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A Possibilistic Fuzzy c-Means Clustering Algorithm
Nikhil R. Pal, Kuhu Pal, James M. Keller, and James C. Bezdek

Abstract—In 1997, we proposed the fuzzy-possibilistic c-means
(FPCM) model and algorithm that generated both membership
and typicality values when clustering unlabeled data. FPCM
constrains the typicality values so that the sum over all data
points of typicalities to a cluster is one. The row sum constraint
produces unrealistic typicality values for large data sets. In this
paper, we propose a new model called possibilistic-fuzzy c-means
(PFCM) model. PFCM produces memberships and possibilities
simultaneously, along with the usual point prototypes or cluster
centers for each cluster. PFCM is a hybridization of possibilistic
c-means (PCM) and fuzzy c-means (FCM) that often avoids
various problems of PCM, FCM and FPCM. PFCM solves the
noise sensitivity defect of FCM, overcomes the coincident clusters
problem of PCM and eliminates the row sum constraints of FPCM.
We derive the first-order necessary conditions for extrema of the
PFCM objective function, and use them as the basis for a standard
alternating optimization approach to finding local minima of the
PFCM objective functional. Several numerical examples are given
that compare FCM and PCM to PFCM. Our examples show that
PFCM compares favorably to both of the previous models. Since
PFCM prototypes are less sensitive to outliers and can avoid coin-
cident clusters, PFCM is a strong candidate for fuzzy rule-based
system identification.

Index Terms—c-means models, fuzzy clustering, hybrid clus-
tering, possibilistic clustering.

I. INTRODUCTION

CLUSTERING an unlabeled data set
is the partitioning of

into subgroups such that each subgroup represents
“natural” substructure in . This is done by assigning labels
to the vectors in , and hence, to the objects generating .
A c-partition of is a set of (cn) values that can be
conveniently arrayed as a matrix . There are
three sets of partition matrices

(1a)

(1b)
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or and (1c)

Equation (1) defines, respectively, the sets of possibilistic, fuzzy
or probabilistic, and crisp c-partitions of . So, there are four
kinds of label vectors, but fuzzy and probabilistic label vectors
are mathematically identical, having entries between 0 and 1
that sum to 1 over each column. The reason these matrices are
called partitions follows from the interpretation of their entries.
If is crisp or fuzzy, is taken as the membership of in
the -th partitioning fuzzy subset (cluster) of . If in is
probabilistic, is usually the (posterior) probability
that, given , it came from class . And if in is pos-
sibilistic, it has entries between 0 and 1 that do not necessarily
sum to 1 over any column. In this last case, is taken as the
possibility that belongs to class . An alternate interpreta-
tion of possibility is that it measures the typicality of to
cluster . Observe that .

A clustering algorithm finds a
which (hopefully) “best” explains and represents (unknown)
structure in with respect to the model that defines . For
in , is represented uniquely by the hard 1-partition

, which unequivocally assigns all

objects to a single cluster; and is represented uniquely
by , the identity matrix, up to a permutation of
columns. In this case, each object is in its own singleton cluster.
Choosing or rejects the hypothesis that contains
clusters.

One of the most widely used fuzzy clustering models is fuzzy
c-means (FCM) [1]. The FCM algorithm assigns memberships
to which are inversely related to the relative distance of to
the point prototypes that are cluster centers in the FCM
model. Suppose . If is equidistant from two prototypes,
the membership of in each cluster will be the same ,
regardless of the absolute value of the distance of from the
two centroids (as well as from the other points in the data). The
problem this creates is that noise points, far but equidistant from
the central structure of the two clusters, can nonetheless be given
equal membership in both, when it seems far more natural that
such points be given very low (or even no) membership in either
cluster.

To overcome this problem, Krishnapuram and Keller [2]
proposed a new clustering model named possibilistic c-means
(PCM), which relaxes the column sum constraint in (1b) so
that the sum of each column satisfies the looser constraint

. In other words, each element of the -th
column can be any number between 0 and 1, as long as at least
one of them is positive. They suggested that in this case the
value should be interpreted as the typicality of relative
to cluster (rather than its membership in the cluster). They
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interpreted each row of as a possibility distribution over .
The PCM algorithm they suggested for optimization of the
PCM objective function sometimes helps to identify outliers
(noise points). However, as pointed out by Barni et al. [3],
the price PCM pays for its freedom to ignore noise points is
that PCM is very sensitive to initializations, and it sometimes
generates coincident clusters. Moreover, typicalities can be
very sensitive to the choice of the additional parameters needed
by the PCM model.

Timm et al. [13]–[15] proposed two possibilistic fuzzy clus-
tering algorithms that can avoid the coincident cluster problem
of PCM. In [13] and [14], the authors modified the PCM ob-
jective function adding an inverse function of the distances be-
tween cluster centers. This extra term acts as a repulsive force
and keeps the clusters separate (avoids coincident clusters). In
[14] and [15], Timm et al. use the same concept to modify the
objective function as used in Gustafson and Kessel [16] clus-
tering algorithm. These algorithms, although use only the typ-
icalities (possibilities), attempt to exploit the benefits of both
fuzzy and possibilistic clustering.

In [12], we justified the need for both possibility (i.e.,
typicality) and membership values, and proposed a model and
companion algorithm to optimize it. Our 1997 paper called
this algorithm FPCM. FPCM normalizes the possibility values,
so that the sum of possibilities of all data points in a cluster
is 1. Although FPCM is much less prone to the problems
of both FCM and PCM just described, the possibility values
are very small when the size of the data set increases. In
this paper we propose a new model that hybridizes FCM and
PCM, enjoys the benefits of both models, and eliminates the
problem of FPCM. To avoid confusion, we call this new model
possibilistic fuzzy c-means (PFCM). The rest of the paper is
organized as follows. Section II discusses FCM. Section III
does the same for PCM. In Section IV we discuss the FPCM
clustering model, along with the first order necessary conditions
for the FPCM functional. In Section V we present the new
PFCM model, Section VI includes some numerical examples
that compare FCM and PCM to PFCM. Section VII has our
discussion and conclusions.

II. WHAT’S WRONG WITH FUZZY AND

PROBABILISTIC PARTITIONS?

The FCM model is the constrained optimization problem

(2)

where , is a vector of (un-
known) cluster centers (weights or prototypes), for

, and is any inner product norm.
Optimal partitions of are taken from pairs that
are local minimizers of . Approximate optimization of
by the FCM-AO algorithm is based on iteration through the fol-
lowing necessary conditions for its local extrema.

Theorem FCM [1]: If for all
and , , and contains at least distinct points, then

may minimize only if

and (3a)

(3b)

Singularity in FCM occurs when one or more of the dis-
tances at any iterate. In this case (rare in practice),
assign 0’s to each for which , and distribute
memberships arbitrarily across the ’s for which ,
subject to the constraints in (1b). The most popular algo-
rithm for approximating solutions of (2) is Picard iteration
through (3a) and (3b). This type of iteration is often called
alternating optimization (AO) as it simply loops through one
cycle of estimates for and then checks

. Equivalently, the entire procedure can
be shifted one half cycle, so that initialization and termination
is done on , and the iterates become ,
with the alternate termination criterion .
The literature contains both specifications; the convergence
theory is the same in either case. There are some obvious
advantages to initializing and terminating on in terms of
convenience, speed and storage. The alternate form that initial-
izes and terminates on ’s is more stringent, since many more
parameters must become close before termination is achieved.
It can happen that different results ensue by using the same
with both forms. The Appendix exhibits the form of FCM-AO
used in our examples. A limit property of (3) that is important
for this study is [1]:

otherwise
(4a)

Using this result, we take the same limit in (3b), obtaining

(4b)

where is the hard c-partition of de-
fined by the right side of (4a) with , and

is the mean vector of . If we use these results in (2), we
get at (5), as shown at the bottom of the next page.

is the classical within-groups sum of squared er-
rors objective function. Equation (5) is the optimization problem
that defines the hard c-means (HCM) model. Moreover, the right
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Fig. 1. Data set X , and V = v ;v , shown as diamonds.

sides of (4a) and (4b) are the necessary conditions for local ex-
trema of . Taking the limit of (3) at the other extreme, we get

(6a)

(6b)

In (6b), is the grand mean of . If , the constraint
makes it difficult to interpret as the

typicality of to the th cluster. To illustrate this problem of
fuzzy partitions generated by FCM, Figs. 1 and 2 show two-
dimensional data sets and with 10 and 12 points whose
coordinates are given in columns 2 and 3 of Table I.

We denote by and
as . Some authors call an “inlier” (bridge) and an
“outlier” (noise). has two diamond shaped clusters with five
points each on the left and right sides of the axis. and
are equidistant from all corresponding pairs of points in the two
clusters.

Example 1:

Data set: , .
Algorithm: FCM.

Initialization:

(7a)

Parameters: .
To understand how inliers and outliers can affect partitions
found by FCM, we applied FCM to and with

and other FCM protocols as listed in Section V. We
initialized FCM on using random values drawn from as
shown in (7a)- the actual values are truncated to two significant
digits for display purpose. Table I shows the membership
values (rows of are shown transposed as columns in the
Table, rounded to two-digit accuracy) obtained for each point
at termination after 12 iterations of FCM-AO. The terminal
centroids are shown in (7b) and
also shown in Fig. 1 by the diamond symbol.

(7b)

Now, suppose we add the points and
to . The point is ten units directly above

as shown in Fig. 2. Applying FCM to with the same
parameters and initialization as before, we get the FCM partition
shown in columns 6 and 7 of Table I, and the terminal cluster

(5)
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Fig. 2. Data set X (columns 1 and 2 of Table I) and v .

TABLE I
DATA SETS X , X AND U AT TERMINATION ON X AND X

centers are also shown in (7b) and in Fig. 2 by the dia-
mond symbol. Points and have membership values of
0.50 in each cluster because both are equidistant from the cen-
troids , even though is more than three times further
away from than is . This is illustrated in Fig. 2.

The addition of and to does not change the ter-
minal memberships of points very much at all (the
maximum change is 0.05). However, seems far more typ-
ical of the overall structure of the data than . This illustrates
how a noise point such as can adversely affect data inter-
pretation using fuzzy memberships. The problem lies with the
basic notion of fuzzy (or probabilistic!) partitioning of data sets.
Specifically, the summation constraint in (1b) forces this unde-
sirable situation to occur.

III. WHAT’S WRONG WITH POSSIBILISTIC PARTITIONS?

To circumvent the counterintuitive results just displayed,
Krishnapuram and Keller [2] suggest relaxing the column
constraint for fuzzy partitions in (1b) so that

better reflects what we expect for the typicality of to

the th cluster. We represent typicality by and the typicality
matrix as . Krishnapuram and Keller [2] proposed
the PCM model

(8)

where is any inner product norm, ,
is a vector of cluster centers,

and is a user-defined constant, . Since
the rows and columns of are independent, minimization of

can be done by mini-
mizing the th term of with respect to

(9)
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Approximate optimization of by the PCM-AO algorithm is
based on iteration through the following necessary conditions
for its local extrema.

Theorem PCM [2]: If , , , and
contains at least distinct points, then
may minimize only if

(10a)

(10b)

Here, i) unlike its counterpart in (3a), could be zero
in (10a), so PCM does not suffer from the same singularity
problem that FCM does, and ii) the functional form in (10b) is
identical to that in (3b). The PCM-AO algorithm for solving
(8) suggested by Krishnapuram and Keller simply replaced (3)
with (10) in FCM-AO and added the specification of the
to the “pick list” in Appendix. PCM-AO can also be initialized
with either or . Krishnapuram and Keller recommend
using terminal outputs of FCM-AO as a good way to initialize
PCM-AO. They also suggest choosing the by computing

the most common choice is (11)

where the are a terminal FCM partition of . Several
aspects of PCM are discussed in [4] and [5]. PCM sometimes
helps when the data are noisy. However, the user needs to be
very careful about the choice of , the and when using
PCM-AO [3], [5].

The first term of is just , and in the absence of the
second term, unconstrained optimization will lead to the trivial
solution . The second term of acts as a penalty
which tries to bring toward 1. Thus, as pointed out by Kr-
ishnapuram and Keller [2], [5], the terminal typicality matrix
is strongly dependent on the choice of the . If is low,

will be small, and if is high, will be high. Some lim-
iting properties of in (10a) will help explain this sensitivity of
PCM-AO to the ; see (12)–(14), as shown at the bottom of

the page. Since the columns and rows of the typicality matrix are
independent of each other, can be split into (cn) sub-
objective functions as shown in (9). If the initialization of each
row is not sufficiently distinct, coincident clusters may result.
This is one reason for using FCM-AO to generate the initial-
izing parameters for PCM-AO. Sometimes coincident clusters
can be advantageous. For example, when we start with a large
value of , and defuzzification of the terminal PCM-AO parti-
tion results in distinct clusters, this may indicate that the
correct value of is . However, this is useful only when the
data really has clusters. PCM-AO can terminate with
clusters even when there are really distinct clusters in the
data. In other words, there is no guarantee that is the right
number of clusters even when PCM-AO seems to suggest this.

The problem of coincident cluster generation is not specific
to . This problem will arise for any separable objective func-
tion, that is, a function that can be expressed as a sum of inde-
pendent subobjective functions. This problem is not caused by
a poor choice of penalty terms; rather, it is due to the lack of
constraints placed on the typicality matrix.

To summarize Sections II and III: for fuzzy
(or probabilistic) is too strong—it forces outliers to
belong to one or more clusters and, therefore, unduly influence
the main structure of . On the other hand, the constraint

is too weak—it allows data point to behave almost
independently of the other data in , resulting in

that is very brittle to the choices of its parameters. The
FPCM model was proposed to exploit the benefits of fuzzy and
possibilistic modeling while circumventing their weaknesses.

IV. WHAT’S WRONG WITH FPCM?

We believe that memberships (or relative typicalities) and
possibilities (or absolute typicalities) are both important for cor-
rect interpretation of data substructure. When we want to crisply
label a data point, membership is a plausible choice as it is nat-
ural to assign a point to the cluster whose prototype is closest
to the point. On the other hand, while estimating the centroids,
typicality is an important means for alleviating the undesirable
effects of outliers.

The FCM necessary condition in (3a) for is a function of
and all centroids. On the other hand, the necessary condi-

tion for typicality in (10a) is a function of and alone.
That is, is influenced by the positions of all cluster cen-
ters, whereas is affected by only one. Since depends on
only (and not relative to others) the distance from to and
on the constant , we regard as the relative typicality and

the absolute typicality (or just typicality) of with respect
to cluster .

(12)

if
if
if

and (13)

(14)
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Even if we change the penalty terms of the PCM functional in
(8), we will still have the problem of coincident clusters as long
as the objective function is separable. In [12], for the FPCM
model, we proposed the following optimization problem:

(15)
subject to the constraints , , ,

, and

and (16)

(17)

The transpose of admissible ’s are members of the set .
We view as a typicality assignment of the objects to the
clusters. The possibilistic term will dis-
tribute the with respect to all data points, but not with
respect to all clusters. Under the usual conditions placed on
c-means optimization problems, we obtained the first order nec-
essary conditions for extrema of , which we state here as a
theorem.

Theorem FPCM [12]: If for all
and , and contains at least distinct data points,
then may minimize only
if

(18a)

and (18b)

(18c)

Proof: The expressions in (18a) and (18b) both
have the functional form in (3a) and are obtained ex-
actly in the same manner. These two equations follow
immediately with the Lagrange multiplier theorem. Ac-
tually, (18a) is obtained by solving the reduced problem

with and

fixed for the -th column of . The set over which
is minimized is , the set of all fuzzy label vectors

in . Formula (18b) is obtained in exactly the same way
by solving the other half problem for the -th row of ,
i.e., . The set

over which is minimized is , the set of all fuzzy
label vectors in . Both decompositions of are possible
because is a sum of nonnegative terms, so the sum of the
minimums is the minimum of the sums.

If one or more , we can use the
usual singularity conditions to continue (18a) and (18b). That
is, assign zero weights to all and such that

, and distribute nonzero memberships and pos-
sibilities arbitrarily subject to and .
The correctness of these assignments follows exactly as it does
in the proof of Theorem FCM.

For (18c), the reduced problem
can be

solved by fixing and , and zeroing the gradient of
with respect to each . This results in (18c), as long
as is an inner product norm, and
hence, differentiable in each .

Equation (18a) is identical in form to (3a), the FCM mem-
bership formula. This does not mean that FCM and FPCM will
generate the same membership values, even if both algorithms
are started with the same initialization. Why? Because (18c) is
different from (3b); in FPCM, and are both used for the
update to , so the succeeding estimate of will differ from
the one produced by FCM. We next state without proof some
limiting results for FPCM

otherwise
(19a)

(19b)

otherwise
(19c)

(19d)

(19e)

FPCM has the same type of singularity as FCM. FPCM does not
suffer from the sensitivity problem that PCM seems to exhibit
[because of the limit result in (12)]. Unfortunately, when the
number of data points is large, the typicality values computed
by (18b) will be very small. Thus, after the FPCM-AO algorithm
for approximating solutions to (15) based on iteration through
(18) terminates, the typicality values may need to be scaled up.
Conceptually, this is no different than scaling typicalities with
respect to as is done in PCM. In PCM, is used to scale
such that at , the typicality is 0.5. While scaling
seems to “solve” the small value problem (which is caused by
the row sum constraint on ), the scaled values do not possess
any additional information about points in the data. Thus scaling
the is an artificial fix for a mathematical defect of FPCM.
We can avoid the scaling step and make FPCM more useful for
large data sets, with the new PFCM model.
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V. A NEW PFCM

The apparent problem of FPCM is that it imposes a constraint
on the typicality values (sum of the typicalities over all data
points to a particular cluster is 1). We relax the constraint (row

) on the typicality values but retain the column con-
straint on the membership values. This leads to the following
optimization problem:

(20)

subject to the constraints , and
. Here, , , and . In (20), the are

user defined constants. The constants and define the relative
importance of fuzzy membership and typicality values in the
objective function. Note that, in (20) has the same meaning
of membership as that in FCM. Similarly, has the same
interpretation of typicality as in PCM. At this point, a natural
question comes: should we constrain ourselves to ?
Doing so, we can eliminate one parameter, yet we can assign
different relative importance to and . However, this has
an undesirable effect. If we increase the importance (weight)
of membership then that necessarily forces us to reduce the
importance of typicality by the same amount. This is too
restrictive. Also, we will see later that the optimal typicality
values depend on the magnitude of . So by constraining

, we lose modeling flexibility.
If , and for all , then (20) reduces to the FCM

optimization problem in (2); while converts it to the usual
PCM model in (8). Later, we will see that when , even if
we do not set for all , (20) implicitly becomes equiva-
lent to the FCM model. Like FPCM, under the usual conditions
placed on c-means optimization problems, we get the first-order
necessary conditions for extrema of .

Theorem PFCM: If for all and
, and contains at least distinct data points, then

may minimize only if

(21)

(22)

(23)

Proof: Equations (21) and (22) follow imme-
diately with the Lagrange multiplier theorem. Equa-
tion (21) is obtained by solving the reduced problem

with and

fixed for the th column of . The function is
minimized over . The membership expression is indepen-
dent of the constant . The influence of on the memberships
comes via the centroids (23). Equation (22) is obtained solving
the problem .
The constant has a direct influence on the typicality values.
These decompositions of are possible because is a
sum of nonnegative terms, so the sum of the minimums is the
minimum of the sums.

If one or more , assign zero values to
all and such that , and distribute
nonzero memberships arbitrarily subject to and
assign to those for which . The correctness
of these assignments follows exactly as it does in the proof
of Theorem FCM.

Finally, the reduced problem

is solved by fixing and , and zeroing the gradient of
with respect to each . This results in (23), as long

as is an inner product induced norm.
We state some interesting properties of PFCM; see (24a)–(g),

as shown at the bottom of the next page. Property P6 shows that
PFCM behaves like FCM as the exponents grow without bound.
That is, irrespective of the values of the constants and , all
centroids approach the overall (grand) mean as and

. Equation (23) shows that if we use a high value of
compared to , then the centroids will be more influenced by
the typicality values than the membership values. On the other
hand, if we use a higher value of then the centroids will be
more influenced by the membership values. Thus, to reduce the
effect of outliers, we should use a bigger value for than .
Similar effects can also be obtained by controlling the choice
of and . For example, if we use a large value of and
smaller value for , then the effect of outliers on the centroids
will be reduced. However, a very large value of will reduce
the effect of memberships on the prototypes and the model will
behave more like the PCM model, resulting from (24b). The
PFCM algorithm is also included in Appendix.

VI. NUMERICAL EXAMPLES

We compare various aspects of FCM, PCM, and PFCM with
five data sets: , , , and IRIS.

For all data sets we use the following Computational proto-
cols: , maximum number of iterations

, and is the Euclidean norm. The number of clus-
ters is 3 for IRIS and for all other data sets it is fixed at .
For both PCM and PFCM we first run FCM to termination and
use (11) with to find the values of . All trials termi-
nated with the convergence criteria after a few iterations.
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TABLE II
TERMINAL PROTOTYPES PRODUCED BY FCM, PCM, AND PFCM ON

X AND X

Example 2:

Data sets: , .
Algorithm: FCM, PCM, PFCM.
Initialization:

(25)

The initialization in (25) is obtained by randomly selecting
two data points from (each column of is a data point).
Table II shows the centroids produced by FCM, PCM and
PFCM. For all three algorithms produce good prototypes.
However, a closer look reveals that PFCM produces proto-
types that match exactly (up to rounding) with the ideal (true)

centroids that would be obtained in

absence of outliers.
If and are to be “ignored,” we hope to find the true

centroids of when is processed. From Table II, we see

that , and

. To make a crude assessment how

each method has accounted for the inlier and outlier, we com-
pute , where is FCM/PCM/PFCM:

, and . Al-
though PCM does assign different typicality values to and

, the centroids produced by PCM are not very good com-
pared to those generated by FCM and PFCM. With a different

initialization and different choice of , PCM should produce
better results.

Table III exhibits the terminal and from FCM, PCM
and PFCM with , , and
(corresponding to Table II). Table III shows that both
and result in the same max-membership hard partition.
The relative ordering of points (in terms of membership values)
also remains the same.

PFCM provides a more informative description of the data
than FCM, since it provides roughly the same membership in-
formation but also shows, via the typicalities, for example, that

is much more atypical than for either cluster. PFCM
assigns the highest typicality in the left cluster to . This is
very reasonable because is located at the center of the left
cluster. Similarly, is most typical of the right cluster. Here,

is least typical to either cluster indicating that it is an out-
lier. The typicality for in both clusters is an order of magni-
tude smaller than the typicality value for . This enables us to
prune outliers from the data to reduce the effects of noise (like
PCM did in [2]). For this initialization, PCM assigns the highest
typicality values to and because the PCM centroids are

located at . Both and

result in the same (hardened) partition. Although for both
PFCM and PCM assign almost the same typicality values, for

the typicality values assigned by PFCM are significantly
smaller than those assigned by PCM. Hence, the PFCM proto-
types are less influenced by the noise points.

Example 3:

Data set: .
Algorithm: PFCM.

Initialization: .

We now investigate the impact of various parameters on the per-
formance of the PFCM algorithm. The initialization from (7a)
is not a good one, because the two vectors in are very close
to each other with respect to the smallest hyperbox containing
the data. However, we use it to show the “robustness” of dif-
ferent algorithms on the initializations. With initialization (7a)
PCM generates coincident clusters. Krishnapuram and Keller
[2], [5] suggest using the terminal FCM centroids to initialize

otherwise
(24a)

(24b)

(24c)

if
if
if

(24d)

(24e)

(24f)

if then (24g)
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TABLE III
TERMINAL U AND T FROM FCM (m = 2), PCM (� = 2), AND PFCM (a = 1, b = 1, m = 2, � = 2) FOR X WITH INITIALIZATION PERFORMED AS IN (25)

PCM, so we also report a few results generated by PCM (in Ex-
ample 5) and PFCM when the initialization is done by the FCM
prototypes.

Table IV shows the results produced by PFCM on for
different values of , , and . The centroids corresponding
to run in Table IV are identical (up to rounding) to the PFCM
centroids in Table II, which are generated by PFCM using a dif-
ferent initialization. The first four results in Table IV demon-
strate that if we vary from 1 to 7, keeping all other parameters
fixed, the terminal PFCM prototypes are essentially unchanged.
Why? Increasing assigns more importance to typicality, but
the results do not change much since has nice well sepa-
rated clusters, However, if the data have outliers then, we shall
see that giving more importance to typicality by increasing im-
proves the prototypes. (This property can be used to get a better
understanding of the data.).

Comparing with , we see that increasing the value of
from 5.0 to 7.0, when the value of is low (1.5), degrades the
prototypes because the membership values become more uni-
form. That is, the membership component of (23) tries to push
the prototypes toward the grand mean, and this degrades the
prototypes, making typicality more important for computation
of centroids. Run shows very poor centroids. Comparing the
choice of parameters in with those in , we find that only

changes from 1.0 to 5.0. The high value of removes the
skewness in the membership values (membership values be-
come close to 0.5 for all data points). Hence, as just explained,
the FCM part of the objective function tries to move the cen-
troids toward the grand mean vector and a low value of makes
typicality assignments almost crisp. So the cluster centers will
drift toward the grand mean and typicality will be high for only
a few points close to the centroids. Inspection of reveals that
for just one point in each cluster the typicality is almost 1.0,
while for all other points in the same cluster the typicality values
are very small. Hence, the poor results. If there are a few noise
points, the results could even be worse depending on the loca-
tions the prototypes. However, if we increase the value of , we
can recover from this situation.

The centroids generated by run are much better than those
in run . Between runs and only changes from 1.5 to
10. For this choice, the typicality values are close to 0.5 for all
data points. Consequently, typicality values do not have much

TABLE IV
RESULTS PRODUCED BY PFCM FOR DIFFERENT VALUES OF THE

PARAMETERS WITH X

influence on the prototypes. So, for this choice of parameters,
PFCM behaves more like FCM. Run in Table IV corresponds
to FCM with . It is interesting to see that we get the
same (up to rounding) centroids as in . For this data set even
with and , we get reasonably good results, see run

. This is practically the FCM result. Since , the effect of
typicality is drastically reduced and we get results similar to the
FCM. Table IV includes the PFCM prototypes for a few other
choices of parameters, which are also quite good.

We discussed earlier that constraining is not ex-
pected to result in good prototypes. To illustrate this we report
three more results. The ratio for run is the same as that of
Run , yet the centroids produced by run are different from
those produced by run , though all other protocols including
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initialization remain the same as before. Similarly, run has
the same ratio of as that of run . In this case too, there
is a noticeable difference between the two sets of centroids.
Run with corresponds to run . However, run

results in coincident clusters. Because the absolute weight
assigned to the membership component of the

objective function in (20) is quite small making the algorithm
behave almost like PCM.

Lessons From Example.3: We must not use a very large value
of , since as (24) suggests, larger ’s reduce the effect of typ-
icality. Also, it seems that should be larger than so that typ-
icality values influence the computation of prototypes, thereby
reducing the effects of outliers. But should not be “too large,”
for then the effect of membership values will be practically
eliminated.

Example 4:

Data set: .
Algorithm: PFCM.

Initialization: .

Table V depicts the centroids generated by PFCM on using
the same parameters as in Table IV. While we did not see any
change in the prototypes when was increased keeping all other
parameters fixed for , the centroids do improve for (see
Runs – in Table V). This happens because larger values of

increase the relative importance of the typicalities in deter-
mining the prototypes. Except for run , PFCM generated good
prototypes. Run generates coincident clusters. Why? We men-
tioned earlier that we can choose the parameters of PFCM so
that it behaves more like PCM. If is very small, and the ini-
tial centroids are not well placed (separated), then PFCM, like
PCM, can generate centers that are very close to each other
(i.e., practically coincident clusters). Run in Table V corre-
sponds to this situation. To further illustrate this point, we ran
PFCM using the same set of parameters as in , but initialized
with the terminal FCM centers. In this case PFCM generates

. This indicates that in run we

obtained coincident clusters because the initial prototypes were
very close to each other. Run shows the prototypes produced
by FCM with . In the context of Table IV,
we argued and numerically demonstrated that the choice of pa-
rameters in run will make PFCM behave like FCM. This is
also true for , run and run generate almost the same
prototypes. For , like we made three runs –
constraining , but maintaining the same ratios
corresponding to runs – . The conclusions drawn from runs

– in Table IV are equally applicable here.
Example 5:

Data set: .
Algorithm: PCM.
Initialization: FCM centroids.

Runs through of Table VI show the PCM centers for dif-
ferent values of when the PCM algorithm is initialized with
the terminal FCM prototypes. With an increase in beyond 2,
PCM generates almost coincident clusters. Except for one point
the typicality values become close to 0.5. In other words, with
a moderately large value of the limit property of typicality in

TABLE V
RESULTS PRODUCED BY PFCM FOR DIFFERENT VALUES OF THE

PARAMETERS WITH X

(14) is attained. However, using our PFCM framework to realize
PCM, we can overcome this situation by increasing the value of
. Run and run in Table VI represent two such cases for

which we use respectively and with
(PFCM is equivalent to PCM). With , PCM (realized
by PFCM) can produce excellent prototypes even with .
Using PCM also one can get results like run with appropri-
ately scaled values of .

Next, we discuss results on and . is a mixture

of two 2-variate normal distributions with mean vectors

and . Each cluster has 200 points, while is an aug-

mented version of with an additional 150 points uniformly
distributed over . Fig. 3 shows the scatterplot of

and .
Example 6:

Data Sets: and .
Algorithms: FCM, PFCM, and PCM.
Initialization:

(26)

The initialization in (26) (which is displayed with only two sig-
nificant digits) is obtained by two randomly selected data points
from . Table VII depicts the prototypes generated by the
three algorithms when the initialization in (26) is used. The true

mean of is . The PCM algorithm

did not produce good prototypes although the initial centroids
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Fig. 3. (a) Scatter-plot of X . (b) Scatter-plot of X .

TABLE VI
RESULTS PRODUCED BY PCM FOR DIFFERENT VALUES OF THE PARAMETERS WITHX WHEN INITIALIZED WITH THE FCM CENTROIDS.

are reasonably separated, but coming from the same cluster.
Both FCM and PFCM result in good prototypes, which are very
close to . For , like , the effect of the noise points
is smaller on the PFCM prototypes than it is on the FCM cen-
troids. Column 4 of Table VII shows the PFCM centroids for
both data sets with , , , and .
Since is comparatively larger than , we expect the centroid
computation in (23) to be more influenced by the typicality
values and, hence, the centroids are not expected to be affected
much by the noise points. Column 4 reveals that it is indeed the
case. The PFCM centroids obtained for in column 4 are
closer to than the centroids in column 3. Although, PCM
produces coincident clusters with (26), if we use the terminal
FCM prototypes to initialize PCM, it results in good prototypes
as shown in column 5 of Table VII.

Example 7:

Data Sets : and .
Algorithms: FCM, PFCM and PCM.

Initialization:

(27)

We now compare FCM and PCM with PFCM with initialization
in (27). Like Example 6, the initialization in (27) is obtained
by randomly selecting two data points, but the two initial cen-
troids are well separated and they come from two different clus-
ters. Column 1 shows the FCM centroids while columns 2 and
3 depict the PCM and PFCM centroids. In this case, both PCM
and PFCM algorithms result in good prototypes for . The
PCM and PFCM centroids on are very close to each other.
For , both PCM and PFCM generate better prototypes than
FCM.

Example 8:

Data Set: IRIS.
Algorithms: FCM, PFCM, and PCM.
Initialization: Stated in appropriate places.
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TABLE VII
PROTOTYPES PRODUCED BY FCM, PCM AND FPCM WITH INITIALIZATION AS IN (26)

TABLE VIII
PROTOTYPES PRODUCED BY FCM, PCM AND FPCM WHEN THEY ARE INITIALIZED BY (27)

TABLE IX
RESULTS ON IRIS DATA WHEN ALGORITHMS ARE INITIALIZED WITH THREE RANDOMLY SELECTED DATA POINTS

We now demonstrate PFCM on a real data set, IRIS, with three
clusters. IRIS [7], [8] is a four-dimensional data set containing
50 samples each of three types of Iris flowers. One of the
three clusters (class 1) is well separated from the other two,
while classes 2 and 3 have some overlap. The typical result of
comparing hardened FCM or HCM partitions to the physically
correct labels of Iris is 14–17 errors. We made several runs
of PFCM on IRIS with different initializations and different
choices of parameters. First, we report results of a few runs
when FCM, PCM, and PFCM are initialized with three ran-
domly selected data points (Table IX). We have made several
such runs and in each case FCM and PFCM generated good
prototypes, but PCM, even when the three initial centroids come
from three different classes, resulted in coincident clusters (i.e.,
obtained two distinct clusters). Table IX displays some typical

results with initializations shown in the first column of the same
table. The resubstitution errors with and
are better than that with . PCM gets two coincident
clusters making 50 resubstitution errors.

We also made a few runs of PCM and PFCM when the algo-
rithm is initialized with FCM terminal prototypes. In Table X,
column 1, row 2 shows the FCM terminal prototypes that
are used to initialize the PCM and PFCM algorithms (results
shown in columns 2–3 of row 2). In this case, as expected
PFCM produced good prototypes, but PCM again resulted in
two coincident clusters (Table X). In row 3, column 1, we
show another set of FCM terminal prototypes that are ob-
tained with . When these FCM prototypes are used to
initialize, PCM again produced two coincident clusters that
we do not show in Table X. The PFCM algorithm in this
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TABLE X
RESULTS ON IRIS DATA WHEN ALGORITHMS ARE INITIALIZED WITH FCM

TERMINAL PROTOTYPES

case too, produced low resubstitution error both with respect
to membership and typicality. In IRIS since class 2 and class
3 overlap, one can argue that IRIS has two clusters. So, in
this regard, PCM does an excellent job in finding only two
clusters even when the algorithm is asked to look for three
clusters. However, there are applications where even when
there is no clear cluster substructure, we want to find clusters.
For example, although IRIS may be thought of having two
clusters, if we want to extract rules or prototypes for classifier
design, we need to find at least three clusters. With IRIS data
PCM could not do this with all initializations that we tried but
PFCM could. Thus for such applications, PFCM prototypes
will be more useful than the FCM and PCM prototypes because
PFCM prototypes are not sensitive to outliers and PFCM can
avoid coincident clusters.

VII. CONCLUSION

We have argued the need for both membership and typicality
values in clustering, and have proposed a possibilistic-fuzzy
clustering model named PFCM. Unlike most fuzzy and possi-
bilistic clustering algorithms, PFCM produces three outputs: a

fuzzy partition or membership matrix of ; a pos-
sibility matrix of typicalities in ; and a set of point proto-
types that compactly represents the clusters in . PFCM has
been tested on five data sets with many runs (not all discussed
here) and its initial performance indicates that it does ameliorate
problems suffered by FCM, PCM and FPCM. pairs from
PFCM are not the same as from FCM and from PCM, but
they seem to share the same qualitative properties as the individ-
ually estimated matrices. PFCM has two additional parameters,

and that define the relative importance of membership and
typicality in the computation of centroids. By suitable combina-
tion of these parameters we can make PFCM behave more like
FCM or PCM. Further investigation is required before much can
be asserted about a good range of choices for the parameters

.
The necessary conditions in (21)–(23) for the PFCM model

hold for any inner product norm, e.g., for the scaled Maha-
lanobis norm [6], so the formulation is quite general. The two
main branches of generalization for c-means models are locally

“adaptive” schemes such as those of Gustafson and Kessel [9]
or Dave and Bhaswan [10]; and extensions of the prototypes to
shell-like surfaces, see for example Krishnapuram et al. [11].
The basic architecture of the PFCM -AO algorithm will clearly
remain the same, but the update equations for extensions in
either direction will need to be modified by the appropriate nec-
essary conditions. Many of these extensions will be straightfor-
ward, and we hope to write about some of them soon.

APPENDIX

TABLE XI
FCM-AO, PCM-AO, FPCM-AO, AND PFCM-AO ALGORITHMS FOR

INNER PRODUCT NORMS
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