to lead your company into
the AI era. San Francisco, California: Landing AI, 2018. Available at:
https://www.deeplearning.ai/machine-learning-yearning/. Accessed on: 06 Feb. 2019.

NIELSEN, M. A. Neural Networks and Deep Learning. San Francisco, California:
Determination Press, 2015. Available at:
http://www.neuralnetworksanddeeplearning.com. Accessed on: 21 Feb. 2018.

NIRKIN, Y.; KELLER, Y.; HASSNER, T. FSGAN: Subject agnostic face swapping and
reenactment. In: International Conference on Computer Vision (ICCV). Seul,
South Korea: [s.n.], 2019.

PANDA, A.; SATAPATHY, S. M.; RATH, S. K. Empirical validation of neural network
models for agile software effort estimation based on story points. Procedia Computer
Science, v. 57, p. 772 – 781, 2015. 3rd International Conference on Recent Trends in
Computing 2015 (ICRTC-2015). Available at:
http://www.sciencedirect.com/science/article/pii/S1877050915020037. Accessed on: 16
May 2019.

PAYNE, C. MuseNet. Apr. 2019. Available at: http://openai.com/blog/musenet.
Accessed on: 06 May 2019.

PEARL, J. The seven tools of causal inference, with reflections on machine learning.
Communications of the ACM, v. 62, n. 3, p. 54 – 60, 2019.

PORRU, S.; MURGIA, A.; DEMEYER, S.; MARCHESI, M.; TONELLI, R. Estimating
story points from issue reports. In: Proceedings of the The 12th International
Conference on Predictive Models and Data Analytics in Software
Engineering. New York, NY, USA: ACM, 2016. (PROMISE 2016), p. 2:1–2:10. ISBN
978-1-4503-4772-3. Available at: http://doi.acm.org/10.1145/2972958.2972959. Accessed
on: 17 May 2019.

RADFORD, A.; WU, J.; CHILD, R.; LUAN, D.; AMODEI, D.; SUTSKEVER, I.
Language models are unsupervised multitask learners. 2018. Available at:
https://openai.com/blog/better-language-models/. Accessed on: 20 Aug 2019.

ROBINETT, R. A.; KEPNER, J. Neural network topologies for sparse training. The
Computing Research Repository (CoRR), abs/1809.05242, 2018. Available at:
http://arxiv.org/abs/1809.05242. Accessed on: 18 Mar. 2019.

http://dl.acm.org/citation.cfm?id=2999792.2999865
http://www.neuralnetworksanddeeplearning.com
http://www.sciencedirect.com/science/article/pii/S1877050915020037
http://openai.com/blog/musenet
http://doi.acm.org/10.1145/2972958.2972959
http://arxiv.org/abs/1809.05242

BIBLIOGRAPHY 121

ROBINETT, R. A.; KEPNER, J. Radix-net: Structured sparse matrices for deep neural
networks. The Computing Research Repository (CoRR), abs/1905.00416, 2019.
Available at: http://arxiv.org/abs/1905.00416. Accessed on: 11 Mar. 2019.

RUBIN, K. S. Essential Scrum: a practical guide to the most popular agile
process. Upper Saddle River, New Jersey: Addison-Wesley, 2012. ISBN 9780137043293.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. 3rd. ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. ISBN 0136042597,
9780136042594.

SATAPATHY, S. M.; RATH, S. K. Empirical assessment of machine learning models for
agile software development effort estimation using story points. Innovations in
Systems and Software Engineering, v. 13, n. 2, p. 191–200, Sep 2017. Available at:
https://doi.org/10.1007/s11334-017-0288-z. Accessed on: 11 Aug. 2019.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural
Networks, v. 61, p. 85 – 117, 2015. Available at:
http://www.sciencedirect.com/science/article/pii/S0893608014002135. Accessed on: 10
Jul. 2018.

SHANAHAN, L. J. Disruption in UAS: The Algorithmic Warfare
Cross-Functional Team (Project Maven). Department of Defense (DoD), United
States, 2018. Available at: http://airpower.airforce.gov.au/APDC/media/Events-Media-
/RAAF%20AP%20CONF%202018/1130-1200-Shanahan-Disruption-in-UAS-The-
AWCFT.pdf. Accessed on: 15 Apr. 2019.

SHI, S.; WANG, Q.; XU, P.; CHU, X. Benchmarking state-of-the-art deep learning
software tools. In: 2016 7th International Conference on Cloud Computing and
Big Data (CCBD). [S.l.: s.n.], 2016. p. 99–104.

SHWARTZ-ZIV, R.; TISHBY, N. Opening the Black Box of Deep Neural
Networks via Information. Ithaca, NY: Cornell University, arXiv, The Computing
Research Repository (CoRR), 2017. Available at: http://arxiv.org/abs/1703.00810.
Accessed on: 12 Mar. 2018.

USA. SUMMARY OF THE 2018 WHITE HOUSE SUMMIT ON
ARTIFICIAL INTELLIGENCE FOR AMERICAN INDUSTRY. The White
House, Washington DC, USA, May 2018. Available at: https://www.whitehouse.gov-
/wp-content/uploads/2018/05/Summary-Report-of-White-House-AI-Summit.pdf.
Accessed on: 16 Apr. 2019.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ,
A. N.; KAISER, L.; POLOSUKHIN, I. Attention is all you need. In: Proceedings of
the 31st International Conference on Neural Information Processing
Systems. USA: Curran Associates Inc., 2017. (NIPS’17), p. 6000–6010. ISBN
978-1-5108-6096-4. Available at: http://dl.acm.org/citation.cfm?id=3295222.3295349.

WOLPERT, D. H. The lack of a priori distinctions between learning algorithms. Neural
Computation, v. 8, n. 7, p. 1341–1390, Oct 1996.

http://arxiv.org/abs/1905.00416
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://airpower.airforce.gov.au/APDC/media/Events-Media/RAAF%20AP%20CONF%202018/1130-1200-Shanahan-Disruption-in-UAS-The-AWCFT.pdf
http://airpower.airforce.gov.au/APDC/media/Events-Media/RAAF%20AP%20CONF%202018/1130-1200-Shanahan-Disruption-in-UAS-The-AWCFT.pdf
http://airpower.airforce.gov.au/APDC/media/Events-Media/RAAF%20AP%20CONF%202018/1130-1200-Shanahan-Disruption-in-UAS-The-AWCFT.pdf
http://arxiv.org/abs/1703.00810
http://dl.acm.org/citation.cfm?id=3295222.3295349

BIBLIOGRAPHY 122

ZILLY, J. G.; SRIVASTAVA, R. K.; KOUTNÍK, J.; SCHMIDHUBER, J. Recurrent
Highway Networks. Ithaca, NY: Cornell University, arXiv, The Computing Research
Repository (CoRR), 2016. Available at: http://arxiv.org/abs/1607.03474. Accessed on:
04 Mar. 2019.

ZURADA, J. Introduction to Artificial Neural Systems. St. Paul, MN, USA: West
Publishing Co., 1992. ISBN 0-314-93391-3.

http://arxiv.org/abs/1607.03474

Appendix A - Linear Algebra

foundations for ANN

A.1 The Sparse Synaptic Weights Matrix

The Sparse Synaptic Weights Matrix is represented in a compact manner without the

N2 amount of zeros that would occur in a canonical representation. As shown in Equation

A.1

W =

w11 w12 w13 w15

w21 w22 w24 w26

w31 w33 w34 w37

w42 w43 w44 w48

w51 w55 w56 w57

w62 w65 w66 w68

w73 w75 w77 w78

w84 w86 w87 w88

Hypercube

=

w11 w12 w13 0 w15 0 0 0

w21 w22 0 w24 0 w26 0 0

w31 0 w33 w34 0 0 w37 0

0 w42 w43 w44 0 0 0 w48

w51 0 0 0 w55 w56 w57 0

0 w62 0 0 w65 w66 0 w68

0 0 w73 0 w75 0 w77 w78

0 0 0 w84 0 w86 w87 w88

(A.1)

Therefore, its adjacency matrices, depicted on Figure A.1 may also be considered as

the expanded counterparts for their dense representation.

APPENDIX A. LINEAR ALGEBRA FOUNDATIONS FOR ANN 124

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

Hypercube
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

Squared Hypercube

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

Hypercube of Cliques
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

Hypercube of Bigger Cliques

FIGURE A.1 – Adjacency matrices comparing four different architectures

Annex A - t-SNE Visualization

A.1 Dimensional Decomposition

The T-distributed Stochastic Neighbor Embedding (t-SNE) reduces a high-dimensional

data to a lower dimension by trying to preserve the clusters. There are attraction and re-

pulsion forces that moves the points in the projections in each step. Firstly, it determines

how similar the pairs of data points are, using a t-student distribution on a euclidean met-

ric. Therefore it is a N2 order algorithm, meaning that close points have high similarity

values. The sum of those similarities metrics are then normalized.

This results in a better capability to project clustered data, preserving the notion of

similarity between elements in a cluster as observed in Figure A.1. The 10 digits clusters

are clearly separated if not by some element or other that is randomly distributed. In

comparison to other methods, as shown in Figure A.2 Sammon mapping in top left, Isomap

in top right and LLE in the lower center, it is superior.

FIGURE A.1 – t-SNE projection for the MNIST handwritten digits database for 6000
points. Source: (MAATEN; HINTON, 2008)

ANNEX A. T-SNE VISUALIZATION 126

FIGURE A.2 – Sammon, Isomap and LLE dimensionality reductions for the same MNIST
data points. Source: (MAATEN; HINTON, 2008)

FOLHA DE REGISTRO DO DOCUMENTO

1. CLASSIFICAÇÃO/TIPO 2. DATA 3. DOCUMENTO No 4. No DE PÁGINAS

DM 16 de dezembro de 2019 DCTA/ITA/DM-093/2019 126

5. TÍTULO E SUBTÍTULO:

Hypercube neural networks for natural language processing applied to story point estimation

6. AUTOR(ES):

Gabriel Adriano de Melo

7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – ITA

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Neural Networks; Deep Learning; Story Points; Agile software development; Natural Language Processing;
Scrum.
9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Redes neurais; Aprendizagem (inteligência artificial); Desenvolvimento de software; Linguagem natural (com-
putadores); Computação.
10. APRESENTAÇÃO: () Nacional (X) Internacional

ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em Engenharia Eletrônica e
Computação. Área de Informática. Orientador: Prof. Dr. Paulo Marcelo Tasinaffo; coorientador: Prof. Dr.
Inaldo Capistrano Costa. Defesa em 16/12/2019. Publicado em 2019.
11. RESUMO:

Story points are the most commonly used unit in estimating a user’s story effort in agile software development
methodologies. The use of deep neural networks to make this estimate is little present in the literature but could
become a new estimation tool in agile teams. The input to the proposed neural network model is the textual
description of the user story itself and its output is a numerical estimate. Recurrent neural models are employed,
in which the word sequence is taken into account with each iteration of the neural network. As training data,
we used open source projects that make use of agile methodologies and describe their functionalities in user
stories with their respective associated user points, raising thousands of test cases obtained from the literature.
A new architecture based on hypercube cliques of neurons was proposed, characterizing a neural network with
sparse connections whose computational efficiency in space and potentially in training time was superior to the
architecture of similar classification accuracy. In order to improve the explicability of the language and neural
regression model, visualization techniques of its activations and its sensitivity to variations in inputs were used.
A case study was also carried out at the Aeronautics Computing Center in São José dos Campos (CCA-SJ) by
collecting data from previous projects, pre-processing and specific training of the network, making its subsequent
evaluation and comparison with null models that consider only the distribution of story points.

12. GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () SECRETO

	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Dedication
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Symbols
	Contents
	1 Introduction
	1.1 Research Context
	1.2 Motivation
	1.3 Problem Statement
	1.4 Proposed Solution
	1.5 Objectives
	1.6 Contributions
	1.7 Outline

	2 Literature Review
	2.1 Artificial Intelligence
	2.2 Deep Learning
	2.3 Natural Language Processing
	2.4 Story points estimation
	2.5 AI safety

	3 Deep Learning
	3.1 Shallow Neural Networks
	3.2 Convolutional Neural Networks (CNN)
	3.3 Recurrent Neural Networks (RNN)
	3.3.1 Long-Short Term Memory (LSTM)
	3.3.2 Gated Recurrent Unit (GRU)

	3.4 Backpropagation
	3.5 Activation Functions
	3.5.1 Heaviside Step Function
	3.5.2 Sigmoid Function
	3.5.3 Hyperbolic Tangent
	3.5.4 Linear Activation
	3.5.5 Rectified Linear Unit (ReLU)
	3.5.6 Leaky ReLU (LReLU)
	3.5.7 Exponential Linear Unit (ELU)
	3.5.8 Softmax Function

	3.6 Loss Functions
	3.7 Regularization
	3.7.1 L1 Norm
	3.7.2 L2 Norm
	3.7.3 Dropout

	3.8 Constraints
	3.9 Optimization Heuristics
	3.10 Bias and Variance Trade-off

	4 Natural Language Processing
	4.1 Discrete Representations
	4.2 Word Embeddings
	4.3 Unsupervised Learning in NLP
	4.3.1 Singular Value Decomposition
	4.3.2 Neural Networks Initial Layer
	4.3.3 Negative Sampling
	4.3.4 Noise Contrastive Estimation

	4.4 Character level encoding

	5 Novel ANN Architecture
	5.1 Sparse Feedforward Models
	5.2 Tree inspired approach
	5.3 Hypercube motivated architecture
	5.3.1 Naive Hypercube
	5.3.2 Hypercube of cliques

	6 Dataset Analysis
	6.1 Open Source Projects
	6.2 Case Study Data

	7 Implementation and Results
	7.1 Python Implementation
	7.2 Deep Story Estimation Baseline Comparison
	7.2.1 Results Reproduction

	7.3 Case Study Results

	8 Conclusions
	8.1 Work Overview
	8.2 Improvements Outlines
	8.3 Future Works

	Bibliography
	A Linear Algebra foundations for ANN
	A.1 The Sparse Synaptic Weights Matrix

	A t-SNE Visualization
	A.1 Dimensional Decomposition

	Folha de Registro do Documento

